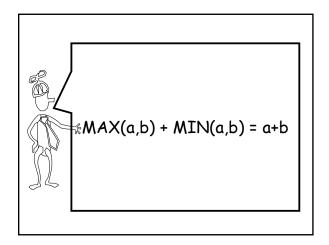
Great Theoretical Ideas In Computer Science						
Steven Rudich		CS 15-251	Spring 2005			
Lecture 8	Feb 3, 2005	Carnegie Me	llon University			
	Modular Arithm the RSA Crypto					
	=p-1 =p	1				



n|m means that m is a an integer multiple of n.

We say that "n divides m".

True: 5|25 2|-66 7|35, False: 4|5 8|2

Greatest Common Divisor:

 $GCD(x,y) = greatest k \ge 1$ s.t. k|x and k|y.

GCD: Greatest Common Divisor

What is the GCD of 12 and 18? $12 = 2^2 * 3$ $16 = 2*3^2$

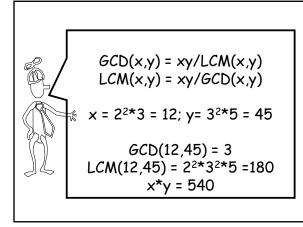
Common factors: 21 and 31

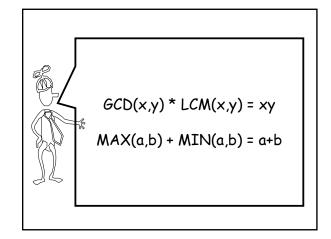
Answer: 6

Least Common Multiple:

 $LCM(x,y) = smallest k \ge 1 s.t.$ $x \mid k \text{ and } y \mid k..$

Prop: GCD(x,y) = xy/LCM(x,y) LCM(x,y) = xy/GCD(x,y)





(a mod n) means the remainder when a is divided by n.

If ad +
$$r = n$$
, $0 \le r < n$
Then $r = (a \mod n)$
and $d = (a \operatorname{div} n)$

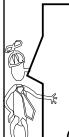
Modular equivalence of integers a and b:

$$a \equiv b \text{ [mod n]}$$
 $a \equiv_n b$

"a and b are equivalent modulo n"

iff
$$(a \mod n) = (b \mod n)$$

iff $n|(a-b)$



31 equals 81 modulo 2

$$31 \equiv 81 \pmod{2}$$

$$31 \equiv_{2} 81$$

 $(31 \mod 2) = 1 = (81 \mod 2)$

 \equiv_n is an equivalence relation

In other words,

Reflexive:

$$a \equiv_n a$$

Symmetric:
$$(a \equiv_n b) \Rightarrow (b \equiv_n a)$$

Transitive:
$$(a \equiv_n b \text{ and } b \equiv_n c) \Rightarrow (a \equiv_n c)$$

 $a \equiv_n b \leftrightarrow n | (a-b)$

_a and b are equivalent modulo n"

 \equiv_n induces a natural partition of the integers into n classes:

a and b are said to be in the same "residue class" or "congruence class" exactly when a $\equiv_{\rm n}$ b.

 $a \equiv_{n} b \leftrightarrow n | (a-b)$

"a and b are equivalent modulo n"

Define the residue class [i] to be the set of all integers that are congruent to i modulo n.

Residue Classes Mod 3:

Equivalence mod n implies equivalence mod any divisor of n.

If
$$(x \equiv_n y)$$
 and $(k|n)$
Then: $x \equiv_k y$

Example: $10 \equiv_6 16 \Rightarrow 10 \equiv_3 16$

If
$$(x \equiv_n y)$$
 and $(k|n)$
Then: $x \equiv_k y$

Proof:

Recall, $x \equiv_n y \Leftrightarrow n | (x-y)$

k|n and n|(x-y) Hence, k|(x-y)

Of course, $k|(x-y) \Rightarrow x \equiv_k y$

Fundamental lemma of plus, minus, and times modulo n:

If
$$(x \equiv_n y)$$
 and $(a \equiv_n b)$
Then: 1) $x+a \equiv_n y+b$
2) $x-a \equiv_n y-b$
3) $xa \equiv_n yb$

Equivalently,

If n|(x-y) and n|(a-b) Then:

- 1) n(x-y + a-b)
- 2) n | (x-y [a-b])
- 3) n|(xa-yb)

Proof of 3:

xa-yb = a(x-y) - y(b-a)

n|a(x-y) and n|y(b-a)

Fundamental lemma of plus minus, and times modulo n:

When doing plus, minus, and time modulo n, I can at any time in the calculation replace a number with a number in the same residue class modulo n

Please calculate in your head:

329 * 666 mod 331

-2 * 4 = -8 = 323

A Unique Representation System Modulo n:

We pick exactly one representative from each residue class. We do all our calculations using the representatives.

