Great Theoretical Ideas In Computer Science
Steven Rudich CS 15-251 Spring 2005
Lecture 14 Feb 24, 2005 Carnegie Mellon University

Choose Your Representation

| KoRST
LV & vai 11§ v 8

it A1 1
e @ nal s
= P AT
-c.—;.“g—_-.a (Y

P Bt - T3 e

B Mlrsd

.

~

We have seen that the

same idea can be

represented in many

_

different ways.

/

.

_

Natural Numbers

Unary
Binary
Base b

Mathematical Prehistory:
30,000 BC

Paleolithic peoples in Europe record
unary numbers on bones.

1 represented by 1 mark

2 represented by 2 marks
3 represented by 3 marks
4 represented by 4 marks

Prehistoric Unary

PowerPoint Unary

= number of white dots.

(n+l) + (n+l)+ (n+l1)+ + (n+1l) + (n+1)

n(n+l)

= number of white dots

= number of yellow dots

(n+l) + (n+l)+ (n+l1)+ + (n+1l) + (n+1)

n(n+l)

= number of white dots

= number of yellow dots

(n+l) + (n+l)+ (n+l)+ + (n+l) + (n+1)

n (n+1)

There are n(n+1)
dots in the grid

nt1 n+1 n+1 n+1 n+

= number of white dots

= number of yellow dots

(n+l) + (n+l)+ (n+l1)+ + (n+1l) + (n+1)

n(n+l)

_n(n+1)
2

S

nt1 nt1 n+¥1 n+1 n+1

N

Reals

Standard decimal or
binary notation.

Continued fractions

\

A Periodic CF

N

Choice Trees
Block Walking Model
Binomial Expansion
Vectors

_/

Manhattan

n

T here are (k) shortest routes from
(0,0) to Level n and k! Avenue.

.

~

Multiple

Representations means

that we have our

CHOICE of which one

_

we will use.

/

How to play the 9 stone game?

9 stones, numbered 1-9

Two players alternate moves.

Each move a player gets to take a new stone
Any subset of 3 stones adding to 15, wins.

\

For enlightenment, let's
look to ancient China in
the days of Emperor Yu.

A tortoise emerged from
the river Lo...

N _/

Magic Square: Brought to humanity on
the back of a tortoise from the river
Lo in the days of Emperor Yu

Magic Square: Any 3 in a vertical,
horizontal, or diagonal line add up to 15.

Conversely,
any 3 that add to 15 must be on a line.

TIC-TAC-TOE on a Magic Square
Represents The Nine Stone Game

Alternate taking squares 1-9.
Get 3 in a row to win.

9

5

BIG IDEAL \

Q/ Don't stick with the
representation in

which you encounter
problems!

Always seek the

\ more useful onel /

~

Q / This IDEA takes
practice, practice,

practice

to understand and
use.

_ /

.

_

Natural Numbers

Unary
Binary
Base b

Mathematical Prehistory:
30,000 BC

Paleolithic peoples in Europe record
unary numbers on bones.

1 represented by 1 mark

2 represented by 2 marks
3 represented by 3 marks
4 represented by 4 marks

Prehistoric Unary

PowerPoint Unary

= number of white dots.

(n+l) + (n+l)+ (n+l1)+ + (n+1l) + (n+1)

n(n+l)

= number of white dots

= number of yellow dots

(n+l) + (n+l)+ (n+l1)+ + (n+1l) + (n+1)

n(n+l)

= number of white dots

= number of yellow dots

(n+l) + (n+l)+ (n+l)+ + (n+l) + (n+1)

n (n+1)

There are n(n+1)
dots in the grid

nt1 n+1 n+1 n+1 n+

= number of white dots

= number of yellow dots

(n+l) + (n+l)+ (n+l1)+ + (n+1l) + (n+1)

n(n+l)

_n(n+1)
2

S

nt1 nt1 n+¥1 n+1 n+1

A case study.

Anagram Programming Task.

You are given a 70,000 word
dictionary. Write an anagram
utility that given a word as Input
returns all anagrams of that word
appearing in the dictionary.

Examples

Input: CAT
Output: ACT, CAT, TAC

Input: SUBESSENTIAL
Output: SUITABLENESS

Impatient Hacker
(Novice Level Solution)

Loop through all possible ways of
rearranging the input word

Use binary search to look up
resulting word in dictionary.

