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“MAX(a,b) + MIN(a,b) = a+b

n|m means that m is a an
integer multiple of n.

" We say that "n divides m".

True: 5|25 2|-66 7|35,
False: 4|5 8|2

Greatest Common Divisor:

i
GCD(x,y) = greatest k>1
s.t. k|x and kly.

Answer:

Common factors: 2! and 3!

6

GCD: Greatest Common Divisor

What is the GCD of 12 and 18?

12=22*3 16 = 2*32

Least Common Multiple:

LCM(x,y) = smallest k>1s.t.
i3 x|k and y|K..

Prop:
GCD(x,y) = xy/LCM(x.y)
LCM(x.y) = xy/GCD(x,y)




GCD(x.y) = xy/LCM(x.y)
LCM(x,y) = xy/GCD(x.y)

[ x = 22%3=12; y= 32*5 = 45
6CD(12,45) = 3

LCM(12,45) = 22%32*5 =180
x*y = 540

@Z GCD(x,y) * LCM(x,y) = xy

i
MAX(a,b) + MIN(a,b) = a+b

@@

(a mod n) means the
remainder when a is
divided by n.

Ifad+r=n,0<r<n

Then r = (a mod n)
and d = (a div n)

Modular equivalence
of integers a and b:

a =b [mod n]

=2 a=, b
"a and b are equivalent modulo n”

iff (a mod n)= (b modn)
iff n|(a-b)

31 equals 81 modulo 2
31 =81 [mod 2]

31=,81
(31 mod 2)=1=(81mod 2)

2|(31- 81)

=, is an equivalence relation

In other words,

Reflexive:
a=,a

Symmetric:
(a=,b)= (b=,q)

Transitive:
(a=,bandb=,¢c)= (a=,c)




a =, b + n|(a-b)
a and b are equivalent modulo n”
=, induces a natural partition of
the integers into n classes:

a and b are said to be in the same

“residue class” or congruence class”
exactly when a =

a =, b < n|(a-b)

a and b are equivalent modulo n”
Define the residue class [i] to

be the set of all integers that
are congruent to i modulo n.

[-6]1={..
[7]1=1{.. 1,
(1={ . 4,12

Residue Classes Mod 3:
[0]1=(..,-6,-3,0,3,6,.}
[11={.. -5 -2,1, 4 7, )
[2]1={..,-4,-1,2,5,8,.}

}

Equivalence mod n implies
equivalence mod any divisor of n.

If (x =,Yy)and (k|n)
Then: x =,y

Example: 10 =, 16 = 10 =5 16

If (x =,y)and (k|n)
Then: x =,y
-

Proof:

Recall, x=,y < n|(x-y)

k|n and n|(x-y)

Hence, k|(x-y)

Of course, k|(x-y) = x=,y

-

Fundamental lemma of plus,
minus, and times modulo n:

If (x =,y)and (a =, b)
Then: 1) x+a =, y+b
2) x-a =, y-b
3) xa =, yb




Equivalently,

If n|(x-y) and n|(a-b) Then:
1) n|(x-y + a-b)
=& 2)n | (x-y - [a-b])
3) n|(xa-yb)

Proof of 3:
xa-yb = a(x-y) - y(b-a)

nla(x-y) and n|y(b-a)

==

Fundamental lemma of plus
minus, and times modulo n:

When doing plus, minus, and time

modulo n, T can at any time in the

calculation replace a number with

a number in the same residue
class modulo n

cBh

Please calculate in your head:

329 * 666 mod 331
2 * 4 =-8=323

e

A Unique Representation
System Modulo n:

We pick exactly one
representative from each
residue class. We do all our
calculations using the
representatives.

Unique representation system
modulo 3

Finite set S={0, 1, 2}

+and * defined on S:

+/0|1]2 *10|1]2
0j|0|1)2 0/0|0|0
11120 11012
212|101 21021

Unique representation system
modulo 3

Finite set S={0, 1, -1}

+and * defined on S:

*
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1 -1 (0]
1 -1 0
-1 0 1 0
0 1 0
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z,={0,1,2,.,n1}
a+,b= (arb mod h)a *, b = (a*b mod n)
The reduced system modulo n:
+, and :n ar']% assozcicgi%e bingr‘y
operators from Z, X Z, — Z,:
z.={0,1,2, .., n-1} P
When © =+ or *,:
Define +, and *,;:
a+,b= (a+b mod n) [Closure] x,yc Z,= xVy € Z,
* b= (a* Associativit
a "b (Cl medn) [x,y?zéaz:,g%]x@y)@z:xC?(yC?z)

