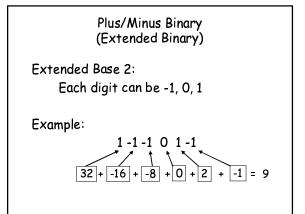
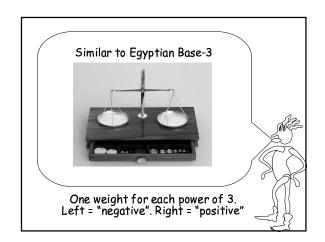
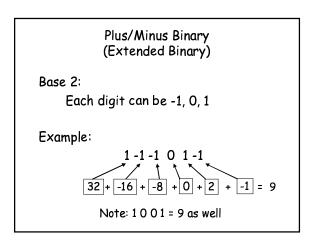
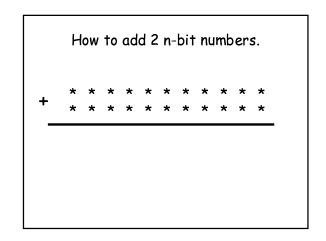
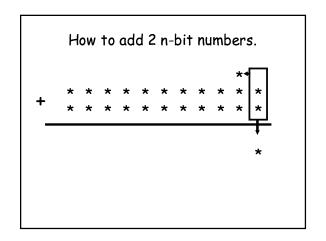
Great Theoretical Ideas In Computer Science			
Anupam Gupta		CS 15-251	Spring 2005
Lecture 19	Mar 22, 2005	Carnegie Me	llon University
Grade School Again: A Parallel Perspective			

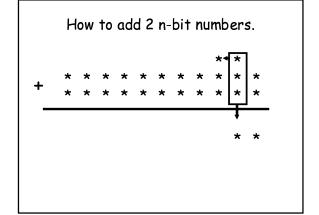


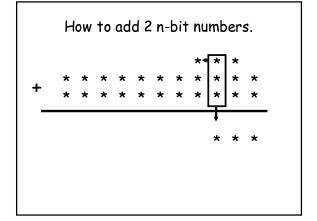


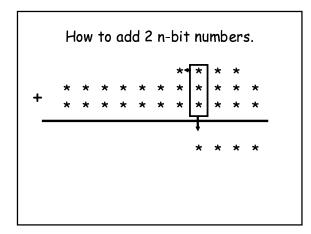


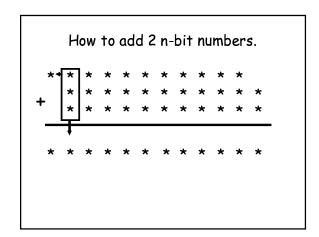


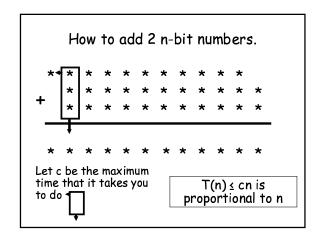


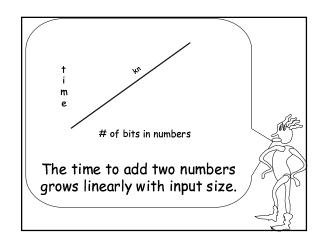




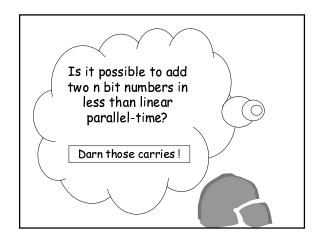






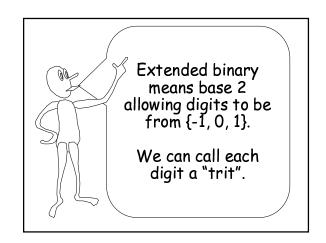


If n people agree to help you add two n bit numbers, it is not obvious that they can finish faster than if you had done it yourself.