If found, output it

Performance Analysis
Counting without executing

On the word "microphotographic”, we loop
171 = 3 * 1014 times.

Even at 1 microsecond per iteration, this will
take 3 *108 seconds.

Almost a decade!

(There are about 1seconds in a nanocentury.)

"Expert” Hacker

Module ANAGRAM(X,Y) returns True

exactly when X and Y are anagrams.
(Works by sorting the letters in X and Y)

Input X
Loop through all dictionary words Y
If ANAGRAM(X,Y) output Y

The hacker is satisfied
and reflects no futher

Comparing an input word with each of

70,000 dictionary entries takes about
15 seconds.

The master keeps trying
to refine the solution.

The master’s program runs in less than
1/1000 seconds.

Master Solution

Don't keep the dictionary in
sorted order!

Rearranging the dictionary into
anagram classes will make the original
problem simple.

Suppose the dictionary was the list
below.

ASP
DOG
LURE
GOD
NICE
RULE
SPA

After each word, write its
"signature” (sort its letters)

ASP
DOG
LURE
GOD
NICE
RULE
SPA

APS
DGO
ELRU
DGO
CEIN
ELRU
APS

Sort by the signatures

APS
APS
CEIN
DGO
DGO
ELRU
ELRU

Master Program

Input word W
X := signature of W

Use binary search to find the anagram
class of W and output it.

About log,(70,000) x 25 microseconds
~ 0004 seconds

Of course, it takes about 30 seconds
to create the dictionary, but it is
perfectly fair to think of this as

programming time. The building of the
dictionary is a one-time cost that is
part of writing the program.

Neat! I wish I had
thought of that.

Z—

Name Your Tools

Whenever you see something you wish
you had thought of, try and formulate
the minimal and most general lesson

that will insure that you will not miss
the same thing the next time. Name
the lesson to make it easy +to
remember.

NAME: Preprocessing

It is sometimes possib
reasonable, one-time

e to pay a
preprocessing

cost to reorganize your data in such a
way as to use it more efficiently later.
The extra time required to preprocess
can be thought of as additiondl

programming effort.

Q, Of course,
pbreprocessing 1S
just a special case

of seeking the
appropriate
representation.

_ /

~

Q/ Don't let the
representation

choose you,

CHOOSE THE
REPRESENTATION

_ /

Vector Programs

Let's define a (parallel) programming
language called VECTOR that operates
on possibly infinite vectors of numbers.

Each variable V= can be thought of as:

Vector Programs

Let k stand for a scalar constant
<k> will stand for the vector <k,0,0,0,...>

<0>=<0,00,0,..>
<> =<10,0,0,..»

V—=*T—~means to add the vectors position-wise.

<423, .>+<H611..>=<934 >

Vector Programs

RIGHT(V—) means to shift every number in V= one
position to the right and to place a O in position O.

RIGHT(<1,2,3,.>)=<0,12,3,. ..»

Vector Programs

Example: Stare

V= 1= <63 V= =<6,000,.>

V= = RIGHT(V~) +<42>, V—=<42600,.>
V== RIGHT(V~) + <2>; V= =<24260.>
V= = RIGHT(V) +<13>; V7=<13,2,42,6,>

V—>:<13,2,42,6,0,0,0,...>

Vector Programs

Example: Stare

V- 1= <>} V- =<1,0,0,0,.5

Loop n times: V—-=<110,0,.>
V== V7 + RIGHT(V™), V—»=<1210,.5
V-=«<13,3,1,>

V= = n™ row of Pascal's triangle.

Vector programs

can be implemented
by polynomials!

Programs > Polynomials

The vector V= =<aq,, a;, a,, ... > will be
represented by the polynomial:

Formal Power Series

The vector V= =<aq,, ay, a,, ... > will be
represented by the formal power series:

1—0 |
PV — Z CL,Z;)(Z
=10

“z<ay, 0,0, ...

1=00

PV — Z a,z;Xi
1=0

<0>is represented by
<k>is represented by

V=+ T~ is represented by

RIGHT(V—) is represented by

Vector Programs

Example:

V= = <1>

Loop n times:
V== V= + RIGHT(V™); = Py, + Py X;

V= = n™ row of Pascal's triangle.

