- | Great Theoretical Ideas In Computer Science

Anupam Gupta €515-251 Spring 2005

Lecture 19 Mar 22,2005 | Carnegie Mellon University

6rade School Again:
A Parallel Perspective

0000000000000000000

.4 (1 Ui I".

Plus/Minus Binary
(Extended Binary)

Extended Base 2:
Each digit canbe -1, 0, 1

Example:

/ Similar to Egyptian Base-3

A F§
| |
dam < \

One weight for each power of 3.
Left = "negative”. Right = "positive”

Plus/Minus Binary
(Extended Binary)

Base 2:
Each digit can be -1, 0, 1

Example:
1-1-101-1

I N

Note: 1001=9as well

How to add 2 n-bit numbers.

How to add 2 n-bit numbers.

+

* *
* *
* *
* *
* *
* *
* *
* *
* *
* X %
[

How to add 2 n-bit numbers.

* X %
*

How to add 2 n-bit numbers.

* *
x % *x *x % *x % % *x %
+******** *x %
*x % %

How to add 2 n-bit numbers.

*
*

*
*x %X % *x *x %X % *
+ *x % % *x % %X %

How to add 2 n-bit numbers.

*
*
*
*
* %
*
*
*
*
*

How to add 2 n-bit numbers.

* X *x *x %X %X *x % *x %
X kx X% X *x Xk *x *x *x %
+ X %k *x % %k % %X X X %
L}

x *x X% %X % % *x *x % *x Xx %

Let ¢ be the maximum

time that it takes you T(n)<cnis

proportional to n

to doD

/

1 &
I
m
e

of bits in numbers

The time to add two numbers
\g\r‘ows linearly with input size.

 §

If n people agree to help you add two n bit
numbers, it is not obvious that they can finish

faster than if you had done it yourself.

Is it possible to add
two n bit numbers in
less than linear
parallel-time?

‘ Darn those carries | ‘

Fast parallel
addition is no
obvious in usual
binary.

But it is amazingly
direct in Extended

Binary!
/

Extended binary
means base 2

allowing digits to be

from {-1, 0, 1}.

We can call each
digit a “trit".

/

Theorem: n people can add two n-trit, plus/minus
binary numbers in constant timel

An Addition Party
to Add 110-1 to -111-1

O O
&

An Addition Party

Invite n people to add two n-trit numbers.
Assign one person to each trit position.

An Addition Party

Each person should add the two input trits in their
possession.

Problem: 2 and -2 are not allowed in the final answer.

If youhavealora?2
subtract 2 from yourself and pass a 1 to the left.

Add in anything that is given to you from the right.

(Nobody keeps more than 0) (Nobody has more than a 1)
Pass Left After passing left
0 1 0 1

Add in anything that is given to you from the right.
(Nobody has more than a 1)

There will never again be any 2s because
everyone had at most O
and received at most 1 more

If you have a -1 or -2
add 2 to yourself and pass a -1 to the left
(Nobody keeps less than 0)

After passing left again

No -2s anymore either.
Everyone kept at least 0 and received at most -1.

How about standard binary?

X in Extended Binary X in Binary
Y in Extended Binary Y in Binary

(X+Y) in Ext. Bin. (X+Y) in Ext. Bin.

(X+Y) in Binary

Can we convert (X+Y)g,4ai, into Binary fast? |

Is there a fast
parallel way to convert an
Extended Binary number

into a standard binary
number?

»

(w>)

Not obvious how
to do this in
sub-linear time.

~

@/ To find fast parallel
o ways of adding,

let's re-examine grade
school addition from
the view of a computer

circuit.

Grade School Addition Grade School Addition
1011111100 C5C4C3C2C
1011111101 . a4 30,0y Qg
1000000110 by bs b, b, by
10100000011
Grade School Addition Adder
Cr C4 C5 C3]C, (ii Ei
04 03 ar|ayq GO
b, b; bbby CistH e [*C
}
S v
Si

Logical representation of binary:
O = false, 1 = true

Sy !
s; = (a; XOR b;) XOR ¢ odd number of bits
are 1,
Cp = (01 AND bl)
OR (a; AND ¢;) at least two of the

OR (b; AND ¢;) bits are 1.

