il

Great Theoretical Ideas In Computer Science

Anupam Gupta | | ¢s15-251  Spring 2005

Lecture 17 ‘ March 15, 2005 ‘ Carnegie Mellon University

On Time Versus Input Size

®o 3 - —+

# of bits

How to add 2 n-bit numbers.

How to add 2 n-bit numbers.

* *
* *
* *
* F
*
* *
* *
* *
* *
* % %

* o %

How to add 2 n-bit numbers.

*q %
X *x *x X X% *x X% *x X |%x|x
X *x *x X *x *x % Xx X |%x|x
v
*x x

How to add 2 n-bit numbers.

*x
X X% X% *x *x *x *x *x
+ X X% X% X% % *x *x %

*  *F ok X %
*
*

How to add 2 n-bit numbers.

*
*
*
*
*
*
* * %

* T O X
*
*
*




How to add 2 n-bit numbers.

*
* *
* F
* F
* *
*
* *
* *
* F
*

*  *F X %X %
*
*
*
*
*
*
*
*
*
*

| "6rade school addition”

Time complexity of
grade school addition

X[k *x X% Xk k Xk %k %

* Kk ok ok ok Kk ok ok Kk T(n) = amount of time
* ok Kk Kk koK ok ok Kk grade school addition
k3 uses to add two n-bit
* X k kX X k %k %X k %k X%
numbers
,_ What do you
mean by
"time"?

Our Goal

We want to define “time" in a way that
transcends implementation details
and allows us to make assertions about
grade school addition
in a very general yet useful way.

Roadblock ???

A given algorithm will take different amounts
of time on the same inputs depending on such
factors as:

- Processor speed
- Instruction set

- Disk speed

- Brand of compiler

Hold on!
The goal was to measure the time
T(n) taken by the method of grade
school addition without depending
on the implementation details.

Q But you agree that T(n) does depend
on the implementation!

We can only speak of the time taken
by any particular implementation, as
opposed to the time taken by the
method in the abstract.

Your objections are serious, Bonzo,
but they are not insurmountable.

There is a very nice sense in which
we can analyze grade school addition
without having to worry about

implementation details. f

Here is how it works . . .




On any reasonable computer, adding
3 bits and writing down the two bit
answer can be done in constant time.

Pick any particular computer M and
define c to be the time it takes to

perform U on that computer. ’f-

Total time to add two n-bit numbers
using grade school addition: cn
[c time for each of n columns]

On another computer M', the time to

perform ﬂ may be c'.

Total time to add two n-bit numbers
using grade school addition: c'n
[¢' time for each of n columns]

f

®© 3 - —+

# of bits in the numbers '#-_
The fact that we get a line is invariant

under changes of implementations.
Different machines result in different
slopes, but time grows linearly as input
size increases.

Thus we arrive at an
implementation independent
insight:

Grade School Addition is a linear
time algorithm.

4

Devwd fulrg=
Devwdfwdz d| wkh hvvhquido
ihdweuhv rid suredip ruvrocdrg

=Y

Q I seel We can define away the
details of the world that we do not

wish to currently study, in order to
recognize the similarities between
seemingly different things...

<

Exactly, Bonzo!

This process of abstracting away
details and determining the
rate of resource usage
in terms of the problem size n
is one of the
fundamental ideas in
computer science.

f




Time vs Input Size
For any algorithm, define
Input Size = # of bits to specify its inputs.
Define
TIME, = the worst-case amount of time used

on inputs of size n

We often ask:

What is the growth rate of Time, ?

T get itl

The total time is bounded by
cn? (abstracting away the
implementation details).

How to multiply 2 n-bit numbers.

X *x %k %k Xk %k Xk %k %
*x %k %k X %k % % %

X % ok k Xk k Xk
X k ok k Kk k X Kk
Xk ok k Xk k x k
* k ok k x k x k
n? *x %X k k k X x %
*x k Kk Kk k k Kk Xk
*x k Kk k Kk k Xk k&
X % ok k Xk k X k

X Kk Kk Xk k k %k k k %k k %k Xk %k %k %

Grade School Addition: Linear time

Grade School Multiplication: Quadratic time

03 -+

# of bits in the numbers

No matter how dramatic the difference in the
constants, the quadratic curve will eventually
dominate the linear curve

Ok, so...

