#### Great Theoretical I deas In Computer Science

Steven Rudich

CS 15-251

Spring 2005

Lecture 6

Jan 27, 2005

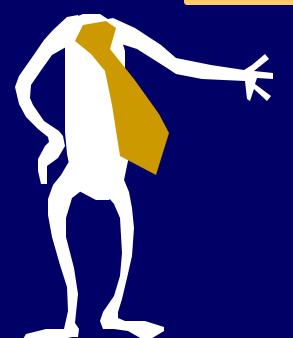
Carnegie Mellon University

## Counting I: One To One Correspondence and Choice Trees





## How many seats in this auditorium?



#### Hint: Count without counting!



# If I have 14 teeth on the top and 12 teeth on the bottom, how many teeth do I have in all?



#### **Addition Rule**

Let A and B be two disjoint finite sets.

The size of A∪B is the sum of the size of A and the size of B.

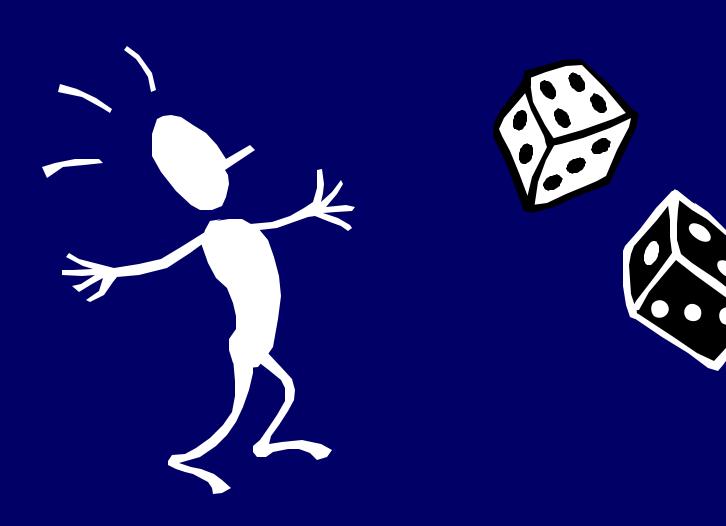
$$|A \cup B| = |A| + |B|$$

#### Corollary (by induction)

Let  $A_1$ ,  $A_2$ ,  $A_3$ , ...,  $A_n$  be disjoint, finite sets.

$$\begin{vmatrix} n \\ \mathbf{j} \\ \mathbf$$

## Suppose I roll a white die and a black die.



# S = Set of all outcomes where the dice show different values. | S | = ?

 $A_i \equiv$  set of outcomes where the black die says i and the white die says something else.

$$|S| = \left| \bigcup_{i=1}^{6} A_i \right| = \sum_{i=1}^{6} |A_i| = \sum_{i=1}^{6} 5 = 30$$

# S ≡ Set of all outcomes where the dice show different values. |S| = ?

 $T \equiv set of outcomes where dice agree.$ 

$$|S \cup T| = \# \text{ of outcomes} = 36$$
  
 $|S| + |T| = 36$   $|T| = 6$   
 $|S| = 36 - 6 = 30$ 

S ≡ Set of all outcomes where the black die shows a smaller number than the white die. | S | = ?

 $A_i \equiv$  set of outcomes where the black die says i and the white die says something larger.

$$S = A_1 \cup A_2 \cup A_3 \cup A_4 \cup A_5 \cup A_6$$
  
 $|S| = 5 + 4 + 3 + 2 + 1 + 0 = 15$ 

S = Set of all outcomes where the black die shows a smaller number than the white die. | S | = ?

L ≡ set of all outcomes where the black die shows a larger number than the white die.

$$|S|+|L|=30$$
  
It is clear by symmetry that  $|S|=|L|$ .

Therefore | S | = 15

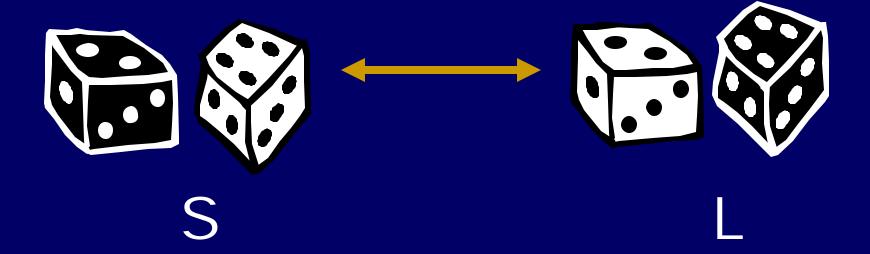
#### It is <u>clear</u> by symmetry that | S | = | L |.





## Pinning down the idea of symmetry by exhibiting a correspondence.

Let's put each outcome in S in correspondence with an outcome in L by swapping the color of the dice.