Unique representation system modulo 3

Finite set $S = \{0, 1, 2\}$

+ and * defined on 5:

ı	+	0	1	2
ı	0	0	1	2
ı	1	1	2	0
ı	2	2	0	1

*	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

Unique representation system modulo 3

Finite set $S = \{0, 1, -1\}$

+ and * defined on 5:

+	0	1	-1
0	0	1	-1
1	1	-1	0
-1	-1	0	1

*	0	1	-1
0	0	0	0
1	0	1	-1
-1	0	-1	1

The reduced system modulo n:

$$Z_n = \{0, 1, 2, ..., n-1\}$$

Define
$$+_n$$
 and $*_n$:
a $+_n$ b = (a+b mod n)

$$a *_n b = (a*b mod n)$$

$$Z_n = \{0, 1, 2, ..., n-1\}$$

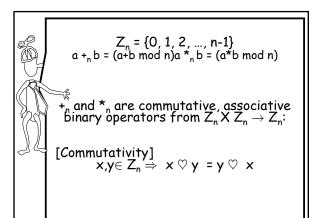
 $a +_n b = (a+b \mod n)a *_n b = (a*b \mod n)$

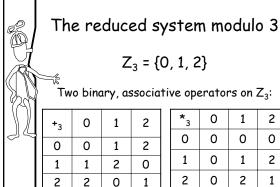
+_n and *_n are associative binary operators from $Z_n \, X \, Z_n \to Z_n$:

When
$$\heartsuit = +_n \text{ or } *_n :$$

[Closure]
$$x,y \in Z_n \Rightarrow x \heartsuit y \in Z_n$$

$$\begin{array}{c} \textbf{[Associativity]} \\ \textbf{x,y,z} \in Z_n \Rightarrow \textbf{(} \textbf{x} \heartsuit \textbf{y} \textbf{)} \heartsuit \textbf{z} = \textbf{x} \heartsuit \textbf{(} \textbf{y} \heartsuit \textbf{z} \textbf{)} \end{array}$$

