
1

On Time Versus Input Size

Carnegie Mellon UniversityMarch 15, 2005Lecture 17
CS 15-251 Spring 2005Anupam Gupta

Great Theoretical Ideas In Computer Science

of bits

t
i
m
e

How to add 2 n-bit numbers.

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*+

How to add 2 n-bit numbers.

*
*

*

*
*

*
*

*
*

*
*

*
*

*
*
*

*
*

*
*

*
*

*
*+

How to add 2 n-bit numbers.

*
*

*

*
*

*
*

*
*

*
*

*
*
*

*
*
*

*

*
*

*
*

*
*

*
*+

How to add 2 n-bit numbers.

*
*

*

*
*

*
*

*
*

*
*
*

*
*
*

*

*
*
*

*

*
*

*
*

*
*

*
*+

How to add 2 n-bit numbers.

*
*

*

*
*

*
*

*
*
*

*
*
*

*

*
*
*

*

*
*
*

*

*
*

*
*

*
*

*
*+

2

How to add 2 n-bit numbers.

*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

+
*

*

“Grade school addition”

Time complexity of
grade school addition

+ T(n) = amount of time
grade school addition
uses to add two n-bit

numbers

What do you
mean by
“time”?

* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *

* * * * * * * * * * *

Our Goal

We want to define “time” in a way that
transcends implementation details

and allows us to make assertions about
grade school addition

in a very general yet useful way.

Roadblock ???

A given algorithm will take different amounts
of time on the same inputs depending on such
factors as:

– Processor speed
– Instruction set
– Disk speed
– Brand of compiler

Hold on!
The goal was to measure the time
T(n) taken by the method of grade
school addition without depending

on the implementation details.

But you agree that T(n) does depend
on the implementation!

We can only speak of the time taken
by any particular implementation, as

opposed to the time taken by the
method in the abstract.

Your objections are serious, Bonzo,
but they are not insurmountable.

There is a very nice sense in which
we can analyze grade school addition

without having to worry about
implementation details.

Here is how it works . . .

3

On any reasonable computer, adding
3 bits and writing down the two bit
answer can be done in constant time.

Pick any particular computer M and
define c to be the time it takes to
perform on that computer.

Total time to add two n-bit numbers
using grade school addition: cn
[c time for each of n columns]

On another computer M’, the time to
perform may be c’.

Total time to add two n-bit numbers
using grade school addition: c’n
[c’ time for each of n columns]

The fact that we get a line is invariant
under changes of implementations.

Different machines result in different
slopes, but time grows linearly as input

size increases.

of bits in the numbers

t
i
m
e

Mach
ine

 M
: cn

Machine M’: c’n

Thus we arrive at an
implementation independent

insight:

Grade School Addition is a linear
time algorithm.

I see! We can define away the
details of the world that we do not
wish to currently study, in order to
recognize the similarities between

seemingly different things…

AbstractionAbstraction: :
Abstract aw ay the inessential Abstract aw ay the inessential

features of a problem or solutionfeatures of a problem or solution

=
Exactly, Bonzo!

This process of abstracting away
details and determining the

rate of resource usage
in terms of the problem size n

is one of the
fundamental ideas in

computer science.

4

Time vs Input Size

For any algorithm, define
Input Size = # of bits to specify its inputs.

Define
TIMEn = the worst-case amount of time used

on inputs of size n

We often ask:

What is the growth rate of Timen ?

How to multiply 2 n-bit numbers.

X
* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * * * * * * * * * *

n2

How to m ultiply 2 nHow to m ultiply 2 n--bit num bers.bit num bers.

X
* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * * * * * * * * * *

n2

I get it!

The total time is bounded by
cn2 (abstracting away the
implementation details).

Grade School Addition: Linear time
Grade School Multiplication: Quadratic time

No matter how dramatic the difference in the
constants, the quadratic curve will eventually

dominate the linear curve

of bits in the numbers

t
i
m
e

Ok, so…

How much time does it
take to square

the number n using
grade school multiplication?