## Pinning down the idea of symmetry by exhibiting a correspondence.

Let's put each outcome in S in correspondence with an outcome in L by swapping the color of the dice.

Each outcome in S gets matched with exactly one outcome in L, with none left over.

Thus: | S | = | L |.

## Let f:A®B be a function from a set A to a set B.

f is 1-1 if and only if 
$$\forall x,y \in A, x \neq y \Rightarrow f(x) \neq f(y)$$

f is onto if and only if 
$$\forall z \in B \exists x \in A f(x) = z$$

## Let f:A®B be a function from a set A to a set B.

f is 1-1 if and only if 
$$\forall x,y \in A, x \neq y \Rightarrow f(x) \neq f(y)$$

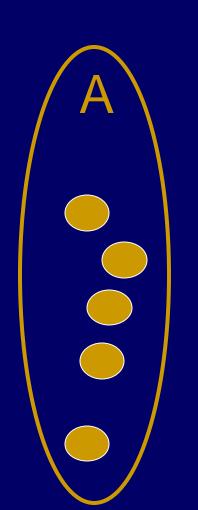
f is onto if and only if

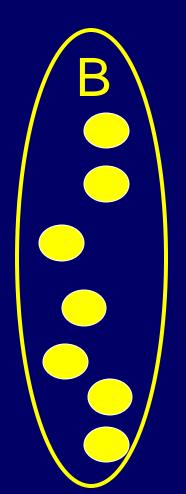
$$\forall z \in B \exists x \in A f(x) = z$$

