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On Time Versus Input Size
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Great Theoretical Ideas In Computer Science
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“Grade school addition”

Time complexity of 
grade school addition

+ T(n) = amount of time 
grade school addition 
uses to add two n-bit 

numbers

What do you 
mean by 
“time”?

* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *

* * * * * * * * * * *

Our Goal

We want to define “time” in a way that 
transcends implementation details 

and allows us to make assertions about 
grade school addition 

in a very general yet useful way.

Roadblock ???

A given algorithm will take different amounts 
of time on the same inputs depending on such 
factors as:

– Processor speed
– Instruction set
– Disk speed
– Brand of compiler

Hold on! 
The goal was to measure the time 
T(n) taken by the method of grade 
school addition without depending 

on the implementation details. 

But you agree that T(n) does depend 
on the implementation!

We can only speak of the time taken 
by any particular implementation, as 

opposed to the time taken by the 
method in the abstract.

Your objections are serious, Bonzo, 
but they are not insurmountable. 

There is a very nice sense in which 
we can analyze grade school addition 

without having to worry about 
implementation details.

Here is how it works . . . 
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On any reasonable computer, adding 
3 bits and writing down the two bit 
answer can be done in constant time. 

Pick any particular computer M and 
define c to be the time it takes to 
perform          on that computer. 

Total time to add two n-bit numbers 
using grade school addition: cn
[c time for each of n columns]

On another computer M’, the time to 
perform        may be c’.

Total time to add two n-bit numbers 
using grade school addition: c’n
[c’ time for each of n columns]

The fact that we get a line is invariant 
under changes of implementations. 

Different machines result in different 
slopes, but time grows linearly as input 

size increases. 

# of bits in the numbers

t
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Mach
ine

 M
: cn

Machine M’: c’n

Thus we arrive at an 
implementation independent 

insight: 

Grade School Addition is a linear 
time algorithm.

I see! We can define away the 
details of the world that we do not 
wish to currently study, in order to 
recognize the similarities between 

seemingly different things…

AbstractionAbstraction: : 
Abstract aw ay the inessential Abstract aw ay the inessential 

features of a problem  or solutionfeatures of a problem  or solution

=
Exactly, Bonzo!

This process of abstracting away 
details and determining the 

rate of resource usage
in terms of the problem size n

is one of the 
fundamental ideas in 

computer science.
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Time vs Input Size

For any algorithm, define 
Input Size = # of bits to specify its inputs.

Define 
TIMEn = the worst-case amount of time used 

on inputs of size n

We often ask:

What is the growth rate of Timen ?

How to multiply 2 n-bit numbers.

X
* * * * * * * * 
* * * * * * * * 

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * * * * * * * * * *

n2

How  to m ultiply 2 nHow  to m ultiply 2 n--bit num bers.bit num bers.

X
* * * * * * * * 
* * * * * * * * 

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * * * * * * * * * *

n2

I get it!

The total time is bounded by 
cn2 (abstracting away the 
implementation details).

Grade School Addition: Linear time
Grade School Multiplication: Quadratic time

No matter how dramatic the difference in the 
constants, the quadratic curve will eventually 

dominate the linear curve

# of bits in the numbers

t
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Ok, so…

How much time does it 
take to square 

the number n using 
grade school multiplication?

Grade School Multiplication:
Quadratic time

c(log n)2 time to square 
the number n

# of bits in numbers

t
i
m
e
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Time Versus Input Size

Input size is measured in bits, 
unless we say otherwise.

# of bits used to describe input

t
i
m
e

How much time does it take?

Nursery School Addition
Input: Two n-bit numbers, a and b
Output: a + b

Start at a and increment (by 1) b times

T(n) = ?

How much time does it take?

Nursery School Addition
Input: Two n-bit numbers, a and b
Output: a + b

Start at a and increment (by 1) b times

T(n) = ?
If b = 000…0000, then NSA takes almost no time.
If b = 1111…11111, then NSA takes c n2n time.

