

The Binomial Formula
$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^k$$

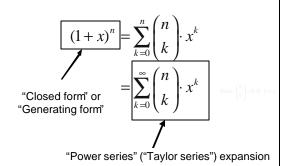
One polynomial, two representations

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^k$$

"Product form" or "Generating form"

"Additive form" or "Expanded form"

Power Series Representation



By playing these two representations against each other we obtain a new representation of a previous insight:

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^k$$

Let x=1.

$$2^n = \sum_{k=0}^n \binom{n}{k}$$

The number of subsets of an *n*-element set

By varying x, we can discover new identities

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^k$$

Let x = -1.

$$0 = \sum_{k=0}^{n} \binom{n}{k} \cdot (-1)^k$$

Equivalently,

$$\sum_{k \text{ even}}^{n} \binom{n}{k} = \sum_{k \text{ odd}}^{n} \binom{n}{k} = 2^{n-1}$$

The number of even-sized subsets of an n element set is the same as the number of odd-sized subsets.

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^k$$

Let x = -1.

$$0 = \sum_{k=0}^{n} \binom{n}{k} \cdot (-1)^k$$

Equivalently,

$$\sum_{k \text{ even}}^{n} \binom{n}{k} = \sum_{k \text{ odd}}^{n} \binom{n}{k} = 2^{n-1}$$

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^k$$

We could discover new identities by substituting in different numbers for X. One cool idea is to try complex roots of unity, however, the lecture is going in another direction.

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^k$$

Proofs that work by manipulating algebraic forms are called "algebraic" arguments. Proofs that build a 1-1 onto correspondence are called "combinatorial" arguments.

$$\sum_{k \text{ even}}^{n} \binom{n}{k} = \sum_{k \text{ odd}}^{n} \binom{n}{k} = 2^{n-1}$$

Let O_n be the set of binary strings of length n with an odd number of ones.

Let E_n be the set of binary strings of length n with an even number of ones.

We gave an algebraic proof that

 $|O_n| = |E_n|$

A Combinatorial Proof

Let O_n be the set of binary strings of length n with an odd number of ones.

Let E_n be the set of binary strings of length n with an even number of ones.

A <u>combinatorial</u> proof must construct a one-toone correspondence between O_n and E_n

An attempt at a correspondence

Let f_n be the function that takes an n-bit string and flips all its bits.

 f_n is clearly a one-to-one and onto function

for odd n. E.g. in f_7 we have

0010011 → 1101100

1001101 → 0110010

...but do even n work? In f₆ we have

110011 → 001100

101010 → 010101

Uh oh. Complementing maps evens to evens!

A correspondence that works for all n

Let f_n be the function that takes an n-bit string and flips only the first bit. For example,

 $0010011 \rightarrow 1010011$ $1001101 \rightarrow 0001101$

 $110011 \rightarrow 010011$ $101010 \rightarrow 001010$

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^k$$

The binomial coefficients have so many representations that many fundamental mathematical identities emerge...

The Binomial Formula

$$(1+X)^{0} = 1$$

$$(1+X)^{1} = 1 + 1X$$

$$(1+X)^{2} = 1 + 2X + 1X^{2}$$

$$(1+X)^{3} = 1 + 3X + 3X^{2} + 1X^{3}$$

$$(1+X)^{4} = 1 + 4X + 6X^{2} + 4X^{3} + 1X^{4}$$

Pascal's Triangle:
$$k^{th}$$
 row are the coefficients of $(1+X)^k$

$$(1+X)^{0} = 1$$

$$(1+X)^{1} = 1 + 1X$$

$$(1+X)^{2} = 1 + 2X + 1X^{2}$$

$$(1+X)^{3} = 1 + 3X + 3X^{2} + 1X^{3}$$

$$(1+X)^{4} = 1 + 4X + 6X^{2} + 4X^{3} + 1X^{4}$$

kth Row Of Pascal's Triangle:

$$(1+X)^{0} = 1$$

$$(1+X)^{1} = 1 + 1X$$

$$(1+X)^{2} = 1 + 2X + 1X^{2}$$

$$(1+X)^{3} = 1 + 3X + 3X^{2} + 1X^{3}$$

$$(1+X)^{4} = 1 + 4X + 6X^{2} + 4X^{3} + 1X^{4}$$

Inductive definition of kth entry of nth row: Pascal(n,0) = Pacal(n,n) = 1;