The reduced system modulo 3

z,={0,1,2, .., n-1}
a +,b = (a+b mod n)a *, b = (a*b mod n)
Z3 = {01 1/ 2}
+ and *, are commutative, associativ
Inary operators Trom — L, wo binary, associative operators on Zs:
Binary operators from Z,X Z, — Z, Two binary iative op z
. * o| 1|2
[Commutativity] 30|12 3
xyeZ,= xQ0y =y Q0 x 0ol o0 1 2 0o(0|o0]|oO
2 2 0 1 2 0] 2 1

T lean i i
The reduced system modulo 2 he Boo eazn2 Tz(e)ml:}r'emﬁon of

Z,={0,1} 0 means FALSE 1 means TRUE

Two binary, associative operators on Z,:

*2 0 1 2 0 1
XOR AND

w01 | o |1

0 0] 1 0] 0 0]

o
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The reduced system
z,={0,12,3}

w|lNn |~ | O

w|[Nn|=]O| O

O|lW [N | = | =
= |O|w| NN

N|—= ] Ol w|w

el NeolNeolNoRNe)
W[ | = | O~
N[O NV O N
=N w Ol w

w|lN |~ | O

The reduced system
Z;={0,12,3,4}

Dlw|nv|=|O|+ ji

0 1]12]13]4 *|10 1]12]13]4
0 12|34 o(o|0|0|O0]|O
1 213|410 110 11234
213|401 2|10 2]4]1 3
31401 2 31013 1142
4101 2|3 4 10| 4|3 |2 1

The reduced system
Z,={0,1,2,3,45)

oclu|sa|lw n|rm|~

~lo|lalalw|nm]|n

3
3
4
5
0
1
2

w| v |=lola|s]|s

slw|mv|m|lo|lo|a

als|lw|[n|w]o]+
ols|lw|n|w|o]|o

[¢] 1 2 3 4 5
[¢] [¢] 0 [¢] [¢] [¢] [¢]
1 [¢] 1 2 3 4 5
2 [¢] 2 4 [¢] 2 4
3 0 3 0 3 0 3
4 [¢] 4 2 [¢] 4 2
5 [¢] 5 4 3 2 1

The reduced system
Z,={0,1,2,3,45)

als|w|n|=]|o
ols|lw|n|~|o]|o

mlo|la|lalw|n]|N

3
3
4
5
o
1
2

oclu|sr|lw | n|rm|~

wlinv|=lola|s]|s

slw| v m|lola|a

An operator has
the permutation
property if each
row and each
column has a
permutation of
the elements.

For every n, +, on Z, has the
permutation property

o|s|lw|n|~]o]+

o|s|lw|n|w|o]|o

o|luo|sr|lw|N]|m]|~

mlo|loalslw|Nn]|n
N |o|la|lbs|w|w

w|m|=lola|s]|s

slw|mv|ew|lo|la|a

An operator has
the permutation
property if each
row and each
column has a
permutation of
the elements.

There are exactly 8 distinct
multiples of 3 modulo 8.




There are exactly 8 distinct
multiples of 3 modulo 8.

There are exactly 8 distinct
multiples of 3 modulo 8.

There are exactly 8 distinct
multiples of 3 modulo 8.

There are exactly 8 distinct
multiples of 3 modulo 8..

There are exactly 8 distinct
multiples of 3 modulo 8.

There are exactly 8 distinct
multiples of 3 modulo 8.




There are exactly 8 distinct
multiples of 3 modulo 8.

There are exactly 8 distinct
multiples of 3 modulo 8.

There are exactly 2 distinct
multiples of 4 modulo 8.

There are exactly 2 distinct
multiples of 4 modulo 8

There is exactly 1 distinct
multiple of 8 modulo 8

There are exactly 4 distinct
multiples of 6 modulo 8




There are exactly 4 distinct
multiples of 6 modulo 8

There are exactly 4 distinct
multiples of 6 modulo 8

‘
.

There are exactly 4 distinct
multiples of 6 modulo 8

There are exactly 4 distinct
multiples of 6 modulo 8

N\
o«

N\
e

There are exactly ? distinct
multiples of ? modulo ?

e

Can you see the general rule?

There are exactly LCM(n,c)/c distinct
multiples of ¢ modulo n

e:‘- 7




There are exactly LCM(n,c)/c distinct
multiples of ¢ modulo n

There are exactly n/(nc/LCM(n,c))
distinct multiples of ¢ modulo n

There are exactly n/GCD(c,n) distinct
multiples of ¢ modulo n

The multiples of ¢ modulo n is the set:

{0,c,c+,c,c ]}
-{kcmodn|0<k<n

=

Theorem: There are exactly
k= n/GCD(c n) = LCM(c,n)/c

dlSTIf‘lCT multiples of ¢ modulo n:
{c*imodn|O<i <

learly, ¢/6CD(c,n) > 1 isa whole number
ck =n[c/6CD(c,n)]=,0
There are < k distinct multiples of ¢ mod n:
c*0,c*1,c*2,..,c*k )
k is all the factors of n missing from c
X =, ¢y < hle(x P=kl(x y)=x yk
There are > k multiples of c

Is there a fundamental lemma

of division modulo n?

