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Ancient Wisdom:
Primes, Continued Fractions, The
Golden Ratio, and Euclid's GCD
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Definition: A number > 1is
prime if it has no other
factors, besides 1 and itself.

Each number can be factored
into primes in a unique way.

[Euclid]
/

Theorem: Each natural has a unique
factorization into primes written in
non-decreasing order,

Definition: A number > 1 is prime if it has no
other factors, besides 1 and itself.

Primes: 2, 3,5,7,11,13,17, ...

Factorizations:

42=2%3*%7
84=2%2%3*%7
13=13

Theorem: Each natural has a unique
factorization into primes written in
non-decreasing order.

Let n be the least counter-example.

Hence, n has at least two ways of being written as a
product of primes:

N=p;pz..Pk=9192 - Gt

The p's must be totally different primes than the q's
or else we could divide both sides by one of a
common prime and get a smaller counter-example.

Without loss of generality, assume p; > q;.

Theorem: Each natural has a unique
factorization into primes written in
non-decreasing order,
Let n be the least counter-example.

N=pi1P2- Pc=919z2 Gt [withp; > q,]
n>ppi>prgi+l [since p; > q]
m=n-pgq [hence 1< m<n]

Theorem: Each natural has a unique
factorization into primes written in
non-decreasing order.
Let n be the least counter-example.

N=p1P2- Pc=G19z2 Gt [with p;> q4]
n>pip>prgp+l [since p; > q;]
m=n-pq; [hence 1<m<n]

Notice: m = py(p; .. P = 41) = 9u(qz - G+ - P1)
Thus, p;Im and g;Im




Theorem: Each natural has a unique
factorization into primes written in
non-decreasing order,
Let n be the least counter-example.

N=pi1Pz- Pc=G19z2 Gt [withp; > q,]
n>ppi>prgi+l [since p; > q]
m=n-pgq [hence 1< m<n]

Notice: m = py(p .. P - 1) = G1(qz - G+ - P1)

Thus, p;Im and g;Im

By unique factorization of m, pyq;lm. Thus m = p,q,z
We have: m = n-pyq; = pi( pz - P - q1) = PihiZ

Theorem: Each natural has a unique
factorization into primes written in
non-decreasing order,
Let n be the least counter-example.

N=p1P2- Pc=G19z2 Gt [with p;> q;]
n>pip>prgp+l [since p; > q;]
ms=n-pq; [hence 1<m<n]

Notice: m = py(p, .. P - 1) = G1(qz - G+ - P1)

Thus, p;Im and g;Im

By unique factorization of m, pyq;lm. Thus m = p,q,z
We have: m = n- pyq; = pi( pz - P - q1) = PihiZ

Dividing by p; we obtain: (p, .. px -q;) = ¢,z
Pz - P = G2+ q1 = qu(2+1) = qylp2.py

Theorem: Each natural has a unique
factorization into primes written in
non-decreasing order,
Let n be the least counter-example.

N=p1Pz- Pc=q19z2 Gt [withp; > q,]
n=>ppi>prgr+l [since p; > q]
m=n-pgq [hence 1< m<n]

Notice: m = py(p; .. P = 1) = 9u(qz - G+ - P1)

Thus, p;Im and g;Im

By unique factorization of m, pyq;lm. Thus m = p,q,z
We have: m = n- pyq; = pi( pz - P - q1) = PihiZ

Dividing by p; we obtain: (p, .. px -q;) = ¢,z

Pz - P = G2+ q1 = qu(2+1) = qylp2.py

Now by unique factorization of p,..py, g, must be one of p,,...py.
But this contradicts the fact that the p's and q's are disjoint.

Multiplication
might just be a “one-way" function
Multiplication is fast to compute
Reverse multiplication is apparently slow

We have a feasible method to multiply
1000 bit numbers [Egyptian
multiplication]

Factoring the product of tfwo random
1000 bit primes has no known feasible
approach.

Grade School GCD algorithm

GCD(A B) is the greatest common divisor, i.e., the
largest number that goes evenly into both A and B.

What is the GCD of 12 and 18?
12=22*3 18 = 2*32

Common factors: 2! and 3!
Answer: 6

How to find GCD(A,B)?

A Naive method:

Factor A into prime powers.
Factor B into prime powers.

Create GCD by multiplying together each common
prime raised to the highest power that goes into
both A and B.