Exponential Worst Case time !!

Worst Case Time

Worst Case Time T(n) for algorithm A:

T(n) = Max[all permissible inputs X of size n] (Running 
time of algorithm A on input X).

Worst-case Time Versus Input Size

Worst Case Time Complexity

# of bits used to describe input

t
i
m
e

What is T(n)?

Kindergarden Multiplication
Input: Two n-bit numbers, a and b
Output: a * b

Start with a and add a, b-1 times

Remember, we always pick the WORST CASE input 
for the input size n. 

Thus, T(n) = c n2n

Exponential Worst Case time !!
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Thus, Nursery School adding 
and multiplication are 

exponential time. 
They scale HORRIBLY as input 

size grows.

Grade school methods scale 
polynomially: just linear and 

quadratic. 
Thus, we can add and multiply 

fairly large numbers.

If T(n) is not polynomial, 
the algorithm is not efficient: 
the run time scales too poorly 

with the input size.

This will be the yardstick with 
which we will measure 

“efficiency”.

Multiplication is efficient, what 
about “reverse multiplication”?

Let’s define FACTORING(N) to 
be any method to produce a 
non-trivial factor of N, or to 

assert that N is prime.

Factoring The Number N 
By Trial Division

Trial division up to √N

for k = 2 to √N do
if k | N then
return “N has a non-trivial factor k”

return “N  is prime”

c √N (logN)2 time if division is c (logN)2 time 

On input N, trial factoring uses 
c√N (logN)2 time. 

Is this efficient?

No! The input length n = log N.
Hence we’re using c 2n/2 n2 time.

The time is EXPONENTIAL in 
the input length n.

Can we do better?

We know of methods for 
FACTORING that are 

sub-exponential 

(about            time) 

but nothing efficient.

2n
1/3
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Useful notation to discuss growth rates

For any monotonic function f from the positive 
integers to the positive integers, we say 

“f = O(n)” or “f is O(n)”
if

Some constant times n eventually 
dominates f

[Formally: there exists a constant c such that for all 
sufficiently large n:  f(n) ≤ cn ]

# of bits in numbers

t
i
m
e

f = O(n) means that there is a line 
that can be drawn that stays above

f from some point on.

More useful notation: Ω

For any monotonic function f from the positive 
integers to the positive integers, we say 

“f = Ω(n)” or “f is Ω(n)”
if:

f eventually dominates some 
constant times n

[Formally: there exists a constant c such that for all 
sufficiently large n:  f(n) ≥ cn ]

# of bits in numbers

t
i
m
e

f = Ω(n) means that there is a line 
that can be drawn that stays below

f from some point on

Yet more useful notation: Θ

For any monotonic function f from the positive 
integers to the positive integers, we say 

“f = Θ(n)” or “f is Θ(n)”
if:

f = O(n)   and f = Ω(n)

# of bits in numbers

t
i
m
e

f = Θ(n) means that f can be 
sandwiched between two lines

from some point on.
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# of bits in numbers

t
i
m
e

f = Θ(n) means that f can be 
sandwiched between two lines

from some point on.

Useful notation to discuss growth rates

For any two monotonic functions f and g from the 
positive integers to the positive integers, we say 

“f = O(g)” or “f is O(g)”
if

Some constant times g eventually 
dominates f

[Formally: there exists a constant c such that for all 
sufficiently large n:  f(n) ≤ c g(n) ]

# of bits in numbers

t
i
m
e

f = O(g) means that there is some 
constant c such that c g(n) stays 
above f(n) from some point on.

f g

1.5g

More useful notation: Ω

For any two monotonic functions f and g from the 
positive integers to the positive integers, we say 

“f = Ω(g)” or “f is Ω(g)”
if:

f eventually dominates some 
constant times g

[Formally: there exists a constant c such that for all 
sufficiently large n:  f(n) ≥ c g(n) ]