$$Pascal(n,k) = Pascal(n-1,k-1) + Pascal(n,k)$$

$$(1+X)^0 = 1$$

$$(1+X)^1 = 1 + 1X$$

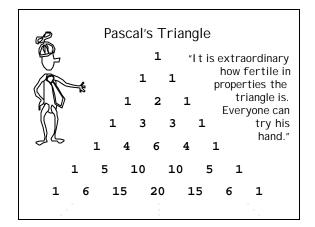
$$(1+X)^2 = 1 + 2X + 1X^2$$

$$(1+X)^3 = 1 + 3X + 3X^2 + 1X^3$$

$$(1+X)^4 = 1 + 4X + 6X^2 + 4X^3 + 1X^4$$

"Pascal's Triangle"

In the Precious Mirror of the Four Elements



Summing The Rows

$$2^{n} = \sum_{k=0}^{n} \binom{n}{k}$$

$$1 + 1$$

$$2 + 1$$

$$1 + 2 + 1$$

$$1 + 3 + 3 + 1$$

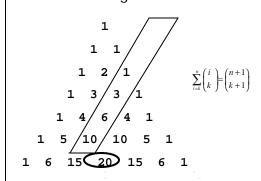
$$1 + 4 + 6 + 4 + 1$$

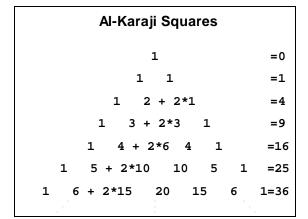
$$1 + 5 + 10 + 10 + 5 + 1$$

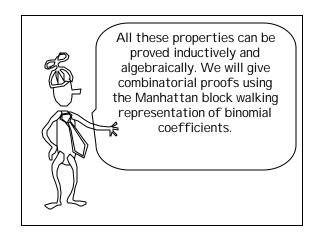
$$1 + 6 + 15 + 20 + 15 + 6 + 1 = 64$$

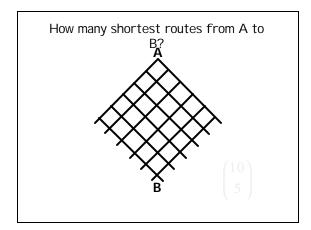
Summing on 1st Avenue

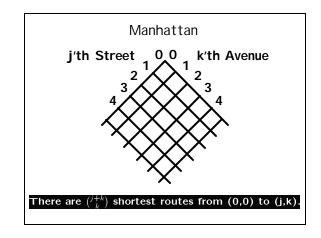
Summing on kth Avenue

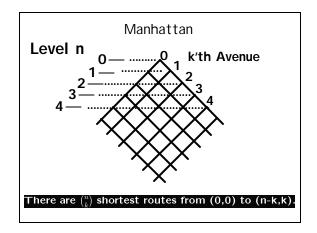


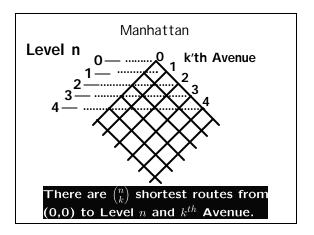


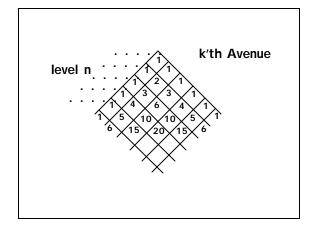


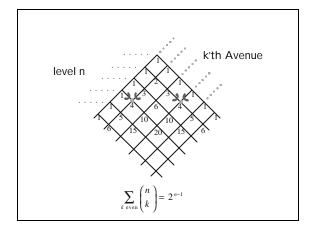


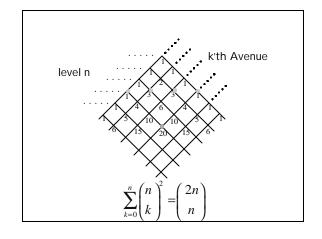








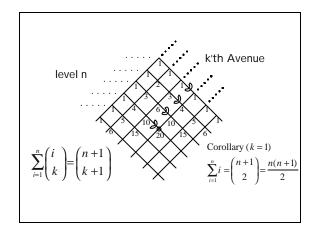




By convention:
$$0! = 1 \qquad \text{(empty product = 1)}$$

$$\binom{n}{k} = 1 \quad \text{if } k = 0$$

$$\binom{n}{k} = 0 \quad \text{if } k < 0 \text{ or } k > n$$



Application (Al-Karaji):