Grade School Multiplication:
Quadratic time

c(log n)2 time to square
the number n

of bits in numbers

t
i
m
e

5

Time Versus Input Size

Input size is measured in bits,
unless we say otherwise.

of bits used to describe input

t
i
m
e

How much time does it take?

Nursery School Addition
Input: Two n-bit numbers, a and b
Output: a + b

Start at a and increment (by 1) b times

T(n) = ?

How much time does it take?

Nursery School Addition
Input: Two n-bit numbers, a and b
Output: a + b

Start at a and increment (by 1) b times

T(n) = ?
If b = 000…0000, then NSA takes almost no time.
If b = 1111…11111, then NSA takes c n2n time.

Exponential Worst Case time !!

Worst Case Time

Worst Case Time T(n) for algorithm A:

T(n) = Max[all permissible inputs X of size n] (Running
time of algorithm A on input X).

Worst-case Time Versus Input Size

Worst Case Time Complexity

of bits used to describe input

t
i
m
e

What is T(n)?

Kindergarden Multiplication
Input: Two n-bit numbers, a and b
Output: a * b

Start with a and add a, b-1 times

Remember, we always pick the WORST CASE input
for the input size n.

Thus, T(n) = c n2n

Exponential Worst Case time !!

6

Thus, Nursery School adding
and multiplication are

exponential time.
They scale HORRIBLY as input

size grows.

Grade school methods scale
polynomially: just linear and

quadratic.
Thus, we can add and multiply

fairly large numbers.

If T(n) is not polynomial,
the algorithm is not efficient:
the run time scales too poorly

with the input size.

This will be the yardstick with
which we will measure

“efficiency”.

Multiplication is efficient, what
about “reverse multiplication”?

Let’s define FACTORING(N) to
be any method to produce a
non-trivial factor of N, or to

assert that N is prime.

Factoring The Number N
By Trial Division

Trial division up to √N

for k = 2 to √N do
if k | N then
return “N has a non-trivial factor k”

return “N is prime”

c √N (logN)2 time if division is c (logN)2 time

On input N, trial factoring uses
c√N (logN)2 time.

Is this efficient?

No! The input length n = log N.
Hence we’re using c 2n/2 n2 time.

The time is EXPONENTIAL in
the input length n.

Can we do better?

We know of methods for
FACTORING that are

sub-exponential

(about time)

but nothing efficient.

2n
1/3

7

Useful notation to discuss growth rates

For any monotonic function f from the positive
integers to the positive integers, we say

“f = O(n)” or “f is O(n)”
if

Some constant times n eventually
dominates f

[Formally: there exists a constant c such that for all
sufficiently large n: f(n) ≤ cn]

of bits in numbers

t
i
m
e

f = O(n) means that there is a line
that can be drawn that stays above

f from some point on.

More useful notation: Ω

For any monotonic function f from the positive
integers to the positive integers, we say

“f = Ω(n)” or “f is Ω(n)”
if:

f eventually dominates some
constant times n

[Formally: there exists a constant c such that for all
sufficiently large n: f(n) ≥ cn]

of bits in numbers

t
i
m
e

f = Ω(n) means that there is a line
that can be drawn that stays below

f from some point on

Yet more useful notation: Θ

For any monotonic function f from the positive
integers to the positive integers, we say

“f = Θ(n)” or “f is Θ(n)”
if:

f = O(n) and f = Ω(n)

of bits in numbers

t
i
m
e

f = Θ(n) means that f can be
sandwiched between two lines

from some point on.

8

of bits in numbers

t
i
m
e

f = Θ(n) means that f can be
sandwiched between two lines

from some point on.

