- | Great Theoretical Ideas In Computer Science

Anupam Gupta C515-251 Spring 2005

Lecture 19 Mar 22,2005 | Carnegie Mellon University

6rade School Again:
A Parallel Perspective

1010000000000000000

A

g

Plus/Minus Binary
(Extended Binary)

Extended Base 2:
Each digit canbe -1, 0, 1

Example:

/ Similar to Egyptian Base-3

A F§
| |
dam < \

One weight for each power of 3.
Left = "negative”. Right = “positive"

Plus/Minus Binary
(Extended Binary)

Base 2:
Each digit canbe -1, 0, 1

Example:
1-1-101-1

S RN R

Note: 1001 =9as well

How to add 2 n-bit humbers.

How to add 2 n-bit nhumbers.

+
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %

How to add 2 n-bit humbers.

x4 %
X X% *x X X% *x X *x X |[|x|*x
+***********
L}
*x x

How to add 2 n-bit nhumbers.

+

* *
* *
* *
* *
* *
* *
* *
* X
* * *
* *

* *F X % X%

How to add 2 n-bit nhumbers.

*
x X% *x *x *x *x %
+ x X% *x *x *x *x %

* *T X % %
*
*
*

How to add 2 n-bit humbers.

X4k | *x *x *x X *x X *x *x X
X|*x *x *x X% *x X% *x X X %
+ X|*x *x *x X% *x X% *x X %X %
L}
X X X X% %X X X X *x *x *x %

How to add 2 n-bit humbers.

X4k | *x *x *x X *x X *x *x X
X|*x *x *x X% *x X% *x X *x %

+***********
L}

X X X X% %X X X X *x *x *x %

Let ¢ be the maximum

«

© 3 -+

of bits in numbers

time that it takes you T(n)<cnis

proportional fo n

to doD

The time to add two numbers
\@ws linearly with input size.

 §

If n people agree to help you add two n bit
numbers, it is not obvious that they can finish
faster than if you had done it yourself.

Is it possible to add
two n bit humbers in
less than linear
parallel-time?

‘ Darn those carries ! ‘

Fast parallel
addition is no
obvious in usual
binary.

But it is amazingly
direct in Extended
Binary!

Extended binary
means base 2

allowing digits fo be

from {-1, 0, 1}.

We can call each
digit a “trit".

/

Theorem: n people can add two n-trit, plus/minus
binary numbers in constant timel

An Addition Party
to Add 110-1 to -111-1

O O
&

An Addition Party

Invite n people to add two n-frit numbers.
Assigh one person to each trit position.

An Addition Party

Each person should add the two input trits in their
possession.

Problem: 2 and -2 are not allowed in the final answer.

If youhavealora?2
subtract 2 from yourself and pass a 1 to the left.
(Nobody keeps more than 0)

Add in anything that is given to you from the right.
(Nobody has more than a 1)

Pass Left

Add in anything that is given to you from the right.
(Nobody has more than a 1)

After passing left

There will never again be any 2s because
everyone had at most O
and received at most 1 more

If you have a -1 or -2
add 2 to yourself and pass a -1 to the left
(Nobody keeps less than 0)

After passing left again

No -2s anymore either.
Everyone kept at least O and received at most -1.

How about standard binary?

X in Extended Binary X'in Binary
Y in Extended Binary Y in Binary
(X+Y) in Ext. Bin. (X+Y) in Ext. Bin.

(X+Y) in Binary

Can we convert (X+Y)g, g, into Binary fast? |

Is there a fast
parallel way to convert an
Extended Binary number

into a standard binary
number?

»

(w>)

Not obvious how
to do this in
sub-linear time.

~

@/ To find fast parallel
7 ways of adding,

let's re-examine grade
school addition from
the view of a computer

circuit.

Grade School Addition

Grade School Addition

1011111100 CsCaC3C2C
1011111101 ay a3 04, a; qg
1000000110 b,bs b, b, by

10100000011

Grade School Addition Adder
Cs C4 C5 C3lC4 Cii Ei
a4 03 a,(a; [ag

b4 b3 bZ bl bo C|+1 <+ :&zgr 4-Cl

!
S v
S;

Logical representation of binary:
0 = false, 1 = true

S = (01 XOR bl) XOR Cq

C = (01 AND bl)
OR (a; AND ¢,)
OR (b; AND c,)

odd number of bits
are 1.

at least two of the
bits are 1.