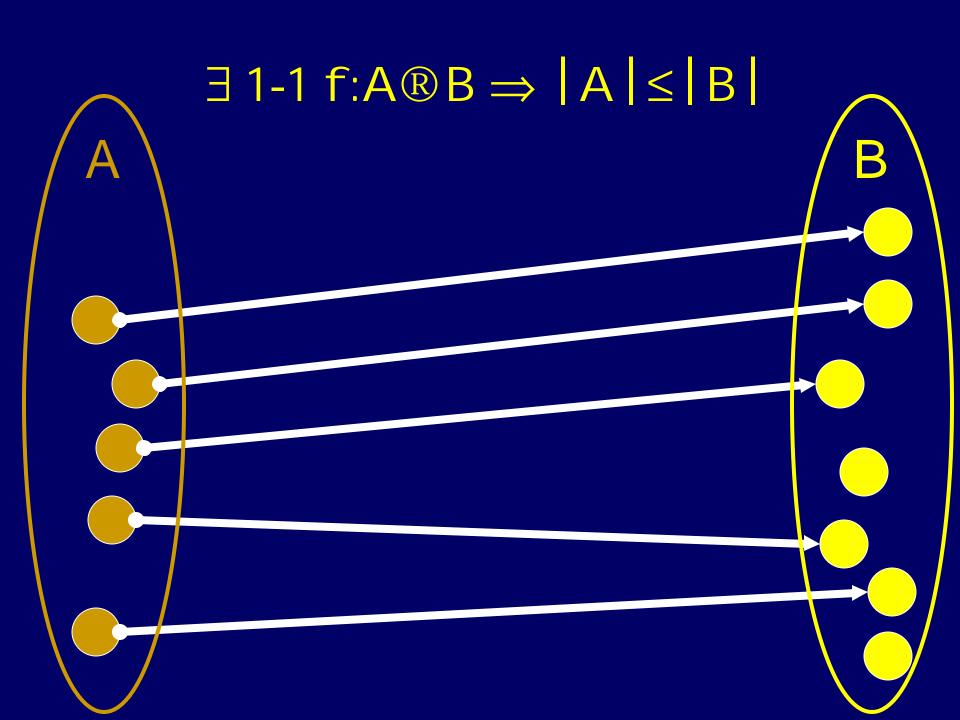
There Exists

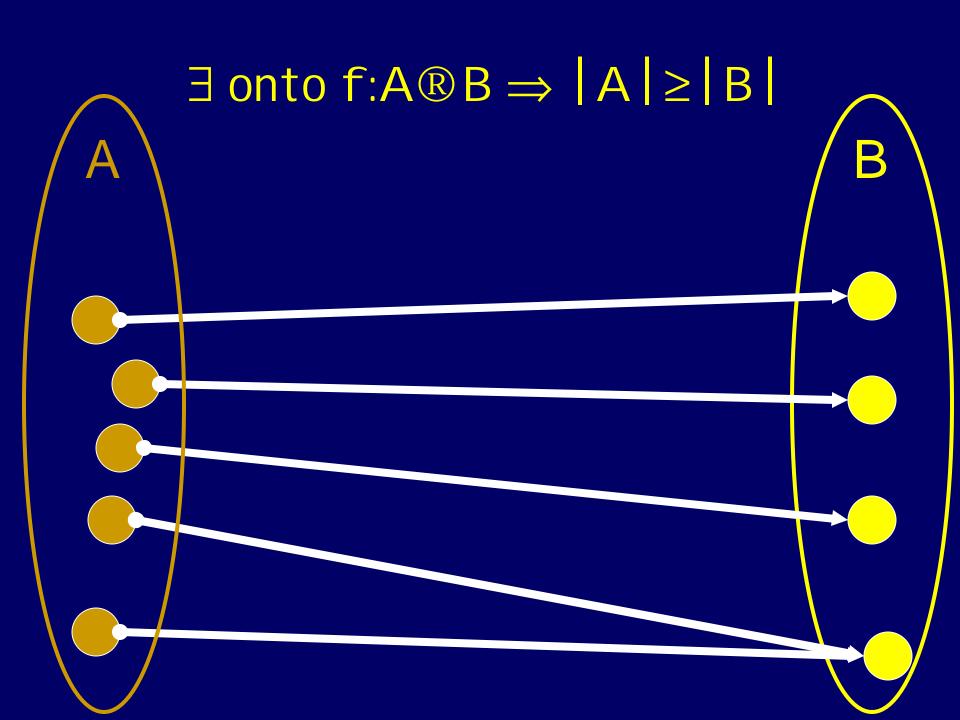
For Every

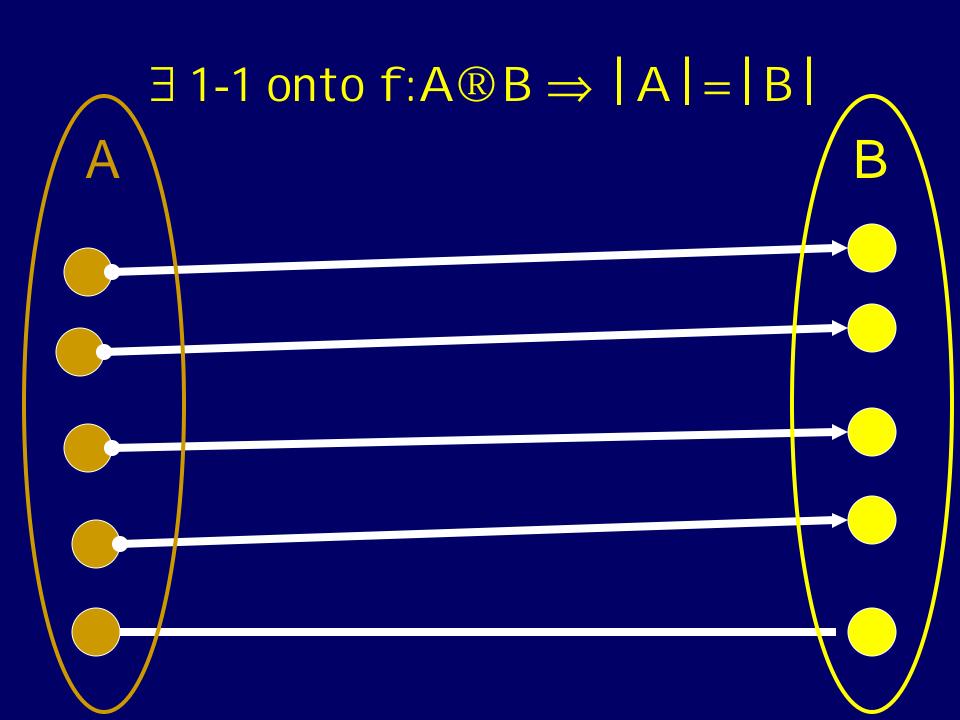
## Let's restrict our attention to finite sets.