Adder

o
« O

1-bit
C|+1 4 addler' <+ C|

intrinsic
propagation delay S i
in the computation

Ripple-carry adder

a,a,a, q b;
b,bsb, |b,| b Cm‘l:ci
S, Si
Qp1 bpy a; b; a, b, ao bo
S O O I
Sn1 Si S So

Ripple-carry adder
1 1 1 1l
|11

¥ 1] 1]

[o

How long to add two n bit numbers?

Propagation time through the
ripple-carry adder will be ©(n)

Circuits compute things
in parallel.

We can think of the
propagation delay as
PARALLEL TIME.

or,
-

Is it possible to add
two n bit numbers in
less than linear
parallel-time?

Darn those carries
(again)!

If we knew the carries it would be very
easy to do fast parallel addition

[S B
1 11 I 1l
v v ¥ v

So how do we figure
out the carries fast?

What do we know about the carry-
out before we know the carry-in?

ab

a b Cout
0 0 0
0 1 Cin
1 0 Cin
1 1 1

What do we know about the carry-
out before we know the carry-in?

ab
S
a b Cout
0 0 0
0 1 -
1 0 -
1 1 1

This is just a function of a and b.
We can do this in parallel.

a
0
SE |
1
1

Couf
0]

—

—

1

- O | =0T

Idea #1: do this calculation first.

10.. .. [0 [so %
1011111101] o
10000001110

Note that this just took one stepl

Now if we could only replace the — by 0/1 values...

Idea #1: do this calculation first.
10.....1.00
1011111101
1000000110

Idea #1: do this calculation first.
10.1000
1011111101
1000000110

Idea #1: do this calculation first.

10. . . .11000
1011111101

1000000110

Idea #1: do this calculation first.

10. . .111000
1011111101

1000000110

Idea #1: do this calculation first.

10. .1111000
1011111101

1000000110

Idea #1: do this calculation first.

10-11111000
1011111101

1000000110

Idea #1: do this calculation first.

10111111000
1011111101

1000000110

Idea #1: do this calculation first.

10111111000
1011111101

1000000110
10100000011

Once we have the carries, it takes only one more step:
s; = (6, XOR b;) XOR ¢;

Steps to add two numbers

Compute the carry in terms of O, 1, . @

Convert this into regular binary carry.

Add X, Y and carry in one step. @

10.1..0

So, everything boils down to:
can we find a fast parallel
way to convert each position
to its final 0/1 value?

| Called the “parallel prefix problem"

Idea #2:
canthinkof 10.1 Qasall

partial results in:

AMOM(- M(-M (= M (- M (- M @AM (- M ONN))

Idea #2 (cont):

And, the M operator is associative.

10.....1.0

(- M(=M(=M@AMm(-mO)))

for the operator m: M|O|1 =
MX=X Ololol|o (=M)M(-mDm(-mO)
1mx=1 111 -
Ovx=0 ot ~M1ImM0O =1
We'll just use fact that we have an Examples

Associative, Binary Operator

Binary Operator: an operation that
takes two objects and returns a third.

cAaB=C

Associative:
‘(AaB)aC=A4(Ba(C)

+ Addition on the integers
* Min(a,b)

* Max(a,b)

* Left(a,b) = a

+ Right(a,b) = b

* Boolean AND

* Boolean OR
M

10

In what we are
about to do "+" will
mean an arbitrary

binary associative
operator.

Prefix Sum Problem

Input: Xn1o X2 X1, Xo
Output: Yot Yna2o-Y1. Yo
where
Yo=Xo
Y1=Xo+ X,
y2 = Xo + X1 + Xz
Y3=Xg+ Xy + Xo+ X3

Yr1= Xo+ Xy + Xp+ X+ o+ Xpy

Prefix Sum Problem

Input: Xn1, X2, X1, Xo 6, 9,2 3, 4,7
Output: Yot Yoz Y. Yo 31,25,16,14,11,7
where

Yo=Xo + is Addition

Y1=X0+X1
Ya=Xo+ X+ X,
Y3=Xo+ X;+ X+ X3

yn-1: Xo+ Xy + X+ X3+ .t Xn_1

Prefix Sum Problem

Input: Xn1o Xp2r X1, Xo [0, -, <, 1, <, ~,0
Output: Yoy, ¥Yp2YYo | 0,1, 1,1, 0, 0, 0

where
Y0=Xo

yi=Xo+X1
Yo=Xog+ X+ X,
Y3=Xo+ X+ X+ X3

yn-1= Xo+ Xy + Xy + X3"’ .t X,‘_l

Example circuitry
(n=4)