Yet more useful notation: Θ

For any two monotonic functions f and g from the 
positive integers to the positive integers, we say 

“f = Θ(g)” or “f is Θ(g)”
if:

f = O(g)   and f = Ω(g)

Quickies

• n = O(n2) ?
– YES

Take c = 1. 
For all n ≥ 1, it holds that n ≤ cn2
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Quickies

• n = O(n2) ?
– YES

• n = O(√n) ?
– NO

Suppose it were true that n ≤ c √n
for some constant c and large enough n

Cancelling, we would get √n ≤ c.
Which is false for n > c2

Quickies

• n = O(n2) ?
– YES

• n = O(√n) ?
– NO

• 3n2 + 4n + p = O(n2) ?
– YES

• 3n2 + 4n + p = Ω(n2) ?
– YES

• n2 = Ω(n log n) ?
– YES

• n2 log n = Θ(n2)

3n2 + 4n + p = Θ(n2)

n2 log n = Θ(n2)

n2 log n = O(n2) n2 log n = Ω(n2)

Two statements in one!

NO YES

Names For Some Growth Rates

Linear Time: T(n) = O(n)
Quadratic Time: T(n) = O(n2)
Cubic Time: T(n) = O(n3)

Polynomial Time:
for some constant k, T(n) = O(nk).

Example: T(n) = 13n5

Large Growth Rates

Exponential Time:
for some constant k, T(n) = O(kn)

Example: T(n) = n2n = O(3n)

Almost Exponential Time:
for some constant k, T(n) = 2kth root of n

Example: T(n)= 2
√
n

Small Growth Rates

Logarithmic Time: T(n) = O(logn)
Example: T(n) = 15log2(n)  

Polylogarithmic Time:
for some constant k, T(n) = O(logk(n))

Note: These kind of algorithms can’t possibly 
read all of their inputs.
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Binary Search

A very common example of logarithmic time 
is looking up a word in a sorted dictionary.

Some Big Ones

Doubly Exponential Time means that for 
some constant k

Triply Exponential

And so forth.

T(n)= 22
kn

T(n)= 22
2kn

Faster and Faster: 2STACK

2STACK(0) = 1

2STACK(n) = 22STACK(n-1)

2STACK(1) = 2
2STACK(2) = 4
2STACK(3) = 16
2STACK(4) = 65536

2STACK(5) ≥ 1080

= atoms in universe
22

22
...2

“tower of n 2’s”

2STACK(n) = 

And the inverse of 2STACK: log*

log*(n) = # of times you have to apply 
the log function to n to make it ≤ 1

2STACK(0) = 1

2STACK(n) = 22STACK(n-1)

2STACK(1) = 2
2STACK(2) = 4
2STACK(3) = 16
2STACK(4) = 65536

2STACK(5) ≥ 1080

= atoms in universe

And the inverse of 2STACK: log*

2STACK(0) = 1 log*(1) = 0

2STACK(n) = 22STACK(n-1)

2STACK(1) = 2 log*(2) = 1
2STACK(2) = 4 log*(4) = 2
2STACK(3) = 16 log*(16) = 3
2STACK(4) = 65536 log*(65536) = 4

2STACK(5) ≥ 1080 log*(atoms) = 5
= atoms in universe

log*(n) = # of times you have to apply 
the log function to n to make it ≤ 1

So an algorithm that 
can be shown to run in 

O(n log*n) Time
is

Linear Time for all
practical purposes!!
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Ackermann’s Function

A(0, n) = n + 1 for n ≥ 0 
A(m, 0) = A(m - 1, 1) for m ≥ 1 
A(m, n) = A(m - 1, A(m, n - 1)) for m, n ≥ 1

A(4,2) > # of particles in universe
A(5,2) can’t be written out in this universe 

Inverse Ackermann function

A(0, n) = n + 1 for n ≥ 0 
A(m, 0) = A(m - 1, 1) for m ≥ 1 
A(m, n) = A(m - 1, A(m, n - 1)) for m, n ≥ 1

Define: A’(k) = A(k,k) 
Inverse Ackerman α(n) is the inverse of A’

Practically speaking: n × α(n)   ≤  4n

The inverse Ackermann
function – in fact, 

Θ(n α(n))
arises in the seminal 

paper of

D. D. Sleator and R. E. 
Tarjan. A data structure 

for dynamic trees. 
Journal of Computer and 

System Sciences, 
26(3):362-391, 1983. 