CX =,y = X=,Y ?

Is there a fundamental lemma
of division modulo n?
X =,¢cy = x=,y ? NO!
If c=0 [mod n], cx =, cy for any x

and y. Canceling the c is like
dividing by zero.

i

epaired fundamental lemma
of division modulo n?

C#0(modn), CX =, CYy = X =,y ?

2*2 =, 2*5, but not 2 =, 5.
6*3 =, 6*8, but not 3 =, 8.




When can I divide by c?

Theorem: There are exactly n/GCD(c.n)
distinct multiples of ¢ modulo n.

Corollary: If 6CD(c,n) > 1, then the number
of multiples of c is less than n.

B

i Corollary: If 6CD(c,n)>1 then you can't
always divide by c.

Proof: There must exist distinct x,y<n such
that c*x=c*y (but x=y)

Fundamental lemma of division modulo n.

6CD(c,n)=1,ca=,cb=a=,b

ab=ac modn
n|(ab—ac)
nla(b—c)
n|b—c since (a,n)=1

b=cmodn

Corollary for general c:
CX =, Cy = X En/GCD(c,n) Y

X =, ¢y
= CX =p/(c.n) CY and (¢, n/eeo(c,n) )=1
= X En/(c,n) Y

—(@%@L

Fundamental lemma of division modulo n.

CD(c,n)=1,ca=,cb=a=,b

Z ' ={xeZ,| 6CD(x,n) =1}

Multiplication over Z," will have the
cancellation property.

Z,={0,12.3,45}
*
Z," = {15)

+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0
* 0 1 2 3 4 5

2 2 3 4 5 0 1
0 0 0 0 0 0 0

3 3 4 5 0 1 2
1 0 1 2 3 4 5

4 4 5 0 1 2 3
2 0 2 4 0] 2 4

5 5 0 1 2 3 4
3 0 3 0] 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

Suppose 6CD(x,n) =1 and 6CD(y,n) =1
Let z=xy and z' = (xy mod n)
It is obvious that GCD(z,n) =1
It requires a moment to convince
ourselves that GCD(Z',n) =1




Z ={xeZ,| 6CD(x,n) =1}

*, is an associative, binary operator. In
particular, Z," is closed under *, :
XyezZ =x*yeZ .

Proof: Let z=xy.Llet z' =zmodn.z=2+kn.
Suppose there exists a prime p>1 p|z' and p|n.

z is the sum of two multiples of p, so p|z.
plz = that p|x or ply. Contradiction of X,y € Zn*

Zis
* 1 2 4 7 8 11 | 13 | 14
1 1 2 4 7 8 11 |13 | 14
2 2 4 8 | 14 1 7 | 11 ] 13
4 4 8 1 13 2 14 | 7 11
7 7 |14 |13 | 4 1 2 1 8
8 8 1 2 11 4 |13 |14 | 7
nm | 1|7 |14 2 13 1 8 4
13 (13|11 ] 7 1 14 | 8 4 2
14 114 |13 | 11 8 7 4 2 1

Z," = {15711}

| 1 |5 | 7|1
1|15 |7 |1
5 |5 | 1| 11| 7
7|7 1115
m | 1| 7|5 |1

B,

The column permutation property is
equivalent to the right cancellation

property:

[b*a=c*a] = b=c

The row permutation property is
equivalent to the left cancellation

property:
@j [a*b=a*c] = b=c

*

INEIENIE
S w|l | = o
w| = »P N
N B =| w0
Lonll BN OV B N I

* 1 2| a 4
b 1 2 3 4
2 2| 4 1 3
c 3 1 4| 2
41 4| 3 211
Zy5 ={1,2_3,4}
x| 1] 2| 3| 4
11| 2|3 ]| 4
2 | 2| 4] 1| 3
3 03] 1] 4] 2
4 | 4| 3| 21




Euler Phi Function

®(n) = size of z,"

= number of 1<=k<n that are
relatively prime to n.

{1, 3,.p-1}
fp)

pr'lme =Z

Z, = {15,711}
0(12) = 4

5 7 1
5 5 1 1 7
7 7 1 1 5

1 1 7 5

¢(pq) = (p-1)(q-1)
if p,q distinct primes

pq = # of numbers from 1 to pq
p = # of multiples of q up to pq
q = # of multiples of p up to pq
1= # of multiple of both p and q up to pq

o(pq) = pq-p-q+1=(p-1)(g-1)

Let's consider how
we do arithmetic in Z, and in Z,*

The additive inverse of ac Z, is the
unique be Z, such that a+, b =, 0.

We denote this inverse by "-a".

It is trivial to calculate:
"-a" = (n-a).