X3 Xz X3 Xo Xz X Xo Xo

X1 Xo
@ Yo
Y1
Y2
Y3

Divide, conquer, and glue
for computing y, 4

Xp1 Xnz o Xz Xzt - X1 Xo
Vo ' ' Vo
sum on n/2] sum on[n/2]
items items
T(1)=0
Yr1 T(n) = T(n/20) +1

T(n) =[log, n 1

11

-~

Size of Circuit
(number of gates)

The parallel time taken Xnt Xnz o Xiwz) Xwzia - X1 Xo
) Vo ' ' Vo
is T(n) = [log, n1 !
Sum on Sum on[n/2]
But how many Ln/2]items items
components does
this use? What is the /
size of the circuit?
K Ynt 5(1)=0
S(n) = s(n/21) + s(n/2]) +1
] S(n)=n-1
Sum of Sizes
This algorithm is
XeXe X Xo o Xe Xy Xo X Xo o Xo fast, but it uses too
l many components!
Yo
& Modern computers
va do something

Y3

S(n)=0+1+2+3+..+(n1)=n(n-1)/2

\slighﬂy differenT.J

Recursive Algorithm
n items (n = power of 2)

If n=1,Y,= X, else

Xnt Xnz Xns Xoa X5 XaXs Xp Xy Xo

Recursive Algorithm
n items (n = power of 2)

If n=1,Y,= X, else

Xnt Xnz Xns Xos Xs XaXs X Xi Xo

| Prefix sum on n/2 items |
1 1 1 I i

12

Recursive Algorithm
n items (n = power of 2)

Ifn=1,Y,= X else
Xn2 Xn3 Xna X5 Xg Xz Xz X X

""‘b\ RNINC] @i

Prefix sum on n/2 items

| ¥l MW\

Ya¥s YY1 Yo

Parallel time complexity
Ifn=1,yo=Xo:

X2 X X5 X4 X3 Xz X1 Xo
CHUE T
mov2){ | Prefix sum on n/2 items

19§y

YaY¥s YY1 Yo

—

T(1)=0: T(2) = 1. T(n) = T(n/2) + 2
T(n) = 2 logy(n) - 1

Size
Ifn=1, Y, = Xg:
Xs XsX; Xp X1 Xo

et BB G

s(n/2){ | Prefix sum on n/2 items

wort | WY

YisY3 YY1 Yo
5(1)=0, S(n) = S(n/ 2)+n-1
S(n) = 2n - log,n -2

—

Putting it all together:
"Carry Look-Ahead Addition”

To add two n-bit numbers: a and b

+ 1 step to compute carries using (- 01)

* 2log,n -1 steps to compute binary carries c
* 1 step to compute ¢ XOR (a XOR b)

2 log,n + 1 steps total

Addition can be done
in O(log n) parallel

time, with only O(n)
componem‘sI ﬁ

What about
multiplication?

How about multiplication?

*x % %k % % % % %

10110111
*x Xk Xk %k %k % % %
n *x Xk Xk Xk % %k % %
numbers *x %k %k % % % % %
to
add *x Xk Xk k %k k% % %

up *x % %k %k % % % %

x %k %k %k %k %k %k %
* Kk Kk Kk Kk k %k Kk k %k %k %k %k %k %k %

13

Grade School Multiplication

We need to add n 2n-bit numbers:

a;, 4, as,..., a,

Adding these numbers in parallel

Fl\/][\/][\/ VoV VS

What is the depth of the circuit?

Each addition takes O(log n)
parallel time

Depth of tree = log, n

Total O(log n)? parallel time

Can we do better?

How about O(log n)
parallel time? ﬁ

How about multiplication?

Here's a really neat trick:

Let's think about how to add 3
numbers to make 2 numbers.

“Carry-Save Addition”

The sum of three numbers can be
converted into the sum of 2 numbers in
constant parallel timel

+ 1100111011
1011111101
* 1000000110

14

“Carry-Save Addition”

The sum of three numbers can be
converted into the sum of 2 numbers in
constant parallel time!

+ 1100111011
10111111 1
* 1000000110

. 11110000 —
10001111110

Grade School Multiplication

*x % %k %k % % % %

X 10110111

*x Xk k %k %k % % %
*x Xk Xk %k %k % % %

n
* %k %k %k %k %k % %

numbers

to
add * % %k k %k %k k Xk

up *x % %k % % % % %

* %k %k %k %k %k % %
* Kk Kk Kk Kk k %k k k %k %k %k %k %k %k %

Grade School Multiplication

We need to add n 2n-bit numbers:
a;, a,, as,..., a,

A tree of carry-save adders

ﬁﬁﬁﬁﬁﬁ s

NV,
JCJC]
N\

[Add the last two]

!