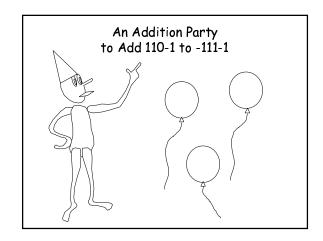


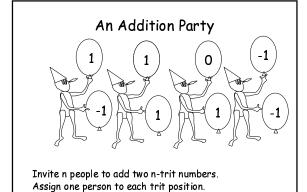
Fast parallel addition is no obvious in usual binary.

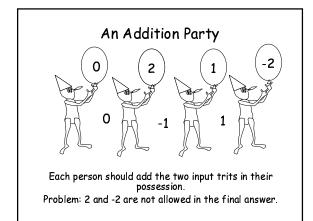
But it is amazingly direct in Extended Binary!

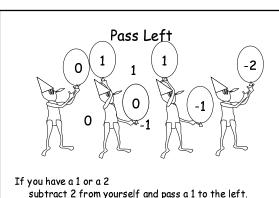


Theorem: n people can add two n-trit, plus/minus binary numbers in constant time!



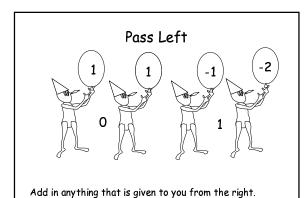




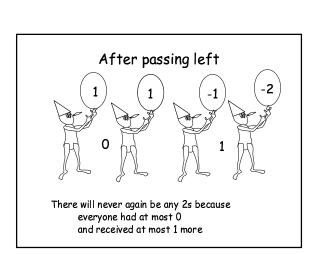


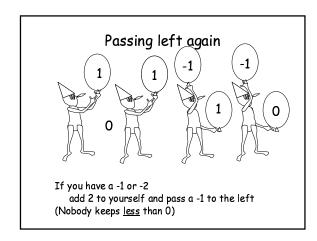


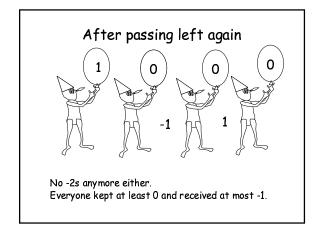


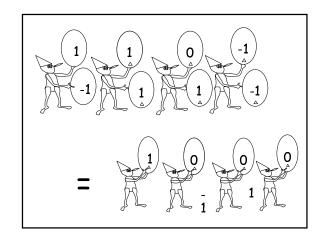


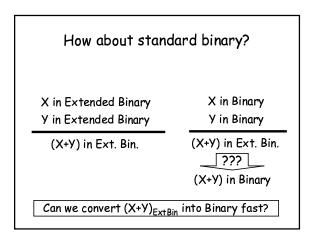
(Nobody has more than a 1)