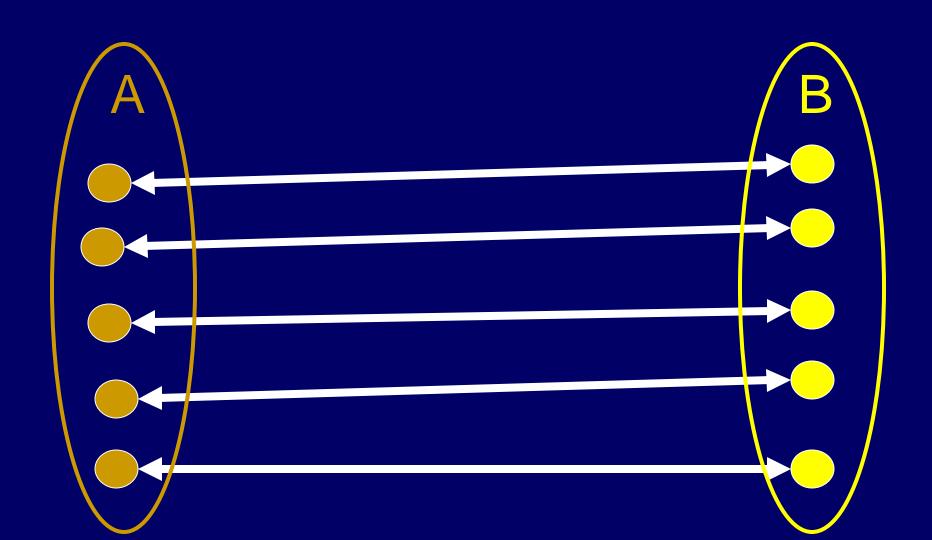








#### 1-1 Onto Correspondence (just "correspondence" for short)

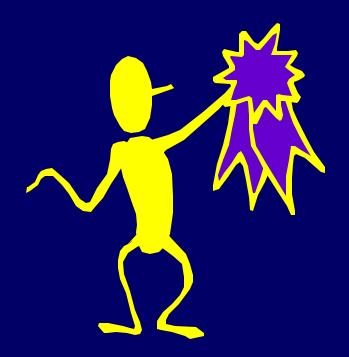


#### Correspondence Principle

If two finite sets can be placed into 1-1 onto correspondence, then they have the same size.

#### Correspondence Principle

If two finite sets can be placed into 1-1 onto correspondence, then they have the same size.



It's one of the most important mathematical ideas of all time!

## Question: How many n-bit sequences are there?

| 000000 | $\leftarrow \rightarrow$ | O                 |
|--------|--------------------------|-------------------|
| 000001 | $\leftarrow \rightarrow$ | 1                 |
| 000010 | $\leftarrow \rightarrow$ | 2                 |
| 000011 | $\leftarrow \rightarrow$ | 3                 |
|        | •••                      |                   |
| 111111 | $\leftarrow \rightarrow$ | 2 <sup>n</sup> -1 |

2<sup>n</sup> sequences

S = {a,b,c,d,e} has many subsets.

```
{a}, {a,b}, {a,d,e}, {a,b,c,d,e},
{e}, Ø, ...
```

The empty set is a set with all the rights and privileges pertaining thereto.

# Question: How many subsets can be formed from the elements of a 5-element set?

| a | b  | С | d | е          |
|---|----|---|---|------------|
| 0 | 1  | 1 | O | 1          |
|   | {b | C |   | <b>e</b> } |

1 means "TAKE IT"

0 means "LEAVE IT"

Question: How many subsets can be formed from the elements of a 5-element set?

| a | b | C | d | е |
|---|---|---|---|---|
| 0 | 1 | 1 | O | 1 |

Each subset corresponds to a 5-bit sequence (using the "take it or leave it" code)

$$S = \{a_1, a_2, a_3, ..., a_n\}$$
  
 $b = b_1b_2b_3...b_n$ 

| $a_1$          | $a_2$ | $a_3$ | • • • | a <sub>n</sub> |
|----------------|-------|-------|-------|----------------|
| b <sub>1</sub> | $b_2$ | $b_3$ | • • • | b <sub>n</sub> |

$$f(b) = \{a_i | b_i = 1\}$$

$$f(b) = \{a_i | b_i = 1\}$$

f is 1-1: Any two distinct binary sequences b and b' have a position i at which they differ. Hence, f(b) is not equal to f(b') because they disagree on element  $a_{i'}$ 

$$f(b) = \{a_i | b_i = 1\}$$

f is onto: Let S be a subset of  $\{a_1,...,a_n\}$ . Let  $b_k = 1$  if  $a_k$  in S;  $b_k = 0$  otherwise.  $f(b_1b_2...b_n) = S$ .

The number of subsets of an n-element set is 2<sup>n</sup>.

## Let f:A®B be a function from a set A to a set B.

f is 1-1 if and only if 
$$\forall x,y \in A, x \neq y \Rightarrow f(x) \neq f(y)$$

f is onto if and only if 
$$\forall z \in B \exists x \in A f(x) = z$$

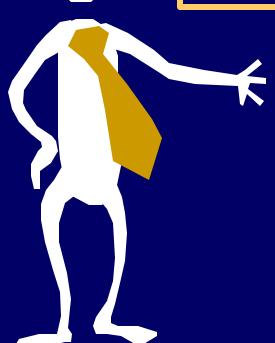
## Let f:A®B be a function from a set A to a set B.

f is a 1 to 1 correspondence iff  $\forall z \in B \exists exactly one x2A s.t. f(x)=z$ 

f is a k to 1 correspondence iff  $\forall z \in B \exists exactly k x2A s.t. f(x)=z$ 



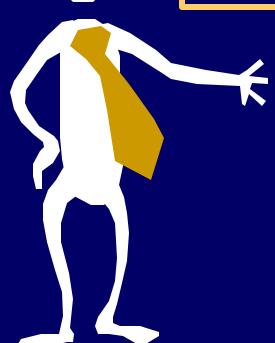
To count the number of horses in a barn, we count the number hoofs and then divide by 4.