A tree of carry-save adders

ﬁﬁﬁﬁﬁ"] ﬁ‘ﬁﬁ“]ﬁ‘ﬁ

[Add the last two]
1

| T(n) = logs,»(n) + [last step] |

A tree of carry-save adders

ﬁﬁﬁﬁﬁ"] ﬁ‘ﬁﬁ“]ﬁ‘ﬁ

[carry look ahead]

!
| T(n) = logs/»(n) + 2log,2n +1 |

15

We can multiply in O(log n) parallel
time too!

For a 64-bit word
that works out to a
parallel time of 22
for multiplication,
and 13 for addition.

And this is how addition works
on commercial chips

Processor n 2log,n +1
80186 16 9
Pentium 32 11
Alpha 64 13

/

Excellent!
Parallel time for:

Addition = O(log n)
Multiplication = O(log n)

Hey, we forgot
subtraction!

N

16

In order to handle \

addition and subtraction,

@; we use 2's compliment
representation.
E.g. -44=

-64| 32/ 16/ 8| 4| 2| 1
1]0(1]0(1]0]|O

/

~

“/ Procedure to add two
T numbers is unchanged

(assuming no overflow)

/

To negate a number, flip\

w each of its bits and add 1.

7 64| 32 16 8] 4] 2] 1
1t]|ol1]ol1]o0]o
64| 32 16 8] 4] 2] 1
ol1|o0/1]l0|1]1
64| 32 16 8] 4] 2] 1
0|1/ 0/ 1]1]0

=/

To negate a humber, flip\

w each of its bits and add 1.
7 4] 32 16/ 8| 4] 2| 1

11711111

x + flip(x) = -1.
So, -x = flip(x)+1.

/

Most computers use
two's compliment
representation to add
and subtract integers.

Grade School Division

* Kk ok k Kk Kk ok k Kk Xk

*x %k %k %k k k % I********
* %k %k %k Kk k kX
* %k %k %k k k kX
*x %k %k %k Kk %k k%
*x %k %k %k Kk %k k%
*x %k %k %k Kk %k %k %
*x %k %k %k k %k %k %
* %k %k %k k k %k %
* %k %k %k k k %k %

Suppose we have n bits of precision.
Naive method: n subtractions costing
2log,n + 1 each = O(n log n) parallel time

17

Let's see if we can
reduce to O(n) by
being clever about

Idea: use extended binary all

it through the computation!
Then convert back at the end.
SRT division algorithm Intel Pentium division error
11110 r-1-11 2lr6 22r-5
to11[11101101 1f237 uf237 The Pentium uses essentially the same algorithm,
-10-1-1 i) . but computes more than one bit of the result in
10-11 Bule. Eac}'f bit of quotient each stel
is determined by comparing P-
-10-1-1 first bit of divisor with first
20 bit of dividend. Easy! Several leading bits of the divisor and quotient are
=1001 examined at each step, and the difference is looked
1011 Time for n bits of precision in result: up in a table.
12
1000 = 3n + 2logy(n) +1 The table had several bad entries.
40-1-1 1addition Convert to standard Ultimately Intel offered to replace any defective
0-1-11 perbit representation by chip, estimating their loss at $475 million.

subtracting negative
bits from positive.

If I had millions
of processors,
how much of a

speed-up might T

get over a single

processor?

Brent's Law

At best, p processors
will give you a
factor of p speedup
over the time it takes on

a single processor.

18

The traditional 6CD
algorithm will take
linear time to operate
on two n bit numbers.

Can it be done faster
in parallel?

If n? people agree to help you compute the
GCD of two n bit numbers, it is not obvious
that they can finish faster than if you had
done it yourself.

No one
knows.

I suppose the
Extended Binary

addition algorithm
could be helpful

somehow.

Plus/minus
b binary means
g base 2 allowing

‘ digits to be
from{-1,0, 1}.
We can call
each digit a
“trit”.

19

n people ¢an add 2, n-trit, plus/minus
binary numbers in constant time!

Can we still do
addition quickly in the

standard binary
representation?

20