Adder

o
« O

1-bit
C|+1 4 adder <+ C|

intrinsic
propagation delay S|
in the computation

Ripple-carry adder

a,a,a, a; b;
b,bsb, | bl b, C“‘[::Jci
S, S;
an-1 bn-l q; b, (¢] bl ag bo
Cn‘l I "I I ¢ "I Icl"l IO
']] ¥ 7
sn—l S; Sy SO

Ripple-carry adder
1 1 1 1l
|11 14

¥ 1] 1]

[o

How long to add two n bit numbers?

Propagation time through the
ripple-carry adder will be O(n)

Circuits compute things
R in parallel.
We can think of the
./ propagation delay as
PARALLEL TIME.

Is it possible to add
two n bit humbers in
less than linear
parallel-time?

Darn those carries
(again)!

If we knew the carries it would be very
easy to do fast parallel addition

[S B
I B B I O
v v ¥ v

So how do we figure
out the carries fast?

What do we know about the carry- What do we know about the carry-
out before we know the carry-in? out before we know the carry-in?
ab ab
s s
a b Cout a b Cout
0 0 0 0 0 0
0 1 Ci 0 1 -
1 0 Ci 1 0 -
1 1 1 1 1 1

Idea #1: do this calculation first.

This is just a function of a and b.

We can do this in parallel. 10* . Ar O § C? céu
e] b | Cu 101111101] e
L& *
o [t [- 10000001110
1 1 1

Note that this just took one step!

Now if we could only replace the — by 0/1 values...

Idea #1: do this calculation first. Idea #1: do this calculation first.
10.....1.00 10.1000
1011111101 1011111101

+
1000000110 1000000110

Idea #1: do this calculation first.

10. . . .11000
1011111101

1000000110

Idea #1: do this calculation first.

10. . .111000
1011111101

1000000110

Idea #1: do this calculation first.

10. .1111000
1011111101

1000000110

Idea #1: do this calculation first.

10-11111000
1011111101

1000000110

Idea #1: do this calculation first.

10111111000
1011111101

1000000110

Idea #1: do this calculation first.

10111111000
1011111101

1000000110
10100000011

Once we have the carries, it takes only one more step:
s; = (g XOR b;) XOR ¢;

Steps to add two numbers

Compute the carry in terms of 0, 1, . @

Convert this into regular binary carry.

Add X, Y and carry in one step. @

10.1..0

So, everything boils down to:
can we find a fast parallel
way to convert each position
to its final 0/1 value?

| Called the “parallel prefix problem”

Idea #2:
Can think of 10& - e klk Oas all

partial results in:

AMOM(- M(-M (= M (- M (- M @AM (- M ONN))

Idea #2 (cont):

And, the M operator is associative.

10.....10

(- M(=M(=m@AMm(-m0))

for the operator M: MIO|1 =
X=X 0lololo (e M)M« MM (< MO)
Imx=1 1111 N
Oux=0 T ~m1im0 =1
We'll just use fact that we have an Examples

Associative, Binary Operator

Binary Operator: an operation that
takes two objects and returns a third.

- AaB=C

Associative:
c(AaB)aC=As (Ba(C)

+ Addition on the integers
* Min(a,b)

+ Max(a,b)

« Left(ab)=a

+ Right(a,b) = b

+ Boolean AND

+ Boolean OR

M

10

In what we are
about to do "+" will
mean an arbitrary

binary associative
operator.

Prefix Sum Problem

Input: Xn-1, Xn-2o X1, Xo
Output: Yot Yoo Y1. Yo
where

Yo=Xo

Yi=Xo+ X,

Yo=Xo+ X+ X,

Y3=Xo+ X+ X+ X3

Y= Xo+ X+ X+ Xz+ o+ Xy

Prefix Sum Problem

Input:
Output:

Prefix Sum Problem

X1, Xnz- X1, Xo
Yo Yoz Y1 Yo

Input: K-t Xn2o X1, Xo 6, 9,62, 3, 4,7
Outputt Yy, Yoo Y1, Yo 31,25,16,14,11,7
where
Vo= %o
Yi=Xo+ X;

Yo=Xo+ X+ X,
Y3=Xo+ X+ X+ X3

Y= Xo+ X+ X+ Xz+ o+ Xy

where
Yo=Xo

Yi=Xo+X;
Yo=Xo+ X+ X,
Y3=Xo+ X+ X+ X3

Y= Xo+ X+ X+ Xz+ o+ Xy

Example circuitry
(n=4)