How much time does it
take to square
the number n using
grade school multiplication?

‘a—.

Grade School Multiplication:
Quadratic time

® 3 - =+

# of bits in numbers

c(log n)? time to square
the number n




Time Versus Input Size

® 3 - =+

# of bits used to describe input

Input size is measured in bits,
unless we say otherwise.

How much time does it take?

Nursery School Addition

Input: Two n-bit numbers, a and b
Output:a+b

Start at a and increment (by 1) b times

T(n)=?

How much time does it take?

Nursery School Addition
Input: Two n-bit numbers, a and b
Output: a+b

Start at a and increment (by 1) b times

T(n)=?

If b =000..0000, then NSA takes almost no time.
If b = 1111..11111, then NSA takes ¢ n2" time.

Exponential Worst Case time !

Worst Case Time

Worst Case Time T(n) for algorithm A:

T(n) = Max[all permissible inputs X of size n] (Running
time of algorithm A on input X).

Worst-case Time Versus Input Size

© 3 -+

# of bits used to describe input

Worst Case Time Complexity

What is T(n)?

Kindergarden Multiplication
Input: Two n-bit numbers, a and b
Output:a* b

Start with a and add a, b-1 times

Remember, we always pick the WORST CASE input
for the input size n.

Thus, T(n) = c n2"

Exponential Worst Case time !!




Thus, Nursery School adding
and multiplication are
exponential time.

They scale HORRIBLY as input
size grows.

6rade school methods scale
polynomially: just linear and
quadratic.
Thus, we can add and multiply
fairly large numbers.

If T(n) is not polynomial,
the algorithm is not efficient:

the run time scales too poorly
with the input size.

Q This will be the yardstick with

which we will measure
“efficiency".

Multiplication is efficient, what
about “reverse multiplication"?

Let's define FACTORING(N) to
be any method to produce a
non-trivial factor of N, or to

assert that N is prime.

Factoring The Number N
By Trial Division

Trial division up to YN
for k=2 to YN do

if k| N then
return "N has a non-trivial factor k"

return "N is prime"

c VN (logN)2 time if division is ¢ (logM)2 time

On input N, trial factoring us

cVN (logN)2 time.

Is this efficient?

The time is EXPONENTIAL in

the input length n.

No! The input length n = log N.
Hence we're using ¢ 22 n2 time.

>\

/

Can we do better?
We know of methods for

FACTORING that are
sub-exponential

(about 5q§/7 time) ‘f.

but nothing efficient.




Useful notation to discuss growth rates

For any monotonic function f from the positive
integers to the positive integers, we say

“f = O(n)" or “f is O(n)"

Some constant times n eventually
dominates f

[Formally: there exists a constant ¢ such that for all
sufficiently large n: f(n)<cn ]

f = O(n) means that there is a line
that can be drawn that stays above
f from some point on.

© 3 - —+

# of bits in numbers

More useful notation:

For any monotonic function f from the positive
integers to the positive integers, we say

*f = Qn)" or *f is (n)"

f eventually dominates some
constant times n

[Formally: there exists a constant ¢ such that for all
sufficiently large n: f(n)2cn ]

f = Q(n) means that there is a line
that can be drawn that stays below
f from some point on

® 3 - =+

# of bits in numbers

Yet more useful notation: ©

For any monotonic function f from the positive
integers to the positive integers, we say

“f = O(n)" or “f is O(n)"

f=0(n) and f=0Q(n)

f = ©(n) means that f can be
sandwiched between two lines
from some point on.

03 - —+

# of bits in numbers




f = ©(n) means that f can be
sandwiched between two lines
from some point on.