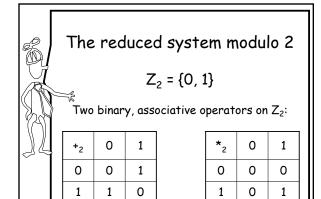


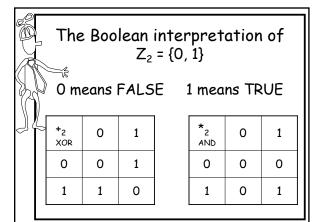


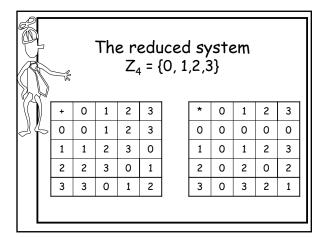
0

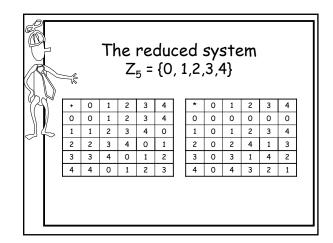
2

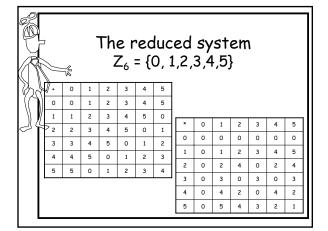
1

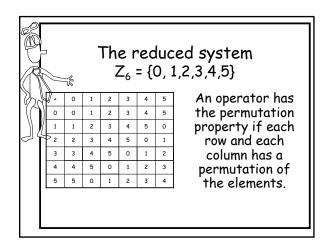


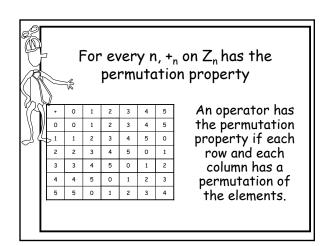


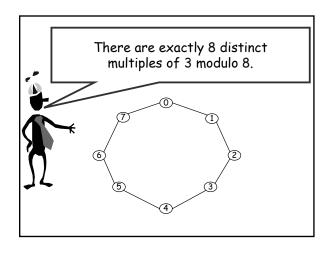


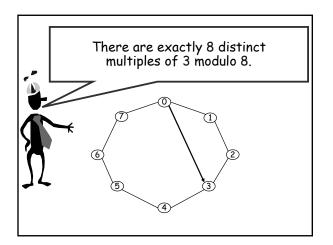


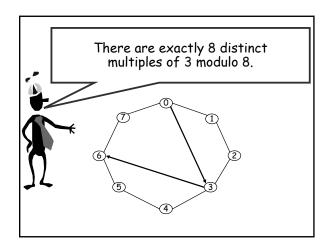


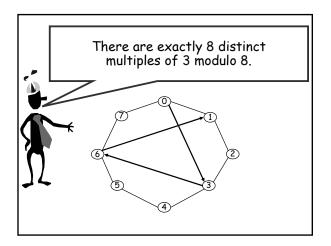


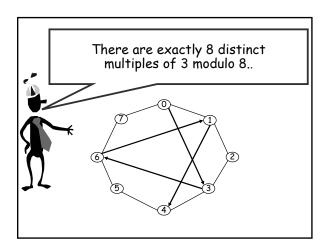


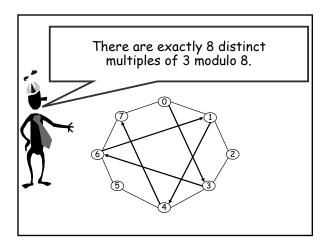


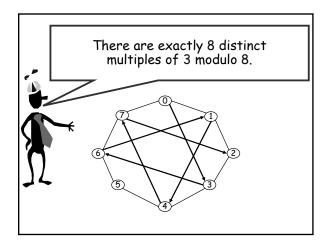


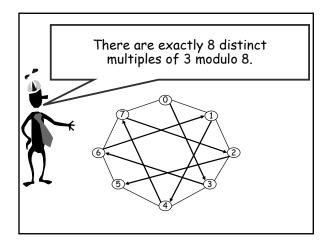


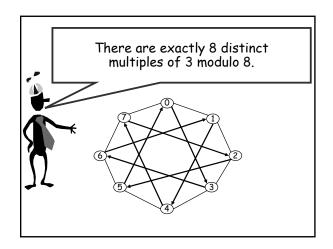


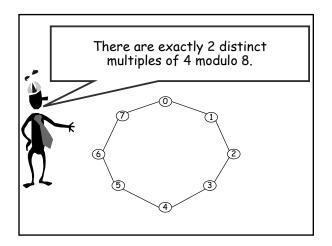


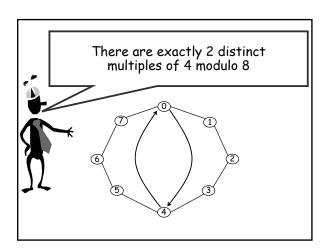


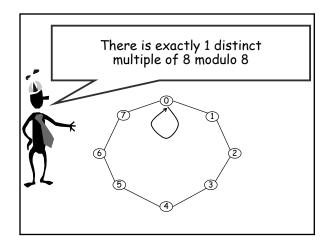


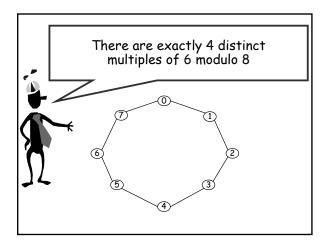


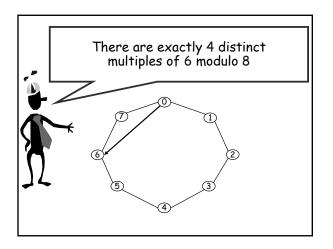


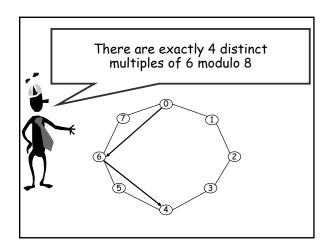


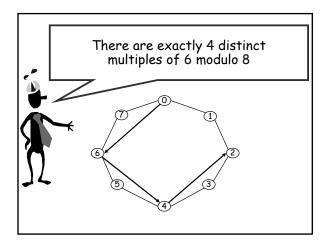


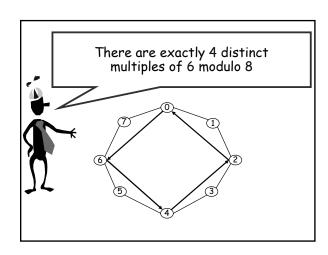


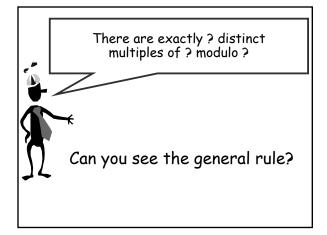


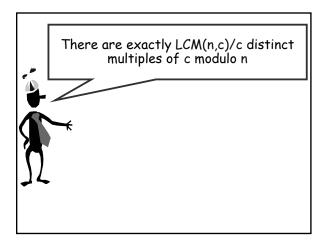










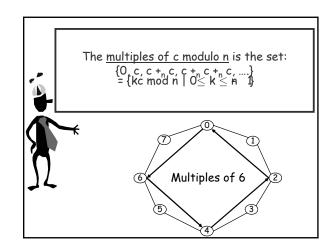


146

There are exactly LCM(n,c)/c distinct multiples of c modulo n

There are exactly n/(nc/LCM(n,c)) distinct multiples of c modulo n

There are exactly n/GCD(c,n) distinct multiples of c modulo n