The multiplicative inverse of ac Z," is
the unique be Z," such that
a*, b =, 1. We denote this inverse by

na_]n or \\1/011‘

The unique inverse of a must exist because
the a row contains a permutation of the
elements and hence contains a unique 1.

*

slw|n|=|=
wl=lsin|o
Nl w|w
Loall SN OV I S

1
2
a
4




={0,1,2, ..
z7 L {x{e z G’CD(xF?n) 121}

Define +, and *:
a+,b = (a+b mod n) a*,b = (a*b mod n)

c*, (a+,b)=,(c*,a)+ (c*,b)
<Z,, +p <Z)S, <
1. Closed 1. Closed
2. Associative 2. Associative
3. Ois identity 3. lis identity
4. Additive Inverses 4. Multiplicative Inverses
5. Cancellation 5. Cancellation
6. Commutative 6. Commutative

The multiplicative inverse of ac Z,” is the unique be Z,*

such that . .
a*, b =,1 We denote this inverse by "a'" or "1/a".

Efficient algorithm to compute a! from a and n.

Execute the Extended Euclid Algorithm on a

and n (previous lecture). It will give two

integers r and s such that:
ra+sn=(an)=1

Taking both sides mod n, we obtain:
rn =,

Output r, which is the inverse of a

Fundamental lemma of powers?

If (a=,b)
Thenxa = xb 2

If (a=,b) Thenxe=,x> ?
NO!
case that: 21 =5 216

Calculate ab mod n:

Except for b, work in a reduced mod system to
keep all intermediate results less than [ log, (n) ] +1

bits long.

Phase T (Repeated Multiplication)
. ForlLlog b]steps

multiply largest so far by a
(a,a?,a%, ..)

Phase IT (Make ab from bits and pieces)

Expand n in binary to see how n is the sum
powers of 2. Assemble a® by multiplying together
appropriate powers of a.

Two names for the same set:
Z, =Zg

L={a* x| xeZ} ac Z’

BN IS

wl =] & ~| ~
ol o] =] o o

slol ~| =
sl w| o] =] &
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Two products on the same seft:

Z =72 . .
Ze={a*, x| x€'Z, ac Z,
[1x =, [1ax [as X ranges over Z," ]

[Ix =,I1x (asizeof Z0")  [Commutativity]

1= gsizeof Zn* [Cancellation]

a®m = 1

Euler's Theorem

ac Z,, a*™ =1

Fermat's Little Theorem

p prime, ac Z, = arl =, 1

Fundamental lemma of powers.
Suppose xe Z,", and a,b,n are naturals.

If a =4 b Then xe =, xb

-n

X4 mod g?n%”gle?(g):ﬁod ®(n)
=n

B

Defining negative powers.

Suppose xe Z,", and a,n are naturals.

| xais defined to be the
multiplicative inverse of X¢

X-a = (Xa)—l

B

Rule of integer exponents

Suppose x,y€ Z,”, and a,b are integers.

N CYLE

Xa Xb =, Xa+b

Lemma of integer powers.
Suppose xe Z,", and a,b are integers.

If a=4u b Thenxa=, x°

xa mod E?n%l\gle;ﬁ)l);ﬁod @(n)
=n




={0,1,2, .., n-1
zZ" =n{x{e z GCD(!(],n)}:l}

Quick raising to power.

<Z,, +> <Zn*, x>

1. Closed 1. Closed

2. Associative 2. Associative

3. Ois identity 3. lisidentity

4. Additive Inverses 4. Multiplicative Inverses
Fast + amd - Fast * and /

5. Cancellation 5. Cancellation

6. Commutative 6. Commutative

Euler Phi Function

®(n) = size of z,"
| pprime=2Z={123,.p-1}
= a(p) = p-1

¢(pq) = (p-1)(q-1)
if p,q distinct primes

The RSA Cryptosystem
Rivest, Shamir, and Adelman (1978)

RSA is one of the most used
cryptographic protocols on the net.
Your browser uses it to establish a

secure session with a site.

Pick secret, random k-bit primes: p,q
"Publish™ n = p*q
(n) = o(p) 6(q) = (p-1)*(q-1)

Pick random e € Z",
"Publish": e
Compute d = inverse of e in Z",)
ence, e*d = 1 [ mod ¢(n) ]

Private Key": d

P.q random primes, e random € Z",,
n=p*q
e*d = 1[ mod ¢(n) ]

n.e is my public
key. Use it to
send a
message to
me.

p.q prime, e random e Z" .y
n=p*q

e*d = 1[ mod ¢(n) ]




1[ mod ¢(n) ]

p*q

Aqpr g
p l_] prime, e random e Z" .y

n
e*d

(e
AN
Ly

Oy e
<

1[ mod ¢(n) ]

P_*q

qpri g
p z_] prime, e random e Z" s

n
e*d