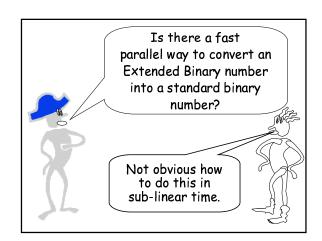


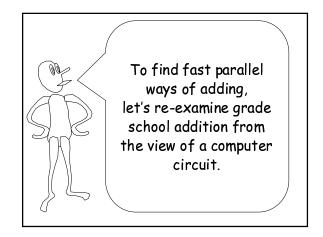








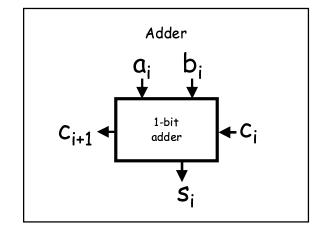




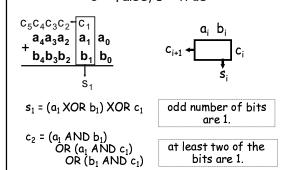
Grade School Addition

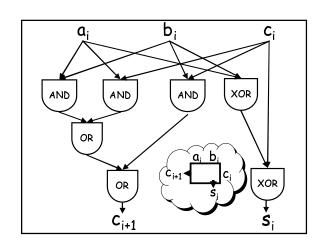
Grade School Addition

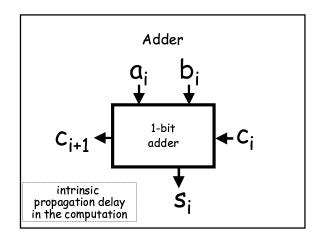
Grade School Addition

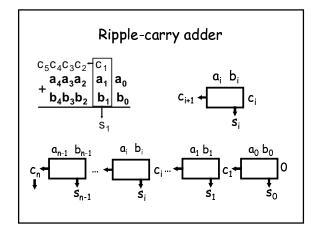


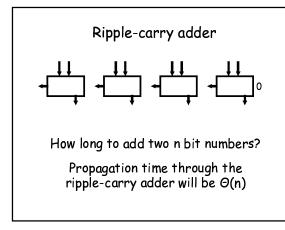
Logical representation of binary: 0 = false, 1 = true

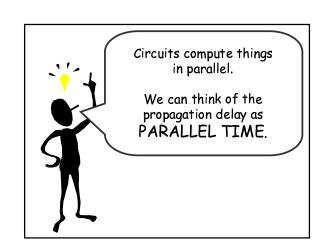


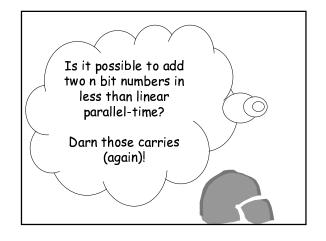


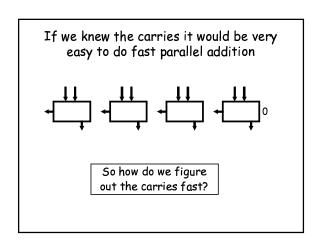












What do we know about the carryout before we know the carry-in?

α	b	Cout
0	0	0
0	1	C _{in}
1	0	C _{in}
1	1	1

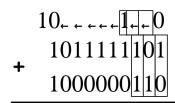
What do we know about the carryout before we know the carry-in?

а	b	Cout
0	0	0
0	1	←
1	0	←
1	1	1

This is just a function of a and b. We can do this in parallel.

α	Ь	Cout
0	0	0
0	1	←
1	0	←
1	1	1

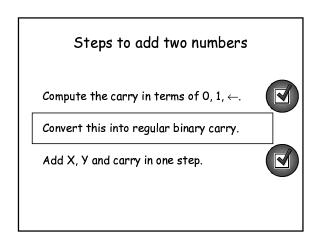
Idea #1: do this calculation first.

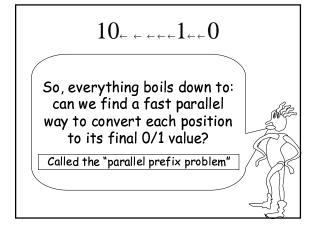


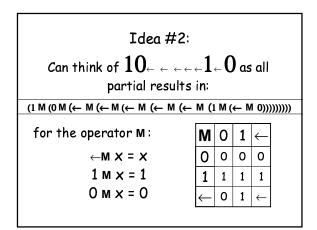
Note that this just took one step! Now if we could only replace the \leftarrow by 0/1 values...

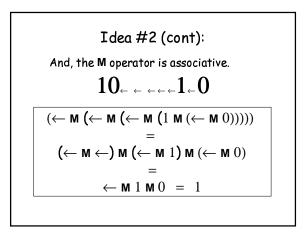
Idea #1: do this calculation first.

Once we have the carries, it takes only one more step: $\textbf{s}_i = (\textbf{a}_i \ \text{XOR} \ \textbf{b}_i) \ \text{XOR} \ \textbf{c}_i$









We'll just use fact that we have an Associative, Binary Operator

Binary Operator: an operation that takes two objects and returns a third.