X3 Xz X1 Xo Xo X1 Xo

Vv

Xo

X; Xo
g |
Yo
Y1

Divide, conquer, and glue
for computing y,4

X1 Xz . Xwel Xzt - X1 Xo
12 ¥ ¥ 12 Vol

sum on .n/2] sum on|n/2]

items items
T(1)=0
Yrt T(n) = T(n/2T) +1

T(n) =Tlog, n |

11

-~

Size of Circuit
(number of gates)

The parallel time taken Xnt Xz Xl Xwzia o Xi %o
) Vo ' v Vo
is T(n) =[log, n] |
Sum on Sum on[n/2]
But how many Ln/2] items items
components does
this use? What is the
size of the circuit?
K et 5(1)=0
S(n) = s(n/21T) + s(n/2) +1
] 5(n) = n-1
Sum of Sizes
This algorithm is
X3 Xo X1 Xo Xa X1 Xo X1 Xo X fast, but it uses too
l many components!
Yo
& Modern computers
va do something
vs \slighﬂy differen‘r.J
S(nN)=0+1+2+3+..+(n1)=n(n-1)/2
Recursive Algorithm Recursive Algorithm
n items (n = power of 2) n items (n = power of 2)
If n=1,Yy= X, else If n=1,Yy= X, else
Xt Xno Xz Xng Xs XeXs Xz X Xo Xt Xno Xz Xng Xs XoXs Xp X; Xo
| Prefix sum on n/2 items |
1 1 1 I i

12

Recursive Algorithm
n items (n = power of 2)

Ifn=1,Y,= X, else

Xnz Xng Xoa Xs XaXs Xp X; X

X“’b\ RN @i

Prefix sum on n/2 items

| ¥l Mﬂhﬂ\

YeoV¥3 YY1 Yo

Parallel time complexity
Ifn=1,yo=Xo:

X5 XaXs Xp Xi Xo

CHUET

2| | Prefix sum on n/2 items

150§y

YaYs YoY:i Yo

—

T(1)=0; T(2) = 1: T(n) = T(n/2) + 2

T(n) = 2 logy(n) - 1

Size
Ifn=1, Y, = Xg:
X5 XaXs Xp X

et BUE)

sv/2){ | Prefix sum on n/2 items

n/2)1{ W W w w

YaYs VoY1 Yo
5(1)=O; S(n) = S(n/Z) +n-1
S(n) = 2n - log,n -2

—

Putting it all together:
"Carry Look-Ahead Addition”

To add two n-bit humbers: aand b

+ 1 step to compute carries using (- 01)

+ 2log,n -1 steps to compute binary carries ¢
+ 1 step to compute ¢ XOR (a XOR b)

2 log,n + 1 steps total

Addition can be done
in O(log n) parallel

What about
multiplication?

time, with only O(n)
components! ﬁ

How about multiplication?

X X k X kX X kx X%

10110111
% %k %k Kk Kk Xk Xk X
n X %k %k Kk Kk Xk Xk X
numbers * %k %k Kk Kk Xk Xk X
to
add % %k %k %k Kk Xk Xk X

up X X k X kX X x X%

X X k X kX X x %

XX kX kX kX kX k kx k kx %

13

Grade School Multiplication

Kok ok Kok ok ok ok
X

We need to add n 2n-bit numbers:

ay, a,, Qs,..., G,

°1\/\/\/\/vvvv“

Adding these numbers in parallel

q

[

SIES BRI RN E

What is the depth of the circuit?

Each addition takes O(log n)
parallel time

Depth of tree = log, n

Total O(log n)? parallel time

Can we do better?

How about O(log n)
parallel time? ﬁ

How about multiplication?

Here's a really neat trick:

Let's think about how to add 3
numbers to make 2 numbers.

"Carry-Save Addition"

The sum of three numbers can be
converted into the sum of 2 numbers in
constant parallel time!

+ 1100111011
1011111101
* 1000000110

14

"Carry-Save Addition"

The sum of three numbers can be
converted into the sum of 2 numbers in
constant parallel time!

+ 1100111011
10111111 1
* 1000000110

. 11110000 —
10001111110 =]

Grade School Multiplication

*x Xk %k %k % % % %
X 10110111

X X k X kX X x X%
X X k X kX X x X%
X X k X kX X x X%

n
numbers
to
add

up

X X k X kX X x X%
X X k X kX X x X%

X X k X X X %k %
X Xk kX kX kX kX kk kx k x %

Grade School Multiplication

We need to add n 2n-bit numbers:
aq, G, Q3,..., G,

A tree of carry-save adders

ﬁﬁﬁﬁﬁﬁ il

NV,
JCJC]
N\

|

[Add the last two]

!

