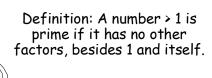
Great Theoretical Ideas In Computer Science

Steven Rudich CS 15-251 Spring 2005 Feb 17, 2005 Carnegie Mellon University

Lecture 12

Ancient Wisdom: Primes, Continued Fractions, The Golden Ratio, and Euclid's GCD

$$\frac{3+\sqrt{13}}{2} = 3 + \underbrace{\frac{1}{3+\frac{1}{3+\frac{1}{3+\frac{1}{3+\frac{1}{3+\frac{1}{3+\frac{1}{3+\frac{1}{3+\dots}}}}}}}}}_{3+\frac{1}{3+\frac{1}{3+\frac{1}{3+\dots}}}}$$



Each number can be factored into primes in a unique way. [Euclid]

Theorem: Each natural has a unique factorization into primes written in non-decreasing order.

Definition: A number > 1 is prime if it has no other factors, besides 1 and itself.

Primes: 2, 3, 5, 7, 11, 13, 17, ...

Factorizations:

42 = 2 * 3 * 7

84 = 2 * 2 * 3 * 7

13 = 13

Theorem: Each natural has a unique factorization into primes written in non-decreasing order.

Let n be the least counter-example.

Hence, n has at least two ways of being written as a product of primes:

$$n = p_1 p_2 ... p_k = q_1 q_2 ... q_t$$

The p's must be totally different primes than the q's or else we could divide both sides by one of a common prime and get a smaller counter-example.

Without loss of generality, assume $p_1 > q_1$.

Theorem: Each natural has a unique factorization into primes written in non-decreasing order.

Let n be the least counter-example.

 $n = p_1 \; p_2 \; ... \; p_k = q_1 \; q_2 \; ... \; q_{\dagger}$

[with $p_1 > q_1$]

 $n \geq p_1p_1 \boldsymbol{\succ} p_1 \, q_1 + 1$

[since p₁ > q₁]

 $m = n - p_1q_1$

[hence 1 < m < n]

Theorem: Each natural has a unique factorization into primes written in non-decreasing order.

Let n be the least counter-example.

 $n = p_1 p_2 ... p_k = q_1 q_2 ... q_t$

[with $p_1 > q_1$]

 $n \geq p_1p_1 \boldsymbol{\succ} p_1 \, q_1 \boldsymbol{+} \, 1$

[since $p_1 > q_1$]

 $m = n - p_1q_1$

[hence 1 < m < n]

Notice: $m = p_1(p_2 ... p_k - q_1) = q_1(q_2 ... q_t - p_1)$

Thus, $p_1|m$ and $q_1|m$

Theorem: Each natural has a unique factorization into primes written in non-decreasing order.

Let n be the least counter-example.

 $\begin{array}{lll} n = p_1 \; p_2 \; ... \; p_k = q_1 \; q_2 \; ... \; q_1 \\ \\ n \geq p_1 p_1 \; \cdot \; p_1 \; q_1 + 1 \\ \\ m = n - p_1 q_1 & [\text{hence 1} \cdot \; m \cdot \; n] \end{array}$

Notice: $m = p_1(p_2 ... p_k - q_1) = q_1(q_2 ... q_t - p_1)$

Thus, $p_1|m$ and $q_1|m$

By unique factorization of m, p_1q_1 |m. Thus m = p_1q_1z We have: m = n - p_1q_1 = $p_1(p_2...p_k-q_1)$ = p_1q_1z

Theorem: Each natural has a unique factorization into primes written in non-decreasing order.

Let n be the least counter-example.

Notice: $m = p_1(p_2 ... p_k - q_1) = q_1(q_2 ... q_t - p_1)$ Thus, $p_1|m$ and $q_1|m$

By unique factorization of m, $p_1q_1|m$. Thus $m=p_1q_1z$ We have: $m=n-p_1q_1=p_1(p_2...p_k-q_1)=p_1q_1z$

Dividing by p_1 we obtain: ($p_2 ... p_k - q_1$) = q_1z $p_2 ... p_k = q_1z + q_1 = q_1(z+1) \Rightarrow q_1|p_2...p_k$

Theorem: Each natural has a unique factorization into primes written in non-decreasing order.