$$\sum_{i=0}^{n} i^{2} = 1^{2} + 2^{2} + 3^{2} + \dots + n^{2}$$

$$= (1 \cdot 0 + 1) + (2 \cdot 1 + 2) + (3 \cdot 2 + 3) + \dots + (n(n-1) + n)$$

$$= 1 \cdot 0 + 2 \cdot 1 + 3 \cdot 2 + \dots + n(n-1) + \sum_{i=1}^{n} i$$

$$= 2 \left[\binom{2}{2} + \binom{3}{2} + \binom{4}{2} + \binom{5}{2} + \dots + \binom{n}{2} \right] + \binom{n+1}{2}$$

$$= 2 \binom{n+1}{3} + \binom{n+1}{2} = \frac{(2n+1)(n+1)n}{6}$$

Vector Programs

Let's define a (parallel) programming language called VECTOR that operates on possibly infinite vectors of numbers. Each variable V can be thought of as:

Vector Programs

Let k stand for a scalar constant <k> will stand for the vector <k,0,0,0,0,...>

$$<0> = <0,0,0,0,0,...>$$

 $<1> = <1,0,0,0,...>$

 $V^{!}$ $^{+}T^{!}$ means to add the vectors position-wise.

$$<4,2,3,...>+<5,1,1,....>=<9,3,4,...>$$

Vector Programs

 $RIGHT(V^{I})$ means to shift every number in V^{I} one position to the right and to place a O in position O.

RIGHT(
$$<1,2,3,...>$$
) = $<0,1,2,3,...>$

Vector Programs

Example: Stare

$$\begin{array}{lll} V^! &:= <6>; & V^! &= <6,0,0,0,...> \\ V^! &:= RI\,GHT(V^!\,) + <42>; & V^! &= <42,6,0,0,...> \\ V^! &:= RI\,GHT(V^!\,) + <2>; & V^! &= <2,42,6,0,...> \\ V^! &:= RI\,GHT(V^!\,) + <13>; & V^! &= <13,2,42,6,...> \end{array}$$

$$V^{!} = \langle 13, 2, 42, 6, 0, 0, 0, ... \rangle$$

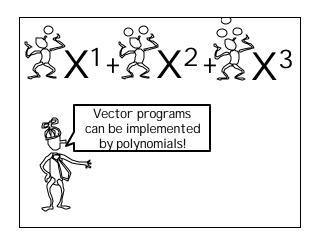
Vector Programs

Example: Stare

$$V^{!} := <1>; V^{!} = <1,0,0,0,...>$$

Loop n times:
$$V^! = <1,1,0,0,...>$$
 $V^! := V^! + RIGHT(V^!); V^! = <1,2,1,0,...>$ $V^! = <1,3,3,1,..>$

 $V^! = n^{th}$ row of Pascal's triangle.



Programs ----> Polynomials

The vector $V^{I} = \langle a_0, a_1, a_2, \ldots \rangle$ will be represented by the polynomial:

$$P_V = \sum_{i=0}^{i=\infty} a_i X^i$$

Formal Power Series

The vector $V^{\bullet} = \langle a_{0}, a_{1}, a_{2}, ... \rangle$ will be represented by the formal power series:

$$P_V = \sum_{i=0}^{i=\infty} a_i X^i$$

 $V^! = \langle a_0, a_1, a_2, \ldots \rangle$

$$P_V = \sum_{i=0}^{i=\infty} a_i X^i$$

 $V^{!} + T^{!}$ is represented by $(P_{V} + P_{T})$

RIGHT($V^!$) is represented by $(P_v X)$

Vector Programs

Example:

$$V^! := <1>; P_v := 1;$$

Loop n times:

$$V^! := V^! + RIGHT(V^!);$$
 $P_V := P_V + P_V X;$

 $V^! = n^{th}$ row of Pascal's triangle.

Vector Programs

Example:

$$V^! := <1>; P_v := 1;$$

Loop n times:

$$V^{!} := V^{!} + RIGHT(V^{!});$$
 $P_{V} := P_{V}(1+X);$

 $V^! = n^{th}$ row of Pascal's triangle.

Vector Programs

Example:

$$V^! := <1>;$$
Loop n times:
$$V^! := V^! + RIGHT(V^!);$$

 $V^! = n^{th}$ row of Pascal's triangle.