Hang on!
.
il This requires
é factoring A and B.

No one knows a
particularly fast way
to factor numbers in

general.

'/ EUCLID

g had a much better way
to compute GCD!

Ancient Recursion:
Euclid's 6CD algorithm

Euclid(A,B) // requires A=B=0
If B=0 then return A
else return Euclid(B, A mod B)

A small example

Euclid(A,B) // requires A=B=0
If B=0 then return A
else return Euclid(B, A mod B)

Note: 6CD(67,29) =1

Euclid(67,29) 67 mod29=9
Euclid(29,9) 29mod9 =2
Euclid(9,2) 9mod2 =1
Euclid(2,1) 2modl =0

Euclid(1,0) outputs 1

But is it correct?

Euclid(A,B) // requires A=B=0
If B=0 then return A
else return Euclid(B, A mod B)

Does the algorithm stop?

Claim: GCD(A,B) = GCD(B, A mod B)

d|Aand d|B = d| (A-kB)
The set of common divisors of A, B equals
the set of common divisors of B, A-kB.

Euclid(A,B) // requires A=B=0
If B=0 then return A
else return Euclid(B, A mod B)

Claim: AmodB<% A
Proof:
IfB>%+ AthenAmodB=A -

If B< % A thenany X Mod B «
IfB=%AthenAmodB=0

B<«<3:A
B<«<3:A




Does the algorithm stop?

Euclid's GCD Termination

Euclid(A,B) // requires A=B=0
If B=0 then return A
else return Euclid(B, A mod B)

Euclid(A,B) // requires A=B=0
If B=0 then return A
else return Euclid(B, A mod B)

GCD(A,B) calls GCD(B, A mod B)
\

[ Less than § of A

GCD(A,B) calls GCD(B, <3 A)

Euclid's GCD Termination

Euclid's GCD Termination

Euclid(A,B) // requires A=B=0
If B=0 then return A
else return Euclid(B, A mod B)

Euclid(A,B) // requires A=B=0
If B=0 then return A
else return Euclid(B, A mod B)

GCD(A B) calls GCD(B, <3A)
which calls GCD(<3A, B mod <3A)

[ Less than $ of A |

Every two recursive calls,
the input numbers drop by
half

Euclid's GCD Termination

Euclid(A,B) // requires A=B=0
If B=0 then return A
else return Euclid(B, A mod B)

Theorem:
If two input numbers have an n
bit binary representation,
Euclid Algorithm will not take

more than 2n calls to terminate.

@
Trick Question: ﬁ

If X and Y are less than n,
what is a reasonable upper
bound on the number of
recursive calls Euclid(X,Y)

will make?.




Answer:

If X and Y are less than n,
Euclid(X,Y) will make no
more than 2log,n calls.

EUCLID(A,B)
B=0 then Return A
else Return Euclid(B, A mod B)

// requires A=B=0 If

Euclid(67,29) 67 -2*29=67mod29=9
Euclid(29,9) 29-3*9=29mod9 =2
Euclid(9,2) 9-4*2=9mod 2
Euclid(2,1) 2-2*1=2mod 1
Euclid(1,0) outputs 1

1
0

Let <r,s> denote the number
r*67 + s*29 . Calculate all
intermediate values in this

representation.

67=<1,0> 29=<0,1>

Euclid(67,29) 9=<1,0> - 2*<0,1> 9=c1,-2>
Euclid(29,9) 2=<0,1> - 3*1,-2> 2=<-3,7>
Euclid(9,2) 1=¢1,-2> - 4*<-3,7> 1=<13,-30>
Euclid(2,1) 0=<-3,7> - 2*<13,-30> 0=<-29,67>
Euclid(1,0) outputs 1=13*67 - 30*29

Euclid's Extended GCD algorithm

Input: XY
Output: r,s,d such that rX+sY = d = GCD(X,Y)

67=<1,0> 29=<0,1>

Euclid(67,29) 9=67 - 2*29 9=<1,-2>
Euclid(29,9) 2=29 - 3*9 2=<-3,7>
Euclid(9,2) 1=9 - 4%2 1=<13,-30>
Euclid(2,1) 0=2-2*1 0=¢-29,67>
Euclid(1,0) outputs 1=13*67 - 30*29

The multiplicative inverse of xec Z,” is
the unique ye Z," such that
x*.y=,1

The unique inverse of a must exist because
the x row contains a permutation of the
elements and hence contains a unique 1.