Let n be the least counter-example.

 $\begin{array}{lll} n = p_1 \; p_2 \; ... \; p_k = q_1 \; q_2 \; ... \; q_1 \\ \\ n \geq p_1 p_1 \; \cdot \; p_1 \; q_1 + 1 \\ \\ m = n \; - p_1 q_1 & [\text{hence 1} \cdot \; m \cdot \; n] \end{array}$

$$\begin{split} m &= n - p_1 q_1 \\ \text{Notice: } m &= p_1 (p_2 \dots p_k - q_1) = q_1 (q_2 \dots q_1 - p_1) \end{split}$$

Thus, $p_1|m$ and $q_1|m$

By unique factorization of m, $p_1q_1|m$. Thus $m=p_1q_1z$ We have: $m=n-p_1q_1=p_1(p_2...p_k-q_1)=p_1q_1z$

Dividing by p_1 we obtain: ($p_2 \dots p_k - q_1$) = q_1z $p_2 \dots p_k$ = q_1z + q_1 = $q_1(z$ +1) $\Rightarrow q_1|p_2...p_k$

Now by unique factorization of $p_2...p_k$, q_1 must be one of $p_2....p_k$. But this contradicts the fact that the p's and q's are disjoint.

Multiplication might just be a "one-way" function Multiplication is fast to compute Reverse multiplication is apparently slow

We have a feasible method to multiply 1000 bit numbers [Egyptian multiplication]

Factoring the product of two random 1000 bit primes has no known feasible approach.

Grade School GCD algorithm

GCD(A,B) is the greatest common divisor, i.e., the largest number that goes evenly into both A and B.

What is the GCD of 12 and 18? 12 = 2² * 3 18 = 2*3²

Common factors: 21 and 31

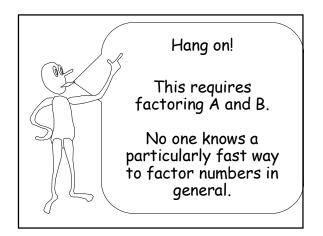
Answer: 6

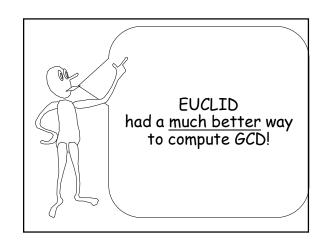
How to find GCD(A,B)?

A Naïve method:

Factor A into prime powers. Factor B into prime powers.

Create GCD by multiplying together each common prime raised to the highest power that goes into both A and B.





Ancient Recursion: Euclid's GCD algorithm

Euclid(A,B) // requires $A \ge B \ge 0$ If B=0 then return A else return Euclid(B, A mod B)

A small example

Euclid(A,B) // requires $A \ge B \ge 0$ If B=0 then return A else return Euclid(B, A mod B)

Note: GCD(67, 29) = 1

Euclid(67,29) 67 mod 29 = 9
Euclid(29,9) 29 mod 9 = 2
Euclid(9,2) 9 mod 2 = 1
Euclid(2,1) 2 mod 1 = 0
Euclid(1,0) outputs 1

But is it correct?

Euclid(A,B) // requires $A \ge B \ge 0$ If B=0 then return A else return Euclid(B, A mod B)

Claim: $GCD(A,B) = GCD(B, A \mod B)$

d|A and $d|B \Leftrightarrow d|(A - kB)$ The set of common divisors of A, B equals the set of common divisors of B, A-kB.

Does the algorithm stop?

Euclid(A,B) // requires $A \ge B \ge 0$ If B=0 then return A else return Euclid(B, A mod B)

Claim: A mod B $< \frac{1}{2}$ A Proof:

If B > $\frac{1}{2}$ A then A mod B = A - B < $\frac{1}{2}$ A If B < $\frac{1}{2}$ A then any X Mod B < B < $\frac{1}{2}$ A If B = $\frac{1}{2}$ A then A mod B = 0

Does the algorithm stop?