Theorem: There are exactly k=n/GCD(c.n)=LCM(c,n)/c distinct multiples of c modulo n: $\{\ c^*i \ mod\ n \ |\ 0\leq i < k\ \}$

$$\label{eq:continuous} \begin{split} &\tilde{\textit{Clearly}}, \textit{c/GCD}(\textit{c,n}) \geq 1 \text{ is a whole number} \\ &\textit{ck} = n \left[\textit{c/GCD}(\textit{c,n}) \right] \equiv_n 0 \\ &\textit{There are} \leq k \; \textit{distinct multiples of c mod n:} \\ &\textit{c*0, c*1, c*2, ..., c*(k \ 1)} \\ &\textit{k is all the factors of n missing from c} \\ &\textit{cx} \equiv_n \textit{cy} \leftrightarrow n | \textit{c(x \ y)} \Rightarrow k | (\textit{x y}) \Rightarrow \textit{x} \quad \textit{y} \geq k \\ &\textit{There are} > k \; \textit{multiples of c} \end{split}$$

Is there a fundamental lemma of division modulo n?

$$cx \equiv_n cy \Rightarrow x \equiv_n y$$
?

Is there a fundamental lemma of division modulo n?

$$\vec{s}$$
 $cx \equiv_n cy \Rightarrow x \equiv_n y ? NO!$

If c=0 [mod n], $cx \equiv_n cy$ for any x and y. Canceling the c is like dividing by zero.

Repaired fundamental lemma of division modulo n?

$$C \neq 0 \pmod{n}$$
, $cx \equiv_n cy \Rightarrow x \equiv_n y$?

$$2*2 \equiv_6 2*5$$
, but not $2 \equiv_6 5$.
6*3 $\equiv_{10} 6*8$, but not $3 \equiv_{10} 8$.

When can I divide by c?

Theorem: There are exactly n/GCD(c.n) distinct multiples of c modulo n.

Corollary: If GCD(c,n) > 1, then the number of multiples of c is less than n.

Torollary: If GCD(c,n)>1 then you can't always divide by c.