DX =]
Hlwr (==

W= <

s =w|w
[l DN KR S

The multiplicative inverse of xe Z," is
the unique ye Z," such that
x*.y=,1
TO QUICKLY COMPUTE Y FROM X:

Run Extended_Euclid(x,n).

t returns a,b, and d such that ax+bn=d
Butd=6CD(x,n)=1,s0oax+bn=1
Hence MODULO n: ax = 1 (mod n)

Thus, a is the multiplicative inverse of x.




The RSA story:

Pick 2 distinct. random 1000 bit primes,
p and q.

Multiply them to get: n
Multiply (p-1) and (g-1) o compute @(n)
Randomly pick an e s.t. GCD(e,n) = 1.
Publishnand e
Compute the multiplicative inverse of e mod
@(n) to get a secret number d.

(Me)d =med =m! (mod n)

Leonardo Fibonacci

In 1202, Fibonacci proposed a problem
about the growth of rabbit populations.

\

N
¥

Inductive Definition or
Recurrence Relation for the
Fibonacci Numbers

Stage O, Initial Condition, or Base Case:
Fib(0)=0; Fib(1)=1

Inductive Rule
For n>1, Fib(n) = Fib(n-1) + Fib(n-2)

n 01,23 |4|5|6|7

Fibn) |O|1]1|2|3|5|8]13

A (Simple) Continued Fraction Is Any
Expression Of The Form:

1

where a, b, ¢, ... are whole numbers.

A Continued Fraction can have a finite
or infinite number of terms.

a+

b+

We also denote this fraction by [a,b,c,def,..]

A Finite Continued Fraction

241 __

3+ 11
4+=
2

Denoted by [2,3,4,2,0,0,0,...]




An Infinite Continued Fraction

1+ 1
2+ 1
2+ 1
2+ 1
2+ 1
2+—1
2+71
2+ 1
1

2+...

2+

Denoted by [1,2,2,2,...]

Recursively Defined Form For CF

CF = whole number, or

= whole number + i
CF

Ancient Greek Representation:
Continued Fraction Representation

Ancient Greek Representation:
Continued Fraction Representation

Tl
37 :
1+°

1

=[1,111,00,0..]

Ancient Greek Representation:
Continued Fraction Representation

?2=1+ 11

g
1

1+ =

1+

oo

Ancient Greek Representation:
Continued Fraction Representation

5 7,
1
1+ 1
1+
1
=[1111100,0,.]




Ancient Greek Representation:
Continued Fraction Representation

1_3:l+ ll
8 1+————
1
1+———
1
l+7l
1+=
1

=[1111110,0,0,.]

A Pattern?

Let r,=[1,000,.]=1
r, = [1,1,0,0,0,.]= 2/1
rs=[1,11,0,00.]= 3/2

r,=[111100,0..]=5/3
and so on.

Theorem:

r, = Fib(n+1)/Fib(n)

Proposition: Any finite
continued fraction
evaluates to a rational.

Theorem: Any rational

has a finite continued

fraction representation.
(proof later)

Hmm.
Finite CFs = Rationals.

Then what do infinite
continued fractions
represent?

An infinite continued fraction

J2=1+ 11
2+
2+ 1
2+ 1
2+ 1
2+ 1
2+¥
2+;

2+ 1
2+...

Quadratic Equations

X2-3x-1=0 X_3+JE
2

3X+ 1

X2
X +1/X

X=3+1/X=3+1/[3+1/X]=..




A Periodic CF

Theorem: Any quadratic
solution has a periodic
continued fraction.

Converse: Any periodic
continued fraction is the
solution of a quadratic

equation. (homework)

Non-periodic CFs

So they express even e-1=1+ 11
more ... 1+ :
2+ 1
What about those 1+ " 1
non-recurring 4+ 1
continued fractions? 1+ 1
1+ 1 1
6+
1+....
What is the pattern?
1 What a cool
=3+ 1 representation!
7+
1
15+ 1 Finite CF: Rationals
1+ 1 Periodic CF: Quadratic
292+ 1 roots
1+ " 1 And some numbers reveal
e 1 hidden regularity.
2+ 1

1+....




More good news...

Leta =
[a;, a5, a3, .. ] be a CF.