Euclid(A,B) // requires $A \ge B \ge 0$ If B=0 then return A else return Euclid(B, A mod B)

GCD(A,B) calls GCD(B, A mod B)

Less than $\frac{1}{2}$ of A

Euclid's GCD Termination

Euclid(A,B) // requires $A \ge B \ge 0$ If B=0 then return A else return Euclid(B, A mod B)

GCD(A,B) calls $GCD(B, < \frac{1}{2}A)$

Euclid's GCD Termination

Euclid(A,B) // requires $A \ge B \ge 0$ If B=0 then return A else return Euclid(B, A mod B)

GCD(A,B) calls $GCD(B, < \frac{1}{2}A)$

which calls $GCD(\langle \frac{1}{2}A, B \mod \langle \frac{1}{2}A \rangle)$

Less than ½ of A

Euclid's GCD Termination

Euclid(A,B) // requires $A \ge B \ge 0$ If B=0 then return A else return Euclid(B, A mod B)

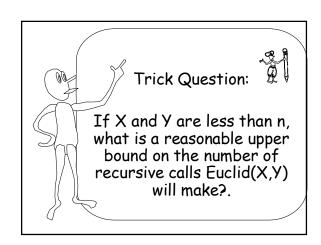
Every two recursive calls, the input numbers drop by half.

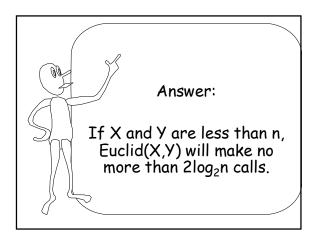
Euclid's GCD Termination

Euclid(A,B) // requires $A \ge B \ge 0$ If B=0 then return A else return Euclid(B, A mod B)

Theorem:

If two input numbers have an n bit binary representation, Euclid Algorithm will not take more than 2n calls to terminate.





EUCLID(A,B) // requires $A \ge B \ge 0$ If B=0 then Return A else Return Euclid(B, A mod B)

Euclid(67,29) 67 - 2*29 = 67 mod 29 = 9 Euclid(29,9) 29 - 3*9 = 29 mod 9 = 2 Euclid(9,2) 9 - 4*2 = 9 mod 2 = 1 Euclid(2,1) 2 - 2*1 = 2 mod 1 = 0 Euclid(1,0) outputs 1

Let <r,s> denote the number r*67 + s*29 . Calculate all intermediate values in this representation.

67=<1,0> 29=<0,1>

Euclid(67,29) 9=<1,0> - 2*<0,1> 9=<1,-2> Euclid(29,9) 2=<0,1> - 3*<1,-2> 2=<-3,7> Euclid(9,2) 1=<1,-2> - 4*<-3,7> 1=<13,-30> Euclid(2,1) 0=<-3,7> - 2*<13,-30> 0=<-29,67>

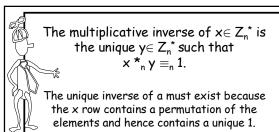
Euclid(1,0) outputs 1 = 13*67 - 30*29

Euclid's Extended GCD algorithm

Input: X,Y Output: r,s,d such that rX+sY = d = GCD(X,Y)

Euclid(67,29) 9=67 - 2*29 9=<1,-2>
Euclid(29,9) 2=29 - 3*9 2=<-3,7>
Euclid(9,2) 1=9 - 4*2 1=<13,-30>
Euclid(2,1) 0=2 - 2*1 0=<-29,67>

Euclid(1,0) outputs 1 = 13*67 - 30*29



*	1	У	3	4
1	1	2	3	4
2	2	4	1	3
×	3	1	4	2
4	4	3	2	1

The multiplicative inverse of $x \in Z_n^*$ is the unique $y \in Z_n^*$ such that $x *_n y \equiv_n 1$.

TO QUICKLY COMPUTE Y FROM X:

Run Extended_Euclid(x,n).
It returns a,b, and d such that ax+bn = dBut d = GCD(x,n) = 1, so ax + bn = 1Hence MODULO n: $ax = 1 \pmod{n}$ Thus, a is the multiplicative inverse of x.

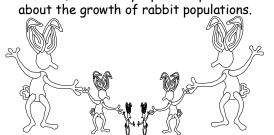
Pick 2 distinct. random 1000 bit primes, p and q.