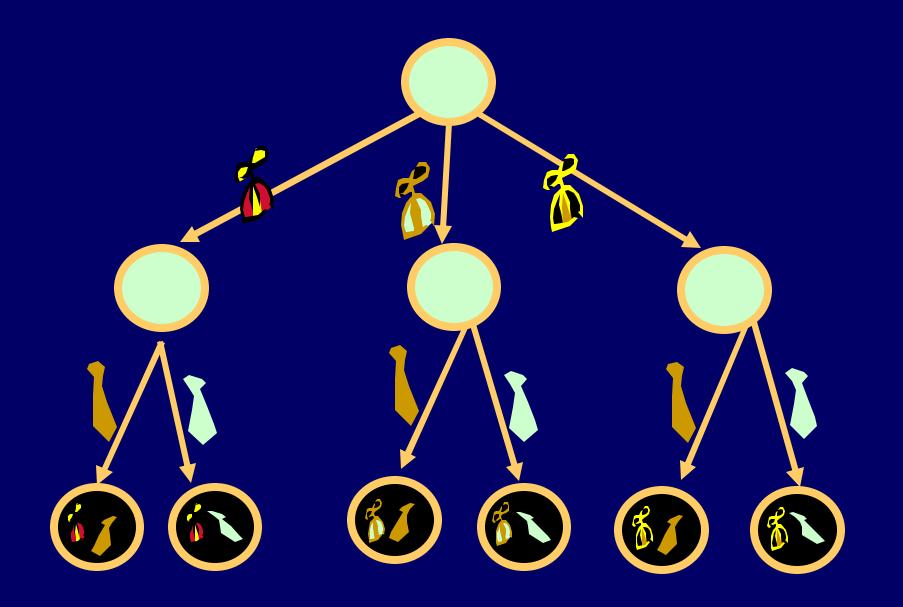


If Finite set A has a k to 1 correspondence to finite set B, then #B = #A/k



I own 3 beanies and 2 ties. How many different ways can I dress up in a beanie and a tie?





# A restaurant has a menu with 5 appetizers, 6 entrees, 3 salads, and 7 desserts.

How many items on the menu?

$$\bullet$$
 5 + 6 + 3 + 7 = 21

How many ways to choose a complete meal?

$$\bullet$$
 5 \* 6 \* 3 \* 7 = 630

# A restaurant has a menu with 5 appetizers, 6 entrees, 3 salads, and 7 desserts.

How many ways to order a meal if I might not have some of the courses?

6 \* 7 \* 4 \* 8 = 1344

Hobson's restaurant has only 1 appetizer, 1 entree, 1 salad, and 1 dessert.

2<sup>4</sup> ways to order a meal if I might not have some of the courses.

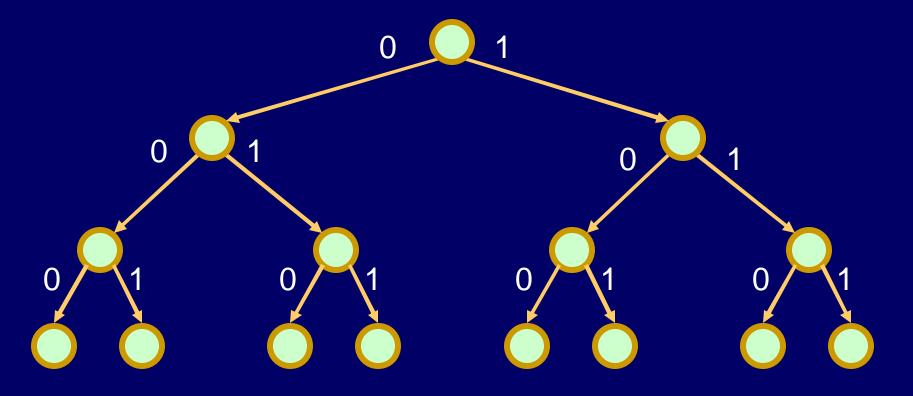
Same as number of subsets of the set {Appetizer, Entrée, Salad, Dessert}

## Leaf Counting Lemma

Let T be a depth n tree when each node at depth  $0 \le i \le n-1$  has  $P_{i+1}$  children. The number of leaves of T is given by:

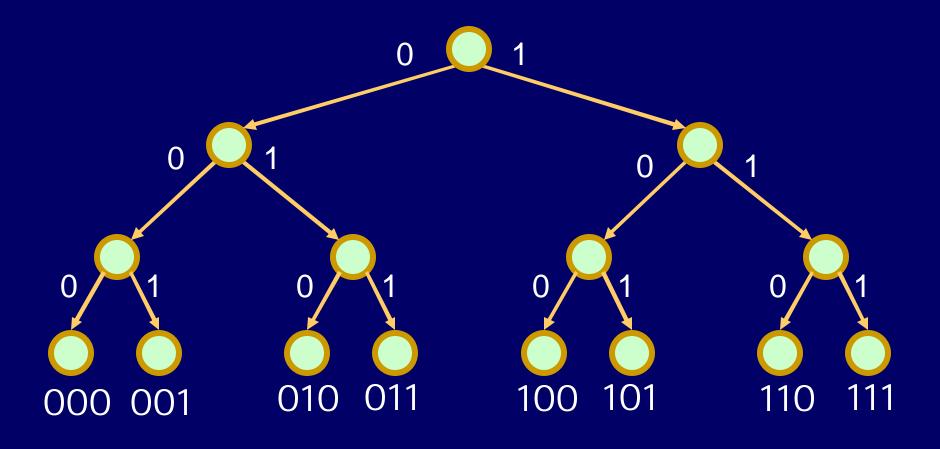
$$P_1P_1P_2...P_n$$

## Choice Tree for 2<sup>n</sup> n-bit sequences

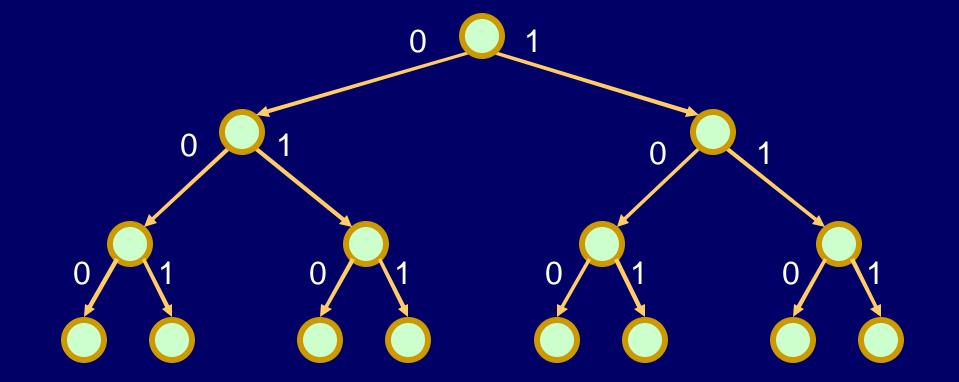


We can use a "choice tree" to represent the construction of objects of the desired type.

### 2<sup>n</sup> n-bit sequences



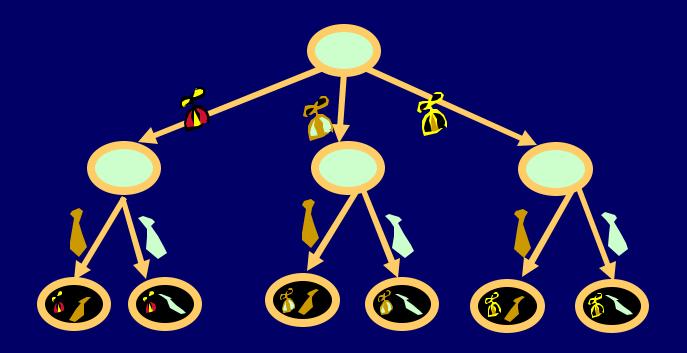
Label each leaf with the object constructed by the choices along the path to the leaf.



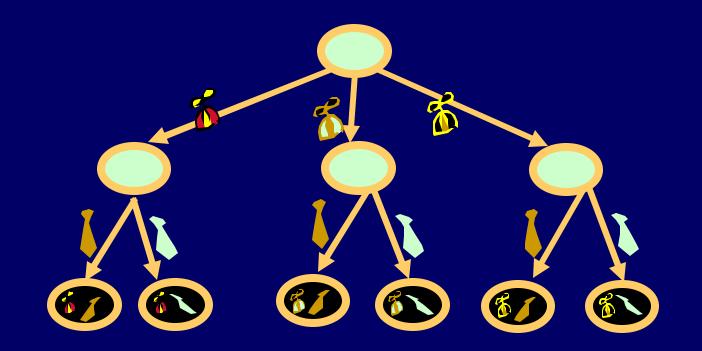
- 2 choices for first bit
- X 2 choices for second bit
- X 2 choices for third bit

X 2 choices for the nth

#### Choice Tree



A choice tree is a rooted, directed tree with an object called a "choice" associated with each edge and a label on each leaf.



A choice tree provides a "choice tree representation" of a set S, if

1) Each leaf label is in S2) No two leaf labels are the same



We will now combine the correspondence principle with the leaf counting lemma to make a powerful counting rule for choice tree representation.

## Product Rule

IF S has a choice tree representation with P<sub>1</sub> possibilities for the first choice, P<sub>2</sub> for the second, and so on,

THEN

there are P<sub>1</sub>P<sub>2</sub>P<sub>3</sub>...P<sub>n</sub> objects in S

Proof: The leaves of the choice tree are in 1-1 onto correspondence with the elements of S.

## Product Rule

Suppose that all objects of a type S can be constructed by a sequence of choices with  $P_1$  possibilities for the first choice,  $P_2$  for the second, and so on.