Define Cl = [01,0,0,0,0..]
Define CZ = [01,02,0,0,0..]
Define C; = [a;,0,,03,0..]
and so on.

Convergents

Let a = [ay, a,, a3, ...] be a CF.

Define: €;=1[a;,0,0,0,0.]
C,=[a,a,,0,0,0,..]
C;3 = [a1,0,,03,0,0,..] and so on.

C, is called the k-th convergent of a

a is the limit of the sequence C;, C,, Cj,...

Best Approximator Theorem

Best Approximators of 1

¢ =3 =3+ 11
A rational p/q is the best approximator to a 7+ 1
real o if no rational humber of denominator C,=22/7 15+ 1
smaller than q comes closer to a. 1+ I
C; = 333/106 2024 ————5
1+
. 1
BEST {\PPROXIMATOR THEOREM. C, = 355/113 1+ 1
Given any CF representation of a, 1+ 1
each convergent of the CFisa - 2+
best approximator for a ! C5= 103993/33102 It...
C, =104348/33215
Khufu
+2589-2566 B.C.
+2,300,000 blocks
averaging 2.5 tons each
Package
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Great Pyramid at Gizeh

300m (984ft)
Eiffel Tower
Leaning Tower of Pisa
Big Ben

,:il Statue of Liberty

137m (449ft)

IIJ H.hufu‘

96m (316ft)
92m (305ft)
55m (179ft)

300m (984ft)

Leaning Tower of Pisa
Big Ben
Statue of Liberty

137m (449ft)
g6m (316ft)

52m (305¢0) /B
55m (179ft)

The ratio of the altitude of a face to half the base

Golden Ratio: the divine proportion

¢=16180339887498948482045...

"Phi" is named after the Greek sculptor
Phidias

Parthenon, Athens (400 B.C.)

Pentagon

Ratio of height of the person to
the height of a person’s navel

s

11



Definition of ¢ (Euclid)

Ratio obtained when you divide a line segment
into Two unequal parts such that the ratio of
the whole to the larger part is the same as
the ratio of the larger to the smaller.
_AC_AB
AB BC
AC
&=

Definition of ¢ (Euclid)

Ratio obtained when you divide a line segment
into fwo unequal parts such that the ratio of
the whole to the larger part is the same as
the ratio of the larger to the smaller.

¢ -p-1=0
J5+1
2

¢:

The Divine Quadratic
¢ -¢-1=0
V5 +1

2
p=1+1/¢

Expanding Recursively

p=1+"

@

Expanding Recursively

@Y= 1+1
@

:1+—1

1+1
@

Expanding Recursively

¢:1+£
2

12



Continued Fraction Representation
1

Continued Fraction Representation

¢: 1+ 1 1 + \/g _ 1 . 1
1+ = 1
1 2 1+
1+ 1
1 1+
1+ 1 1
1+ 1 1+ 1
1+ 1 1+ 1
1+ 1 1+ 1
1+ 1+
1 1
1+ 1+ 1
1+.. 1 +
1+
Remember? 112,35,8,13,21,3455,...
We already saw the convergents of this CF 2/1 = 2
1111111111, 3/2 = 15
are of the form 5/3 = 1.666..
Fib(n+1)/Fib(n) 8/5 = 16
13/8 = 1625
75 21/13 = 1.6153846...
. F 1++/5 =
Hence: I‘man_n == 5 34/21 1.61904..
" e 1.6180339887498948482045

Continued fraction representation of a
standard fraction

67/29 =2 with remainder 9/29

=2+1/(29/9)
ﬂ_2+2_19_2+ 12:+ 11
2 2 34f 34 -
9 9 4+ =

13



A Representational Correspondence

67—2+i:2+ ! 2+ 1

ORI P
9 9 4+1

2

Euclid(67,29) 67 div29=2
Euclid(29,9) 29div9 =3
Euclid(9,2) 9div2z =4
Euclid(2,1) 2divl =2

Euclid(1,0)

Euclid's GCD = Continued Fractions

A | A 1

P [ L S —

B B B
Amod B

Euclid(A,B) = Euclid(B, A mod B)
Stop when B=0

Theorem: All fractions have finite
continuous fraction expansions

A | A 1
P [ L S —
B |B B

Amod B

Euclid(A,B) = Euclid(B, A mod B)
Stop when B=0

Fibonacci Magic Trick

Another Trick!
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