®o 3 - —+

# of bits in numbers

Useful notation to discuss growth rates

For any two monotonic functions f and g from the
positive integers to the positive integers, we say

“f = O(g)" or “f is O(g)"

Some constant times g eventually
dominates f

[Formally: there exists a constant ¢ such that for all
sufficiently large n: f(n) < c g(n) ]

f = O(g) means that there is some
constant ¢ such that ¢ g(n) stays
above f(n) from some point on.

159

® 3 -+
-
o

# of bits in numbers

More useful notation:

For any fwo monotonic functions f and g from the
positive integers to the positive integers, we say

*f = Q(g)" or *f is Q(g)"

f eventually dominates some
constant times g

[Formally: there exists a constant ¢ such that for all
sufficiently large n: f(n) > c g(n) ]

Yet more useful notation: ©

For any two monotonic functions f and g from the
positive integers to the positive integers, we say

“f = ©(g)" or “f is O(g)"

f=0(g) and f=1q)

*h=0(n?)?
- YES

Take ¢ = 1.
For all n> 1, it holds that n < cn?

Quickies




*n=0(n?)?
- YES
-n=0(n)?
- NO

Suppose it were true that n<cJn
for some constant ¢ and large enough n

Cancelling, we would get /n < c.
Which is false for n> c2

Quickies

*h=0(n2)?
- YES
*n=0(n)?
- NO
+ 3n2+4n+s=0(n?)?
- YES
*3n2+4n+s=((n2)?
- YES
*n2=Q(nlogn)?
- YES
* n?log n = ©(n?)

3n2+4n+s=0(n?)

Quickies

Two statements in onel

n?log n = O(n?)

VAN

nZlog n = O(n2) n?log n = (n2)

NO YES

Names For Some Growth Rates

Linear Time: T(n) = O(n)
Quadratic Time: T(n) = O(h2)
Cubic Time: T(n) = O(n3)

Polynomial Time:
for some constant k, T(n) = O(nk).
Example: T(n) = 13n5

Large Growth Rates

Exponential Time:
for some constant k, T(n) = O(k")

Example: T(n) = n2n = O(3")

Almost Exponential Time:
for some constant k, T(h) = 2kthroot of n
D

Example: - »>qd @ 5 a

Small Growth Rates

Logarithmic Time: T(n) = O(logn)
Example: T(n) = 15log,(n)

Polylogarithmic Time:
for some constant k, T(n) = O(logk(n))

Note: These kind of algorithms can't possibly
read all of their inputs.




Binary Search

A very common example of logarithmic time
is looking up a word in a sorted dictionary.

Some Big Ones

Doubly Exponential Time means that for
some constant k

- »qd@ 55%I

Triply Exponential .
57 a
-»gd@ 5°

And so forth.

Faster and Faster: 2STACK

2STACK(0) = 1

2STACK(n) = 225TACK(-D)

2STACK(1) = 2 2STACK(n) =
2STACK(2) = 4

2STACK(3) = 16 5 111
2STACK(4) = 65536 5 5

2STACK(5) = 1080 5 “tower of n 2's"

= atoms in universe

And the inverse of 2STACK: log*

2STACK(0) = 1

2STACK(n) = 225TACK(-D

2STACK(1) = 2
2STACK(2) = 4
2STACK(3) = 16
2STACK(4) = 65536

2STACK(5) = 1080
= atoms in universe

log*(n) = # of times you have to apply
the log function to n o make it <1

And the inverse of 2STACK: log*

2STACK(0) = 1 log*(1) = 0

2STACK(n) = 225TACK(-D)

2STACK(1) = 2 log*(2) = 1
2STACK(2) = 4 log*(4) = 2
2STACK(3) = 16 log*(16) = 3

2STACK(4) = 65536 log*(65536) = 4

2STACK(5) = 1080 log*(atoms) = 5
= atoms in universe

log*(n) = # of times you have to apply
the log function o n to make it < 1

\

0 .
&; So an algorithm that
can be shown to run in

O(n log™n) Time
is
Linear Time for all
practical purposes!!