Vector Programs

Example:

V= = <D P, = 1;

Loop n times:
V== V7 + RIGHT(V™); P, = Py (1+ X);

V= = n™ row of Pascal's triangle.

Vector Programs

Example:

V= = <1>;

Loop n times: — Py =(1+ X)"
V== V= + RIGHT(V™);

_

V= = n™ row of Pascal's triangle.

/Wha’r is the coefficient of\
Xk in the expansion of:

(1+ X+ X X3+ X4, ..)n?

= —

Each path in the choice tree for the

cross terms has n choices of exponent
e, > 0. Each exponent can

be any natural number.
Coefficient of Xkis the number of

non-negative solutions to:
ej+e,+...+e =k

/Wha’r is the coefficient of\

Xk in the expansion of:

(1+ X+ X X3+ X4, ..)n?

i

X n-1

‘m+ k-1

J

/Wha’r is the coefficient of XK in the
expansion of:

(GO+01X+02X2+G3X3+...)(1+X+X2+X3+...)

=(apg+a X +a,X?+a3X3+.)/(1-X) ?

e

Gy + @; + A, + .. + qQ

/(ao raX+aX2+a X3+)/ (1 m

b

k=0 _i=0

PREFIXSUM(a, + a;X + a,X? + a3 X3 + ...)

/ Let's add an ins‘rruc’rion\

called PREFIXSUM to our
VECTOR language.

W~ = PREFIXSUM(V~)

means that the i™ position
of W contains the sum of all
the numbers in V from

positions O to i. /

What does this program output?

V== 17,
Loop k times: V=~ := PREFIXSUM(V~) ;

0 1k"rh Avenue

2
3
4

~ ™

Can you see how
PREFIXSUM can be
represented by a familiar

polynomial expression?

_/

/VV% = PREFIXSUM(V%)\

IS represented by

Pw =Py / (1-X)

Al-Karaji Program

Zero_Ave = PREFIXSUM(<1>);
First_Ave := PREFIXSUM(Zero_Ave);
Second_Ave :=PREFIXSUM(First_Ave);

Output:=
First_Ave + 2*RIGHT(Second_Ave)

OUTPUT~ =<1, 4,9,25, 36,49, ..>

Al-Karaji Program

Zero_Ave = 1/(1-X);
First_Ave = 1/(1-X)2;
Second_Ave = 1/(1-X)3;

Outpuft =
1/(1-X)? + 2X/(1-X)?

(1-X)/(1-X)3 + 2X/(1-X)3

= (1+X)/(1-X)3

(1+X)/(1-X)3

Zero_Ave = PREFIXSUM(<1>);
First_Ave := PREFIXSUM(Zero_Ave);
Second_Ave :=PREFIXSUM(First_Ave);

Output:=

RIGHT(Second_Ave) + Second_Ave
Second_Ave = «1,3,6,10, 15,.
RIGHT(Second_Ave) =<0, 1, 3, 6, 10,.
Output = <1,4,9, 16, 25

(1+X)/(1-X)3
outputs<1,4,9, .»>

X(1+X)/(1-X)3
outputs <0, 1, 4,9, .»

The k™h entry is k?

X(1+X)/(1-X)3 = 3 keXk

What does X(1+X)/(1-X)* do?

X(1+X)/(1-X)* expands to :

> S, Xk

where S, is the sum of the
first k squares

Aha! Thus, if there is an
alternative interpretation of
the k™ coefficient of

X(1+X)/(1-X)*
we would have a new way to
get a formula for the sum of
the first k squares.

Using pirates and gold we\
- found that:
e
¢

Coefficient of Xkin P, = (X?+X)(1-X)*is
the sum of the first k squares:

X2 4 X

Vector programs -> Polynomials
-> Closed form expression

Expressions of the form

Finite Polynomial / Finite Polynomial

are called Rational Polynomial
Expressions.

Clearly, these expressions have some
deeper interpretation as a
programming language.

References

The Heritage of Thales, by W. S. Anglin and
F. Lambek

The Book Of Numbers, by J. Conway and R.
Guy

Programming Pearls, by J. Bentley

History of Mathematics, Histories of
Problems, by The Inter-IREM Commission