Associative:

$$\cdot (A \wedge B) \wedge C = A \wedge (B \wedge C)$$

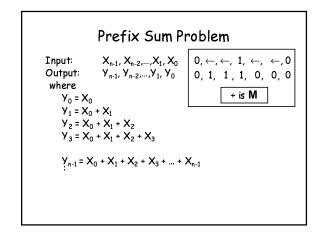
Examples

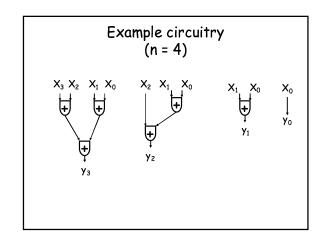
- Addition on the integers
- · Min(a,b)
- · Max(a,b)
- Left(a,b) = a
- Right(a,b) = b
- · Boolean AND
- · Boolean OR
- N

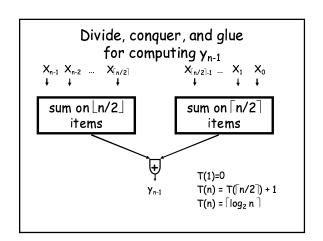
In what we are about to do "+" will mean an arbitrary binary associative operator.

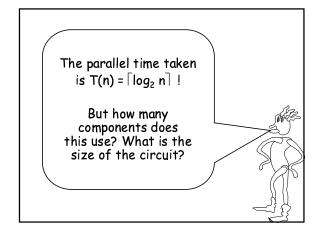
Prefix Sum Problem Input: $X_{n-1}, X_{n-2}, ..., X_1, X_0$ Output: $Y_{n-1}, Y_{n-2}, ..., Y_1, Y_0$ where $Y_0 = X_0$ $Y_1 = X_0 + X_1$ $Y_2 = X_0 + X_1 + X_2$ $Y_3 = X_0 + X_1 + X_2 + X_3$ $Y_{n-1} = X_0 + X_1 + X_2 + X_3 + ... + X_{n-1}$

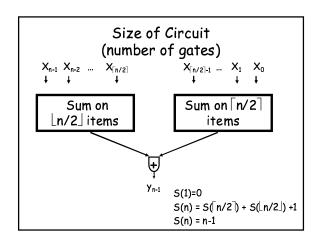
$\begin{array}{c} \text{Prefix Sum Problem} \\ \text{Input:} & X_{n-1}, X_{n-2}, ..., X_1, X_0 \\ \text{Output:} & Y_{n-1}, Y_{n-2}, ..., Y_1, Y_0 \\ \text{where} & Y_0 = X_0 \\ Y_1 = X_0 + X_1 \\ Y_2 = X_0 + X_1 + X_2 \\ Y_3 = X_0 + X_1 + X_2 + X_3 \\ \end{array}$