Proof: There must exist distinct x,y<n such that c*x=c*y (but x≠y)

Fundamental lemma of division modulo n.

$$\textit{GCD}(c,n)\text{=}1\text{, }ca\equiv_{n}cb\Rightarrow a\equiv_{n}b$$

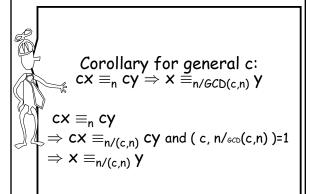
$$ab = ac \mod n$$

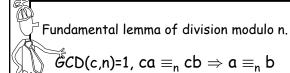
$$n \mid (ab - ac)$$

$$n \mid a(b-c)$$

$$n \mid b - c$$
 since $(a, n) = 1$

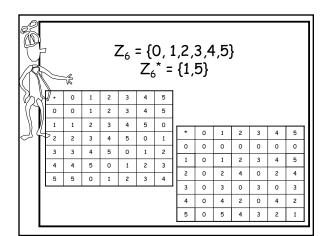
$$b = c \mod n$$

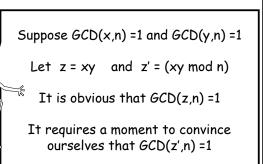




$$Z_{n}^{*} = \{x \in Z_{n} \mid GCD(x,n) = 1\}$$

Multiplication over Z_n^* will have the cancellation property.

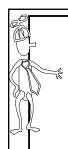




$${Z_n}^{\star} \text{ = } \{x \in Z_n \mid \textit{GCD}(x,n) \text{ = 1}\}$$

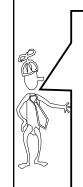
 $\overset{\boldsymbol{\star}_n}{}$ is an associative, binary operator. In particular, $Z_n^{\;\boldsymbol{\star}}$ is closed under $\overset{\boldsymbol{\star}_n}{}$: $x,y\in Z_n^{\;\boldsymbol{\star}}\Rightarrow x\overset{\boldsymbol{\star}_n}{},y\in Z_n^{\;\boldsymbol{\star}}.$

Proof: Let z = xy. Let z' = z mod n. z = z' + kn. Suppose there exists a prime p>1 p|z' and p|n. z is the sum of two multiples of p, so p|z. p|z \Rightarrow that p|x or p|y. Contradiction of **x**,**y** $\in Z_n^\star$



*	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

				Z ₁₅ *				
*	1	2	4	7	8	11	13	14
1	1	2	4	7	8	11	13	14
2	2	4	8	14	1	7	11	13
4	4	8	1	13	2	14	7	11
7	7	14	13	4	11	2	1	8
8	8	1	2	11	4	13	14	7
11	11	7	14	2	13	1	8	4
13	13	11	7	1	14	8	4	2
14	14	13	11	8	7	4	2	1
14	14	13	11	0		4		1



The column permutation property is equivalent to the right cancellation property:

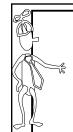
$$[b * a = c * a] \Rightarrow b=c$$

*	1	2	α	4
Ь	1	2	3	4
2	2	4	1	3
С	3	1	4	2
4	4	3	2	1

The row permutation property is equivalent to the left cancellation property:

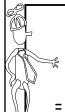
$$[a * b = a *c] \Rightarrow b=c$$

*	Ь	2	С	4
1	1	2	3	4
2	2	4	1	3
а	3	1	4	2
4	4	3	2	1



$$Z_5^* = \{1,2,3,4\}$$

* ₅	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

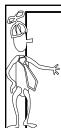


Euler Phi Function

$$\Phi(n)$$
 = size of z_n^*

= number of 1<=k<n that are relatively prime to n.

$$\begin{array}{l} \text{p prime} \Rightarrow Z_{\text{p}}^{\;\;\star}\text{= \{1,2,3,...,p-1\}} \\ \Rightarrow \Phi(\text{p}) \text{= p-1} \end{array}$$



$$Z_{12}^* = \{1,5,7,11\}$$

 $\phi(12) = 4$

* 12	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

 $\phi(pq) = (p-1)(q-1)$ if p,q distinct primes

pq = # of numbers from 1 to pq

p = # of multiples of q up to pq

q = # of multiples of p up to pq

1 = # of multiple of both p and q up to pq

$$\phi(pq) = pq - p - q + 1 = (p-1)(q-1)$$

Let's consider how we do arithmetic in Z_n and in Z_n^*

The additive inverse of $a \in Z_n$ is the unique $b \in Z_n$ such that $a +_n b \equiv_n 0$.

We denote this inverse by "-a".

It is trivial to calculate:
"-a" = (n-a).

The multiplicative inverse of $a \in Z_n^*$ is the unique $b \in Z_n^*$ such that $a *_n b \equiv_n 1$. We denote this inverse by " a^{-1} " or "1/a".