Multiply them to get: n Multiply (p-1) and (q-1) to compute $\phi(n)$ Randomly pick an e s.t. GCD(e,n) = 1. Publish n and e Compute the multiplicative inverse of e mod $\phi(n)$ to get a secret number d.

 $(M^e)^d = m^{ed} = m^1 \pmod{n}$

Leonardo Fibonacci

In 1202, Fibonacci proposed a problem



Inductive Definition or Recurrence Relation for the Fibonacci Numbers

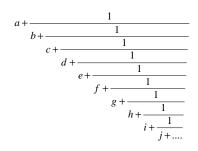
Stage O, Initial Condition, or Base Case: Fib(0) = 0; Fib (1) = 1

Inductive Rule

For n>1, Fib(n) = Fib(n-1) + Fib(n-2)

n	0	1	2	3	4	5	6	7
Fib(n)	0	1	1	2	3	5	8	13

A (Simple) Continued Fraction Is Any Expression Of The Form:



where a, b, c, ... are whole numbers.

A Continued Fraction can have a finite or infinite number of terms.

$$a + \cfrac{1}{b + \cfrac{1}{c + \cfrac{1}{d + \cfrac{1}{e + \cfrac{1}{f + \cfrac{1}{b + \cfrac{1}{i + \cfrac{1}{i$$

We also denote this fraction by [a,b,c,d,e,f,...]

A Finite Continued Fraction

$$2 + \frac{1}{3 + \frac{1}{4 + \frac{1}{2}}}$$

Denoted by [2,3,4,2,0,0,0,...]

An Infinite Continued Fraction

$$1 + \frac{1}{2 + \dots}}}}}}}}$$
Denoted by [1,2,2,2,...]

Recursively Defined Form For CF

$$CF$$
 = whole number, or
= whole number + $\frac{1}{CF}$

Ancient Greek Representation: Continued Fraction Representation

$$\frac{5}{3} = 1 + \frac{1}{1 + \frac{1}{2}}$$

Ancient Greek Representation: Continued Fraction Representation

$$\frac{5}{3} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}$$

= [1,1,1,1,0,0,0,...]

Ancient Greek Representation: Continued Fraction Representation

$$? = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}$$

Ancient Greek Representation: Continued Fraction Representation

$$\frac{8}{5} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}$$

$$= [1,1,1,1,0,0,0,...]$$

Ancient Greek Representation: Continued Fraction Representation

$$\frac{13}{8} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}}$$

$$= [1,1,1,1,1,0,0,0,...]$$

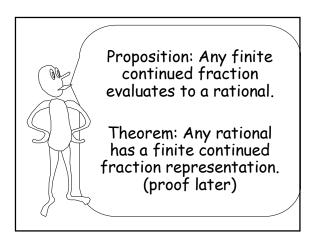
A Pattern?

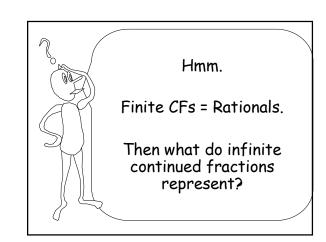
Let
$$r_1 = [1,0,0,0,...] = 1$$

 $r_2 = [1,1,0,0,0,...] = 2/1$
 $r_3 = [1,1,1,0,0,0...] = 3/2$
 $r_4 = [1,1,1,1,0,0,0...] = 5/3$
and so on.

Theorem:

 $r_n = Fib(n+1)/Fib(n)$





An infinite continued fraction

$$\sqrt{2} = 1 + \frac{1}{2 + \dots}}}}}}}}$$

Quadratic Equations

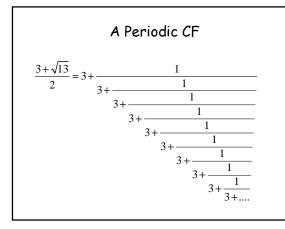
$$X^2 - 3x - 1 = 0$$

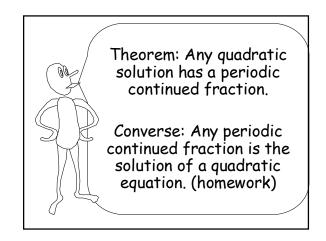
$$X = \frac{3 + \sqrt{13}}{2}$$

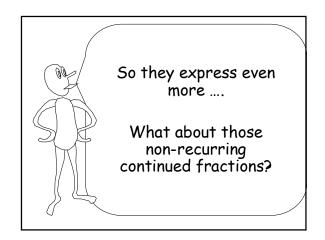
$$X^2 = 3X + 1$$

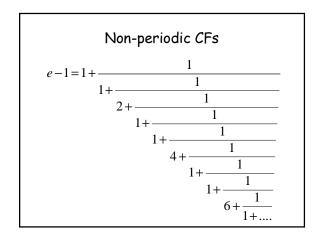
 $X = 3 + 1/X$

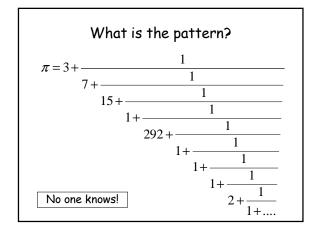
X = 3 + 1/X = 3 + 1/[3 + 1/X] = ...

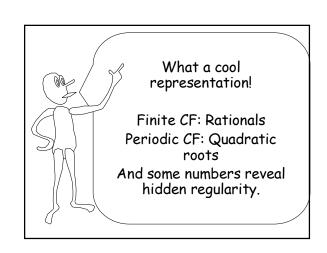


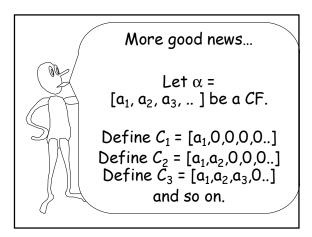












Convergents

Let $\alpha = [a_1, a_2, a_3, ...]$ be a CF.

Define: $C_1 = [a_1,0,0,0,0,...]$ $C_2 = [a_1,a_2,0,0,0,....]$

 $C_3 = [a_1, a_2, a_3, 0, 0,...]$ and so on.

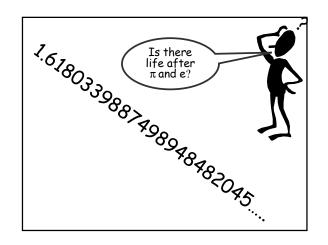
 \textit{C}_{k} is called the k-th convergent of α

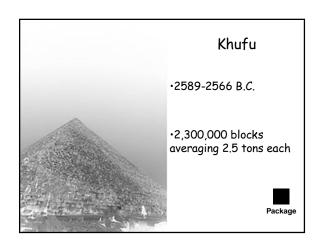
 α is the limit of the sequence C_1 , C_2 , C_3 ,...

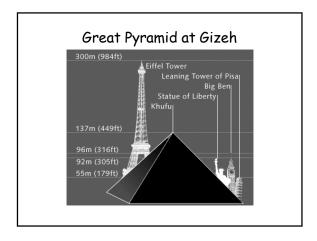
Best Approximator Theorem

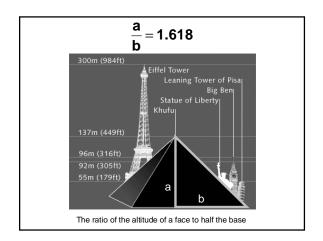
A rational p/q is the <u>best approximator</u> to a real α if no rational number of denominator smaller than q comes closer to α .

BEST APPROXIMATOR THEOREM: Given any CF representation of α , each convergent of the CF is a best approximator for α !





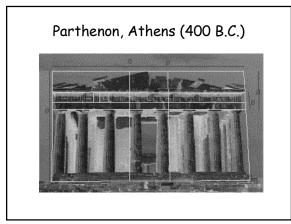


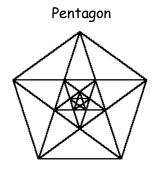


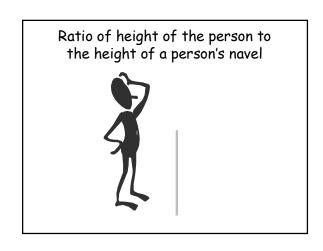
Golden Ratio: the divine proportion

φ = 1.6180339887498948482045...