A tree of carry-save adders

ﬁﬁﬁﬁﬁ"] ﬁ‘ﬁﬁ“]ﬁ‘ﬁ

[Add the last two]
i

| T(n) = logs,,(n) + [last step] |

A tree of carry-save adders

ﬁﬁﬁﬁﬁ"] ﬁ‘ﬁﬁ“]ﬁ‘ﬁ

[carry look ahead]
'

| T(n) = logs,»(n) + 2log,2n +1 |

15

We can multiply in O(log n) parallel
time tool

For a 64-bit word
that works out to a
parallel time of 22
for multiplication,
and 13 for addition.

And this is how addition works
on commercial chips

Processor n 2log,n +1
80186 16 9
Pentium 32 1
Alpha 64 13

/

Excellent!
Parallel time for:

Addition = O(log n)
Multiplication = O(log n)

Hey, we forgot
subtraction!

N

16

In order to handle \

addition and subtraction,

@; we use 2's compliment
representation.
Eg., -44=

-64| 32/ 16/ 8| 4| 2| 1
10|10/ 1/0|0

/

~

“/ Procedure to add two
T numbers is unchanged

(assuming no overflow)

/

To negate a humber, flip\

w each of its bits and add 1.
a
-64| 32 16| 8| 4| 2| 1
1 o(110|1]0]0O0
-64| 32 16/ 8| 4| 2| 1
0|1 o/110]1/|1
-64| 32 16| 8| 4| 2| 1
0|1 oj1]1|0

=/

To negate a number, flip\
w each of its bits and add 1.
o 64| 32 16 8] 4 2] 1

1 (111111

x + flip(x) = -1.
So, -x = flip(x)+1.

/

Most computers use
two's compliment
representation o add
and subtract integers.

Grade School Division

Xk Kk ok Kk ok Kk ok Kk Xk

*x Kk Kk ok Kk Kk X I********
* Kk Kk ok Kk ok k Xk
* Kk Kk ok Kk ok k Xk
* Kk Kk ok Kk ok k Xk
* Kk Kk ok Kk ok k Xk
Xk Kk ok Kk ok kX%
* k Kk ok Kk ok k Xk
* k Kk ok Kk ok k Xk
Xk Kk ok Kk ok k Xk

Suppose we have n bits of precision.
Ndive method: n subtractions costing
2log,n + 1 each = ©(n log n) parallel time

17

Let's see if we can
reduce to O(n) by
being clever about

Idea: use extended binary all
through the computation!

it
Then convert back at the end.
SRT division algorithm Intel Pentium division error
11-110 r-1-11 21ré6 22r-5
1011 | 11101101 11| 237 11| 237 The Pentium uses essentially the same algorithm,
10-1-1 .)) but computes more than one bit of the result in
10-11 Rule: Each bit of quotient each ste
is determined by comparing p-
-10-1-1 first bit of divisor with first . . o .
20 bit of dividend. Easy! Several leading bits of the divisor and quotient are
-=1001 examined at each step, and the difference is looked
1011 Time for n bits of precision in result: up in a table.
12
1000 = 3n + 2logy(n)+1 The table had several bad entries.
10-1-1 . ;
0 1addition Convert to standard Ultimately Intel offered fo replace any defective
0-1-11 per bit representation by chip, estimating their loss at $475 million.

subtracting negative

bits from positive.

If I had millions
of processors,
how much of a

speed-up might I

get over a single

processor?

Brent's Law

At best, p processors
will give you a
factor of p speedup
over the time it takes on

a single processor.

18

in parallel?

The traditional GCD
algorithm will take
linear time to operate
on two n bit numbers.

Can it be done faster

If n? people agree to help you compute the
GCD of two n bit numbers, it is not obvious

that they can finish faster than if you had
done it yourself.

No ohe
knows.

I suppose the
Extended Binary
addition algorithm
could be helpful
somehow.

Plus/minus
binary means

base 2 allowing
‘ digits to be
from {-1, 0, 1}.
We can call
each digit a
“trit”.

19

n people ¢an add 2, n-trit, plus/minus
binary numbers in constant time!

Can we still do
addition quickly in the

standard binary
representation?

20