1 F

Each sequence of choices constructs an object of type S

AND

2) No two different sequences create the same object

THEN

there are  $P_1P_2P_3...P_n$  objects of type S.

# How many different orderings of deck with 52 cards?

What type of object are we making?

Ordering of a deck

Construct an ordering of a deck by a sequence of 52 choices:

52 possible choices for the first card;51 possible choices for the second card;50 possible choices for the third card;

. . .

1 possible choice for the 52cond card.

# How many different orderings of deck with 52 cards?

By the product rule:

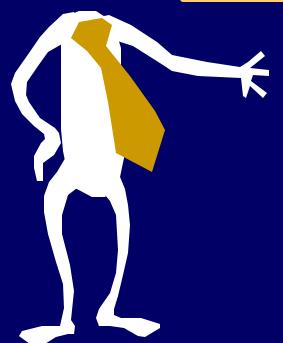
52 "factorial" orderings

A <u>permutation</u> or <u>arrangement</u> of n objects is an ordering of the objects.

The number of permutations of n distinct objects is n!



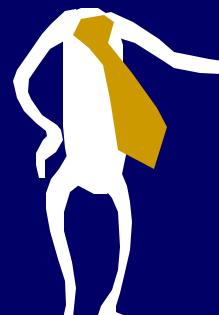
# How many sequences of 7 letters are there?



267



How many sequences of 7 letters contain at least two of the same letter?



267 - 26\*25\*24\*23\*22\*21\*20

Sometimes it is easiest to count the number of objects with property Q, by counting the number of objects that do not have property Q.

#### A formalization

Let  $S(x): \Sigma^* \to \{True, False\}$  be any predicate.

We can associate S with the set: OBJECTS<sub>S</sub> =  $\{x \in \Sigma^* \mid S(x)\}$ the "object space" S (or objects of type S)

When OBJECTS<sub>S</sub> is finite, let us define  $\#OBJECTS_S =$ the size of OBJECTS<sub>S</sub>
In fact, define #S as  $\#OBJECTS_S$ 

#### Object property Q on object space S

```
Consider Q(x): OBJECTS<sub>S</sub> \rightarrow {True, False}
```

Define : Q(x): OBJECTS<sub>S</sub>  $\rightarrow$  {True, False}

As Input(x); return NOT Q(x)

Proposition: #Q = #S - #(: Q)

How many of our objects have property Q in object space S?

#Q = #OBJECTS<sub>S</sub> - #(: Q)

## Helpful Advice:

In logic, it can be useful to represent a statement in the contrapositive.

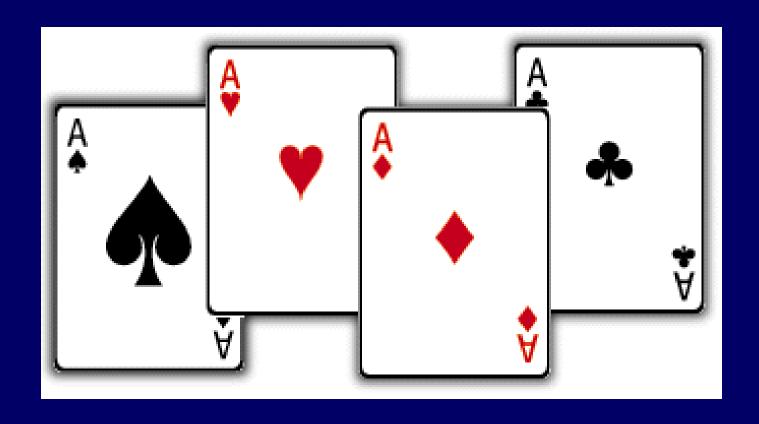
In counting, it can be useful to represent a set in terms of its complement.

If 10 horses race, how many orderings of the top three finishers are there?

# The number of ways of ordering, permuting, or arranging r out of n objects.

n choices for first place, n-1 choices for second place, . . .

$$= \frac{n!}{(n-r)!}$$



#### Ordered Versus Unordered

From a deck of 52 cards how many ordered pairs can be formed?

• 52 \* 51

How many unordered pairs?

• 52\*51 / 2 ← divide by overcount
 Each unordered pair is listed twice on a list of the ordered pairs, but we consider the ordered pairs to be the same.

#### Ordered Versus Unordered

From a deck of 52 cards how many ordered pairs can be formed?

• 52 \* 51

How many unordered pairs?

52\*51 / 2 ← divide by overcount

We have a 2 to 1 map from ordered pairs to unordered pairs. Hence: the #unordered pairs = (#ordered pairs)/2

#### Ordered Versus Unordered

From a deck of 52 cards how many ordered 5 card sequences can be formed?

• 52 \* 51 \* 50 \* 49 \* 48

How many orderings of 5 cards?

• 5!

How many unordered 5 card hands? pairs?

• 52\*51\*50\*49\*48 / 5! = 2,598,960

A <u>combination</u> or <u>choice</u> of r out of n objects is an (unordered) set of r of the n objects.