"Phi" is named after the Greek sculptor <u>Phi</u>dias







Definition of ϕ (Euclid)

Ratio obtained when you divide a line segment into two unequal parts such that the ratio of the whole to the larger part is the same as the ratio of the larger to the smaller.

$$\phi = \frac{AC}{AB} = \frac{AB}{BC}$$
$$\phi^2 = \frac{AC}{BC}$$

$$\phi^2 - \phi = \frac{AC}{BC} - \frac{AB}{BC} = \frac{BC}{BC} = 1$$

$$\phi^2 - \phi - 1 = 0$$

Definition of ϕ (Euclid)

Ratio obtained when you divide a line segment into two unequal parts such that the ratio of the whole to the larger part is the same as the ratio of the larger to the smaller.

$$\phi^2 - \phi - 1 = 0$$
$$\phi = \frac{\sqrt{5} + 1}{2}$$

The Divine Quadratic

$$\varphi^2 - \varphi - 1 = 0$$

$$\phi = \frac{\sqrt{5} + 1}{2}$$

$$\phi = 1 + 1/\phi$$

Expanding Recursively

$$\phi = 1 + \frac{1}{\phi}$$

Expanding Recursively

$$\phi = 1 + \frac{1}{\phi}$$

$$= 1 + \frac{1}{1 + \frac{1}{\phi}}$$

Expanding Recursively

$$\phi = 1 + \frac{1}{\phi}$$

$$= 1 + \frac{1}{1 + \frac{1}{\phi}}$$

$$= 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{\phi}}}$$

Continued Fraction Representation

$$\phi = 1 + \cfrac{1}{1 + \dots}}}}}}}}$$

Continued Fraction Representation

$$\frac{1+\sqrt{5}}{2} = 1 + \frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\dots}}}}}}}}$$

Remember?

We already saw the convergents of this CF [1,1,1,1,1,1,1,1,1,1,1,1,1]

are of the form

Fib(n+1)/Fib(n)

Hence: $\lim_{n\to\infty} \frac{F_n}{F_{n-1}} = \phi = \frac{1+\sqrt{5}}{2}$

1,1,2,3,5,8,13,21,34,55,....

2/1 = 2 3/2 = 1.5

5/3 = 1.666...

8/5 = 1.6

13/8 = 1.625

21/13 = 1.6153846... 34/21 = 1.61904...

φ = 1.6180339887498948482045

Continued fraction representation of a standard fraction

$$\frac{67}{29} = 2 + \frac{1}{3 + \frac{1}{4 + \frac{1}{2}}}$$

$$\frac{67}{29} = 2 + \frac{1}{\frac{29}{9}} = 2 + \frac{1}{3 + \frac{2}{9}} = + \frac{1}{3 + \frac{1}{4 + \frac{1}{2}}}$$

A Representational Correspondence

$$\frac{67}{29} = 2 + \frac{1}{\frac{29}{9}} = 2 + \frac{1}{3 + \frac{2}{9}} + 2 + \frac{1}{3 + \frac{1}{4 + \frac{1}{2}}}$$

Euclid(67,29) 67 div 29 = 2Euclid(29,9) 29 div 9 = 3

Euclid(9,2) 9 div 2 = 4 Euclid(2,1) 2 div 1 = 2

Euclid(1,0)

Euclid(A,B) = Euclid(B, A mod B)

Stop when B=0

Theorem: All fractions have finite continuous fraction expansions

$$\frac{A}{B} = \left\lfloor \frac{A}{B} \right\rfloor + \frac{1}{\frac{B}{A \bmod B}}$$

Euclid(A,B) = Euclid(B, A mod B) Stop when B=0 Fibonacci Magic Trick

Euclid's GCD = Continued Fractions

 $\frac{A}{B} = \left\lfloor \frac{A}{B} \right\rfloor + \frac{1}{B}$

Another Trick!

REFERENCES

Continued Fractions, C. D. Olds

The Art Of Computer Programming, Vol 2, by Donald Knuth