/

10



Ackermann's Function

A0, n=n+1 for n>0
A(m,0)= A(m-1,1) for mz1
Alm, n) = Aim-1, A(m, n- 1)) form, nx1

A(4,2) > # of particles in universe
A(5,2) can't be written out in this universe

Inverse Ackermann function

A0, n=n+1 for n20
A(m,0)= A(m-1,1) for mz1
A(m, n) = Aim -1, A(m, n- 1)) form, nx1

Define: A'(k) = A(k,k)
Inverse Ackerman a(n) is the inverse of A’

Practically speaking: nxa(n) < 4n

The inverse Ackermanﬁ
function - in fact,
O(n a(n))
arises in the seminal
paper of

D. D. Sleator and R. E.
Tarjan. A data structure
for dynamic trees.
Journal of Computer and
System Sciences,
26(3):362-391, 1983.

Busy Beavers

Near the end of the course we will define
the BUSYBEAVER function: it will make
Ackermann look like dust.

~

But we digress...

Let us get back
to the discussion about
"time" from the
beginning of
today's class...

J

Time complexity of
grade school addition

X *x k Xk X% kx *x k% X%
* ok ok ok ok ok ok ok ok T(n) = amount of time
Xk ok ok ok ok ok ok ok grade school addition
uses to add two n-bit

numbers

*i*********

What do you
mean by “time"?

Ca

11



On any reasonable computer, adding
3 bits and writing down the two bit
answer can be done in constant time.

Pick any particular computer A and
define c to be the time it takes to

perform U on that computer.

Total time to add two n-bit numbers
using grade school addition: cn
[c time for each of n columns]

f

Here is a general framework in
which to reason about “time".

Suppose you want to evaluate the
running time T(n) of your favorite
algorithm DOUG.

You want to ask:
how much “time" does DOUG take
when given an input X?

And in other contexts,
we may want to use slightly
different notions of “time".

2

But please don't get the
impression that our notion of
counting “steps”
is only meant for
numerical algorithms that use
numerical operations as
fundamental steps.

‘&

For concreteness, let's look at
an implementation of the algorithm
DOUG in the machine language for

the Homework #8 processor.

Now, “time" can be measured as the
number of instructions executed
when given input X.

4

And T(n) is the worst-case time on
all permissible inputs of length n.

Sure.

You can measure “time" as
the number of elementary “steps”
defined in any other way,
provided each such "step”
takes constant time
in a reasonable implementation.

Constant: independent of the
length n of the input.

12



So instead, I can count the

number of JAVA bytecode

instructions executed when
given the input X.

Or, when looking at grade school
addition and multiplication, I can
Jjust count the number

of addi‘rions'U

Time complexity of
grade school addition

* X k k X %k % %k %

T(n) = The amount of
time grade school
addition uses to add
two n-bit numbers

+ * Kk %k %k k Xk k Xk %k X%
* Kk k% %k k Xk k Xk %k X%

v

* kk kkkkkk k k%

é}? We saw that T(n) was linear.
T(n) = ©(n)

Time complexity of

grade school multiplication

X KrREEEE AR

e T(n) = The amount of
{ RIITIsEE time grade school
e LR

multiplication uses to
ariiziiil add two n-bit
**************** numbers

T(n) = ©(n?)

f We saw that T(n) was quadratic.

Grade School Addition: Linear time
Grade School Multiplication: Quadratic time

® 3 - —+

# of bits in numbers

No matter how dramatic the difference in the
constants the quadratic curve will eventually
dominate the linear curve

Neat! We have demonstrated that

as the inputs get large enough,
multiplication is a harder problem
than addition.
Mathematical confirmation of our
common sense.

Is Bonzo correct?

Don't jump to conclusions!
We have argued that grade school
multiplication uses more time than
grade school addition. This is a
comparison of the complexity of

To argue that multiplication is an
inherently harder problem than
addition we would have to show that
"the best" addition algorithm is
faster than "the best” multiplication
~ algorithm. y

two specific algorithms. %

13



Next Class

Will Bonzo be able to add two numbers
faster than O(n)?

Can Odette ever multiply two numbers
faster than O(n2)?

Tune in on Thursday, same time, same place...

14