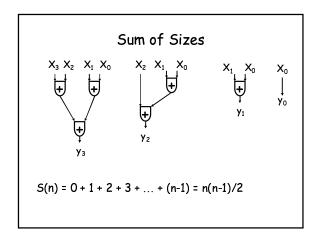


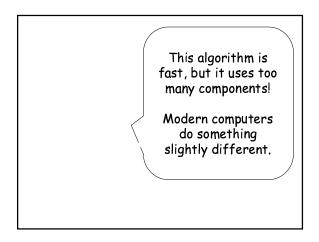


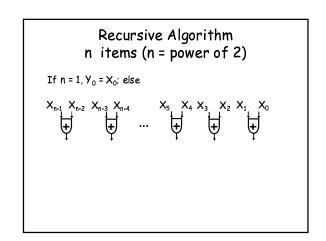


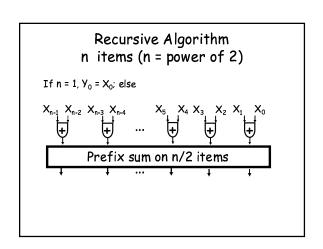


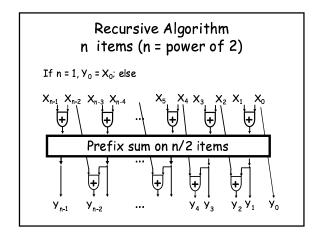


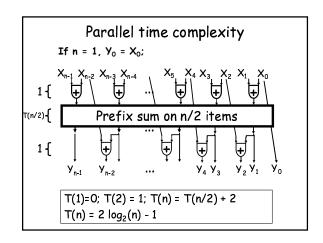


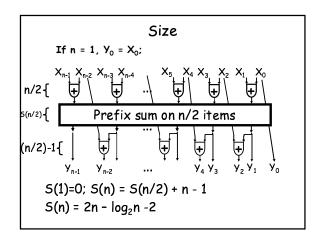










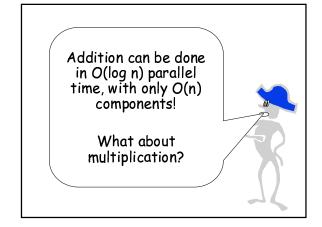


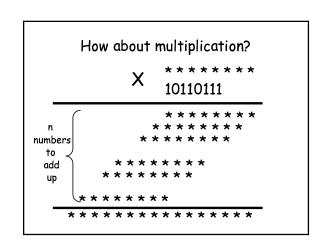
Putting it all together: "Carry Look-Ahead Addition"

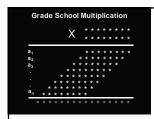
To add two n-bit numbers: a and b

- \cdot 1 step to compute carries using ($_{\leftarrow}01$)
- · 2log₂n -1 steps to compute binary carries c
- · 1 step to compute c XOR (a XOR b)

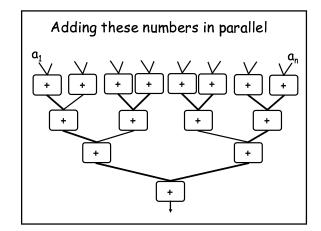
2 log₂n + 1 steps total







We need to add n 2n-bit numbers: a_1 , a_2 , a_3 ,..., a_n



What is the depth of the circuit?

Each addition takes O(log n) parallel time

Depth of tree = log_2 n

Total $O(\log n)^2$ parallel time

Can we do better?

How about O(log n) parallel time?

How about multiplication?

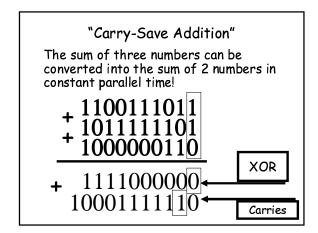
Here's a really neat trick:

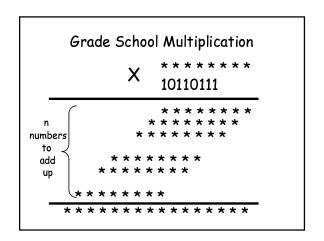
Let's think about how to add 3 numbers to make 2 numbers.

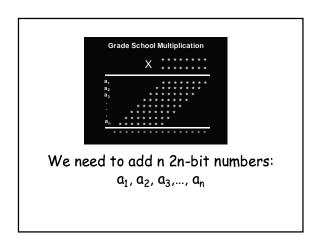
"Carry-Save Addition"

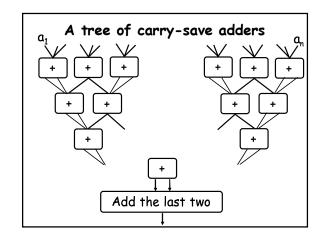
The sum of three numbers can be converted into the sum of 2 numbers in constant parallel time!

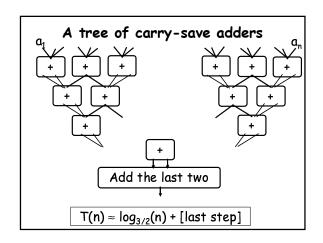
+ 1100111011 + 1011111101 + 1000000110

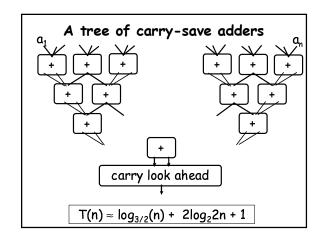






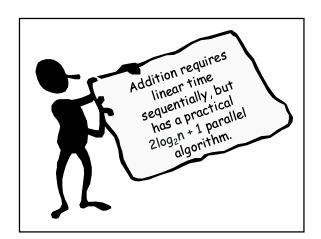


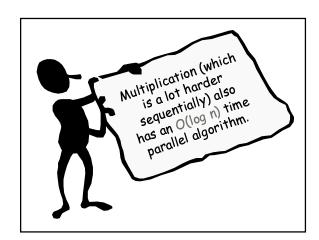




We can multiply in O(log n) parallel time too!