Busy Beavers

Near the end of the course we will define 
the BUSYBEAVER function: it will make 

Ackermann look like dust.

But we digress…

Let us get back
to the discussion about 

“time” from the 
beginning of 

today’s class…

Time complexity of 
grade school addition

+ T(n) = amount of time 
grade school addition 
uses to add two n-bit 

numbers

What do you 
mean by “time”?

* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *

* * * * * * * * * * *
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On any reasonable computer, adding 
3 bits and writing down the two bit 
answer can be done in constant time. 

Pick any particular computer A and 
define c to be the time it takes to 
perform          on that computer. 

Total time to add two n-bit numbers 
using grade school addition: cn
[c time for each of n columns]

But please don't get the 
impression that our notion of 

counting “steps” 
is only meant for 

numerical algorithms that use 
numerical operations as 

fundamental steps. 

Here is a general framework in 
which to reason about “time”.

Suppose you want to evaluate the 
running time T(n) of your favorite 

algorithm DOUG.

You want to ask:
how much “time” does DOUG take 

when given an input X?

For concreteness, let’s look at
an implementation of the algorithm 
DOUG in the machine language for

the Homework #8 processor.

Now, “time” can be measured as the 
number of instructions executed 

when given input X.

And T(n) is the worst-case time on 
all permissible inputs of length n.

And in other contexts,
we may want to use slightly
different notions of “time”.

Sure. 

You can measure “time” as
the number of elementary “steps”

defined in any other way, 
provided each such “step”

takes constant time
in a reasonable implementation.

Constant: independent of the 
length n of the input.
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So instead, I can count the
number of JAVA bytecode
instructions executed when

given the input X.

Or, when looking at grade school 
addition and multiplication, I can 

just count the number 
of additions

Time complexity of 
grade school addition

*
*

*  

* 
*
*

* 

* 
*
*

* 

* 
*
*

* 

* 
*
*

* 

* 
*
*

* 

* 
*
*

* 

* 
*
*

* 

* 
*
*

* 

* 
*
*

* 

+
* 

* 

* 
*
*

* 

T(n) = The amount of 
time grade school 

addition uses to add 
two n-bit numbers

We saw that T(n) was linear.

T(n) = Θ(n)

Time complexity of 
grade school multiplication

T(n) = The amount of 
time grade school 

multiplication uses to 
add two n-bit 

numbers

We saw that T(n) was quadratic.

T(n) = Θ(n2)

X
* * * * * * * * 
* * * * * * * * 

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * * * * * * * * * *

n2

Grade School Addition: Linear time
Grade School Multiplication: Quadratic time

No matter how dramatic the difference in the 
constants the quadratic curve will eventually 

dominate the linear curve

# of bits in numbers

t
i
m
e

Neat! We have demonstrated that 
as the inputs get large enough, 

multiplication is a harder problem 
than addition.

Mathematical confirmation of our 
common sense.

Is Bonzo correct?

Don’t jump to conclusions!
We have argued that grade school 
multiplication uses more time than 

grade school addition. This is a 
comparison of the complexity of 

two specific algorithms.

To argue that multiplication is an 
inherently harder problem than 

addition we would have to show that 
“the best” addition algorithm is 

faster than “the best” multiplication 
algorithm.
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Next Class

Will Bonzo be able to add two numbers 
faster than Θ(n)?

Can Odette ever multiply two numbers 
faster than Θ(n2)?

Tune in on Thursday, same time, same place…