Useful notation to discuss growth rates

For any two monotonic functions f and g from the
positive integers to the positive integers, we say

“f = O(g)” or “f is O(g)”
if

Some constant times g eventually
dominates f

[Formally: there exists a constant c such that for all
sufficiently large n: f(n) ≤ c g(n)]

of bits in numbers

t
i
m
e

f = O(g) means that there is some
constant c such that c g(n) stays
above f(n) from some point on.

f g

1.5g

More useful notation: Ω

For any two monotonic functions f and g from the
positive integers to the positive integers, we say

“f = Ω(g)” or “f is Ω(g)”
if:

f eventually dominates some
constant times g

[Formally: there exists a constant c such that for all
sufficiently large n: f(n) ≥ c g(n)]

Yet more useful notation: Θ

For any two monotonic functions f and g from the
positive integers to the positive integers, we say

“f = Θ(g)” or “f is Θ(g)”
if:

f = O(g) and f = Ω(g)

Quickies

• n = O(n2) ?
– YES

Take c = 1.
For all n ≥ 1, it holds that n ≤ cn2

9

Quickies

• n = O(n2) ?
– YES

• n = O(√n) ?
– NO

Suppose it were true that n ≤ c √n
for some constant c and large enough n

Cancelling, we would get √n ≤ c.
Which is false for n > c2

Quickies

• n = O(n2) ?
– YES

• n = O(√n) ?
– NO

• 3n2 + 4n + p = O(n2) ?
– YES

• 3n2 + 4n + p = Ω(n2) ?
– YES

• n2 = Ω(n log n) ?
– YES

• n2 log n = Θ(n2)

3n2 + 4n + p = Θ(n2)

n2 log n = Θ(n2)

n2 log n = O(n2) n2 log n = Ω(n2)

Two statements in one!

NO YES

Names For Some Growth Rates

Linear Time: T(n) = O(n)
Quadratic Time: T(n) = O(n2)
Cubic Time: T(n) = O(n3)

Polynomial Time:
for some constant k, T(n) = O(nk).

Example: T(n) = 13n5

Large Growth Rates

Exponential Time:
for some constant k, T(n) = O(kn)

Example: T(n) = n2n = O(3n)

Almost Exponential Time:
for some constant k, T(n) = 2kth root of n

Example: T(n)= 2
√
n

Small Growth Rates

Logarithmic Time: T(n) = O(logn)
Example: T(n) = 15log2(n)

Polylogarithmic Time:
for some constant k, T(n) = O(logk(n))

Note: These kind of algorithms can’t possibly
read all of their inputs.

10

Binary Search

A very common example of logarithmic time
is looking up a word in a sorted dictionary.

Some Big Ones

Doubly Exponential Time means that for
some constant k

Triply Exponential

And so forth.

T(n)= 22
kn

T(n)= 22
2kn

Faster and Faster: 2STACK

2STACK(0) = 1

2STACK(n) = 22STACK(n-1)

2STACK(1) = 2
2STACK(2) = 4
2STACK(3) = 16
2STACK(4) = 65536

2STACK(5) ≥ 1080

= atoms in universe
22

22
...2

“tower of n 2’s”

2STACK(n) =

And the inverse of 2STACK: log*

log*(n) = # of times you have to apply
the log function to n to make it ≤ 1

2STACK(0) = 1

2STACK(n) = 22STACK(n-1)

2STACK(1) = 2
2STACK(2) = 4
2STACK(3) = 16
2STACK(4) = 65536

2STACK(5) ≥ 1080

= atoms in universe

And the inverse of 2STACK: log*

2STACK(0) = 1 log*(1) = 0

2STACK(n) = 22STACK(n-1)

2STACK(1) = 2 log*(2) = 1
2STACK(2) = 4 log*(4) = 2
2STACK(3) = 16 log*(16) = 3
2STACK(4) = 65536 log*(65536) = 4

2STACK(5) ≥ 1080 log*(atoms) = 5
= atoms in universe

log*(n) = # of times you have to apply
the log function to n to make it ≤ 1

So an algorithm that
can be shown to run in

O(n log*n) Time
is

Linear Time for all
practical purposes!!