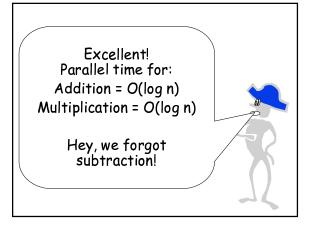
For a 64-bit word that works out to a parallel time of 22 for multiplication, and 13 for addition.

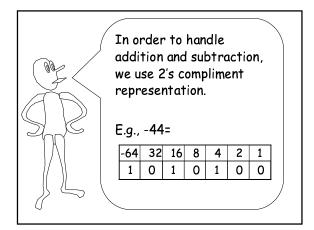


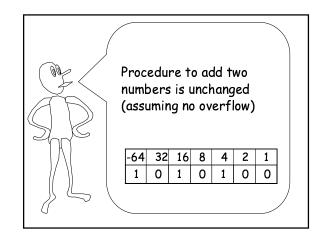


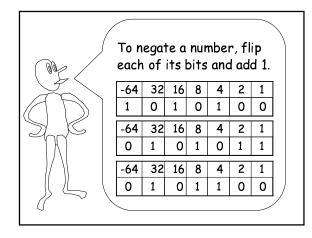
And this is how addition works on commercial chips.....

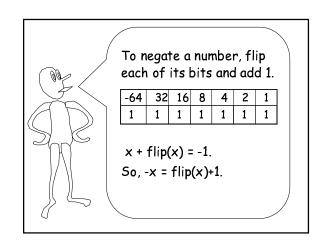
Processor	n	2log ₂ n +1
80186	16	9
Pentium	32	11
Alpha	64	13

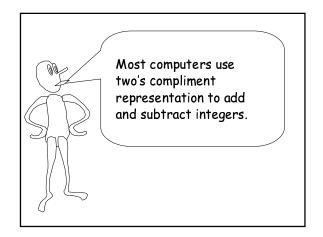


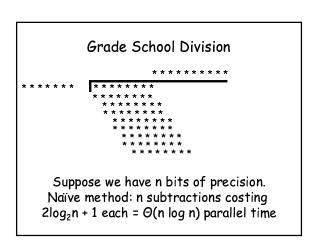












Let's see if we can reduce to O(n) by being clever about it.

Idea: use extended binary all through the computation!

Then convert back at the end.

SRT division algorithm

1 1-1 1 0	r -1 -1 1	21 r_6	_22 r -5
1011 11101101		11 237	11 237
-1 0 -1 -1 1 0 -1 1 -1 0 -1 -1	is d firs	e: Each bit of etermined by it bit of divis of dividend.	comparing or with first
-2 0 = -1 0 0 1 <u>1 0 1 1</u>		or avvidend. oits of precis	,
1 2 = 1 0 0 0 -1 0 -1 -1	_	3n + 2log ₂ (r	
0 -1 -1 1	1 additi per bit	repres subtro	t to standard entation by cting negative om positive.

Intel Pentium division error

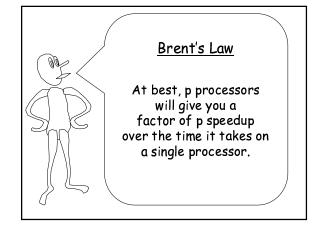
The Pentium uses essentially the same algorithm, but computes more than one bit of the result in each step.

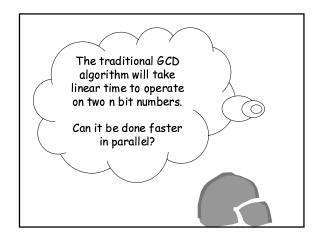
Several leading bits of the divisor and quotient are examined at each step, and the difference is looked up in a table.

The table had several bad entries.

Ultimately Intel offered to replace any defective chip, estimating their loss at \$475 million.

If I had millions
of processors,
how much of a
speed-up might I
get over a single
processor?





If n² people agree to help you compute the GCD of two n bit numbers, it is not obvious that they can finish faster than if you had done it yourself.