The unique inverse of a must exist because the a row contains a permutation of the elements and hence contains a unique 1.

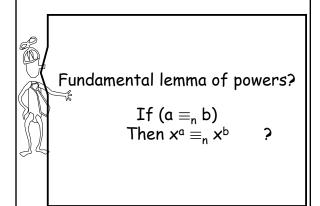
*	1	Ь	3	4
1	1	2	3	4
2	2	4	1	3
а	3	1	4	2
4	4	3	2	1

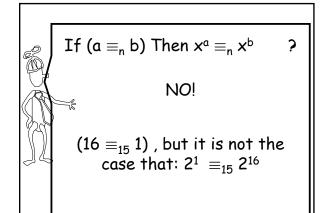


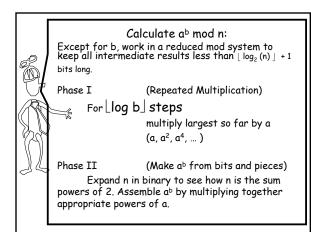
The multiplicative inverse of $a \in Z_n^*$ is the unique $b \in Z_n^*$ such that $a *_n b \equiv_n 1$. We denote this inverse by " a^{-1} " or "1/a".

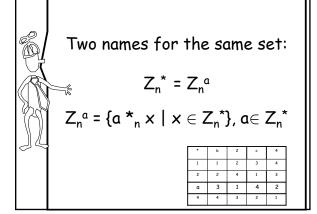
Efficient algorithm to compute a^{-1} from a and n.

Execute the Extended Euclid Algorithm on a and n (previous lecture). It will give two integers r and s such that: ra + sn = (a,n) = 1Taking both sides mod n, we obtain: $rn \equiv_n 1$ Output r, which is the inverse of a









Two products on the same set:

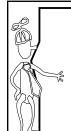
$$Z_n^* = \{a *_n x^* | x \in Z_n^*\}, a \in Z_n^*\}$$

 $\prod x \equiv_n \prod ax [as x ranges over Z_n^*]$

$$\prod x \equiv_n \prod x (a^{size \text{ of } Zn^*})$$
 [Commutativity]

$$1 = a^{\text{size of } Zn^*}$$
 [Cancellation]

$$a^{\Phi(n)} = 1$$



Euler's Theorem

Fermat's Little Theorem

$$p \text{ prime, } a \in Z_p^{\ \star} \Rightarrow a^{p\text{-}1} \equiv_p 1$$

Fundamental lemma of powers.

Suppose $x \in Z_n^*$, and a,b,n are naturals.

If
$$a \equiv_{\Phi(n)} b$$
 Then $x^a \equiv_n x^b$

Equivalently, $\mathbf{X}^{a \mod \Phi(n)} \equiv_{\mathbf{n}} \mathbf{X}^{b \mod \Phi(n)}$

Defining negative powers.

Suppose $x \in Z_n^*$, and a,n are naturals.

★ x-a is defined to be the multiplicative inverse of Xa

$$X^{-a} = (X^a)^{-1}$$

Rule of integer exponents

Suppose $x,y \in Z_n^*$, and a,b are integers.

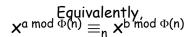
$$(xy)^{-1} \equiv_n x^{-1} y^{-1}$$

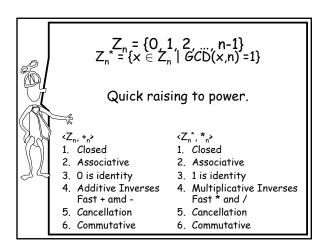
$$X^a X^b \equiv_n X^{a+b}$$

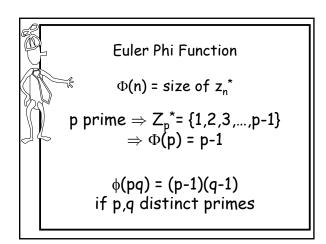
Lemma of integer powers.

Suppose $x \in Z_n^*$, and a,b are integers.

If
$$a \equiv_{\Phi(n)} b$$
 Then $x^a \equiv_n x^b$







The RSA Cryptosystem

Rivest, Shamir, and Adelman (1978)

RSA is one of the most used cryptographic protocols on the net. Your browser uses it to establish a secure session with a site.