11

Ackermann’s Function

A(0, n) = n + 1 for n ≥ 0
A(m, 0) = A(m - 1, 1) for m ≥ 1
A(m, n) = A(m - 1, A(m, n - 1)) for m, n ≥ 1

A(4,2) > # of particles in universe
A(5,2) can’t be written out in this universe

Inverse Ackermann function

A(0, n) = n + 1 for n ≥ 0
A(m, 0) = A(m - 1, 1) for m ≥ 1
A(m, n) = A(m - 1, A(m, n - 1)) for m, n ≥ 1

Define: A’(k) = A(k,k)
Inverse Ackerman α(n) is the inverse of A’

Practically speaking: n × α(n) ≤ 4n

The inverse Ackermann
function – in fact,

Θ(n α(n))
arises in the seminal

paper of

D. D. Sleator and R. E.
Tarjan. A data structure

for dynamic trees.
Journal of Computer and

System Sciences,
26(3):362-391, 1983.

Busy Beavers

Near the end of the course we will define
the BUSYBEAVER function: it will make

Ackermann look like dust.

But we digress…

Let us get back
to the discussion about

“time” from the
beginning of

today’s class…

Time complexity of
grade school addition

+ T(n) = amount of time
grade school addition
uses to add two n-bit

numbers

What do you
mean by “time”?

* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *

* * * * * * * * * * *

12

On any reasonable computer, adding
3 bits and writing down the two bit
answer can be done in constant time.

Pick any particular computer A and
define c to be the time it takes to
perform on that computer.

Total time to add two n-bit numbers
using grade school addition: cn
[c time for each of n columns]

But please don't get the
impression that our notion of

counting “steps”
is only meant for

numerical algorithms that use
numerical operations as

fundamental steps.

Here is a general framework in
which to reason about “time”.

Suppose you want to evaluate the
running time T(n) of your favorite

algorithm DOUG.

You want to ask:
how much “time” does DOUG take

when given an input X?

For concreteness, let’s look at
an implementation of the algorithm
DOUG in the machine language for

the Homework #8 processor.

Now, “time” can be measured as the
number of instructions executed

when given input X.

And T(n) is the worst-case time on
all permissible inputs of length n.

And in other contexts,
we may want to use slightly
different notions of “time”.

Sure.

You can measure “time” as
the number of elementary “steps”

defined in any other way,
provided each such “step”

takes constant time
in a reasonable implementation.

Constant: independent of the
length n of the input.

13

So instead, I can count the
number of JAVA bytecode
instructions executed when

given the input X.

Or, when looking at grade school
addition and multiplication, I can

just count the number
of additions

Time complexity of
grade school addition

*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

+
*

*

*
*
*

*

T(n) = The amount of
time grade school

addition uses to add
two n-bit numbers

We saw that T(n) was linear.

T(n) = Θ(n)

Time complexity of
grade school multiplication

T(n) = The amount of
time grade school

multiplication uses to
add two n-bit

numbers

We saw that T(n) was quadratic.

T(n) = Θ(n2)

X
* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * * * * * * * * * *

n2

Grade School Addition: Linear time
Grade School Multiplication: Quadratic time

No matter how dramatic the difference in the
constants the quadratic curve will eventually

dominate the linear curve

of bits in numbers

t
i
m
e

Neat! We have demonstrated that
as the inputs get large enough,

multiplication is a harder problem
than addition.

Mathematical confirmation of our
common sense.

Is Bonzo correct?

Don’t jump to conclusions!
We have argued that grade school
multiplication uses more time than

grade school addition. This is a
comparison of the complexity of

two specific algorithms.

To argue that multiplication is an
inherently harder problem than

addition we would have to show that
“the best” addition algorithm is

faster than “the best” multiplication
algorithm.

14

Next Class

Will Bonzo be able to add two numbers
faster than Θ(n)?

Can Odette ever multiply two numbers
faster than Θ(n2)?

Tune in on Thursday, same time, same place…