The number of r combinations of n objects:

$$\frac{n!}{r!(n-r)!} = \frac{5n}{11}$$

$$\frac{1}{11}$$

$$\frac{1}{11}$$

$$\frac{1}{11}$$

$$\frac{1}{11}$$

$$\frac{1}{11}$$

$$\frac{1}{11}$$

The number of subsets of size r that can be formed from an n-element set is:

$$\frac{\ln n!}{r!(n-r)!}$$

# How many 8 bit sequences have 2 0's and 6 1's?

Tempting, but incorrect:

8 ways to place first 0 times

7 ways to place second 0

Violates condition 2 of product rule! Choosing position i for the first 0 and then position j for the second 0 gives the same sequence as choosing position j for the first 0 and position i for the second.

# How many 8 bit sequences have 2 0's and 6 1's?

1) Choose the set of 2 positions to put the 0's. The 1's are forced.

$$\begin{vmatrix} 18 \\ 12 \end{vmatrix} \times 1 = \begin{vmatrix} 18 \\ 12 \end{vmatrix}$$

2) Choose the set of 6 positions to put the 1's. The 0's are forced.

## Symmetry in the formula:

$$\frac{\ln n!}{\ln n!} = \frac{\ln n}{r!(n-r)!} = \frac{\ln n}{\ln n}$$

# How many hands have at least 3 aces?

$$\binom{4}{3}$$
 = 4 ways of picking 3 of the 4 aces.

$$\binom{49}{2}$$
 = 1176 ways of picking 2 cards from the remaining 49 cards.

$$4 \times 1176 = 4704$$

#### How many hands have at least 3 aces?

### How many hands have exactly 3 aces?

$$\binom{4}{3}$$
 = 4 ways of picking 3 of the 4 aces.

$$\binom{48}{2}$$
 = 1128 ways of picking 2 cards non – ace cards.

$$4 \times 1128 = 4512$$

### How many hands have exactly 4 aces?

$$\begin{pmatrix} 4 \\ 4 \end{pmatrix}$$
 = 1 way of picking 4 of the 4 aces.

48 ways of picking one of the remaining cards

$$4512 + 48 = 4560$$

## 4704 1 4560 2

At least one of the two counting arguments is not correct.

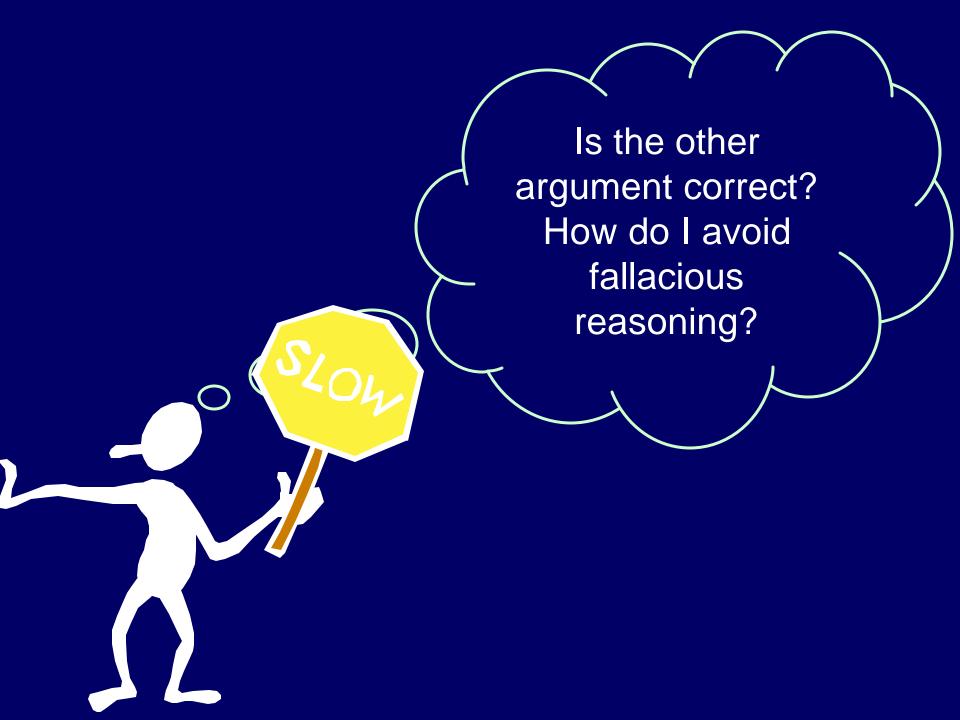


# Four different sequences of choices produce the same hand

$$\binom{4}{3}$$
 = 4 ways of picking 3 of the 4 aces.

$$\binom{49}{2}$$
 = 1176 ways of picking 2 cards from the remaining 49 cards.

$$4 \times 1176 = 4704$$



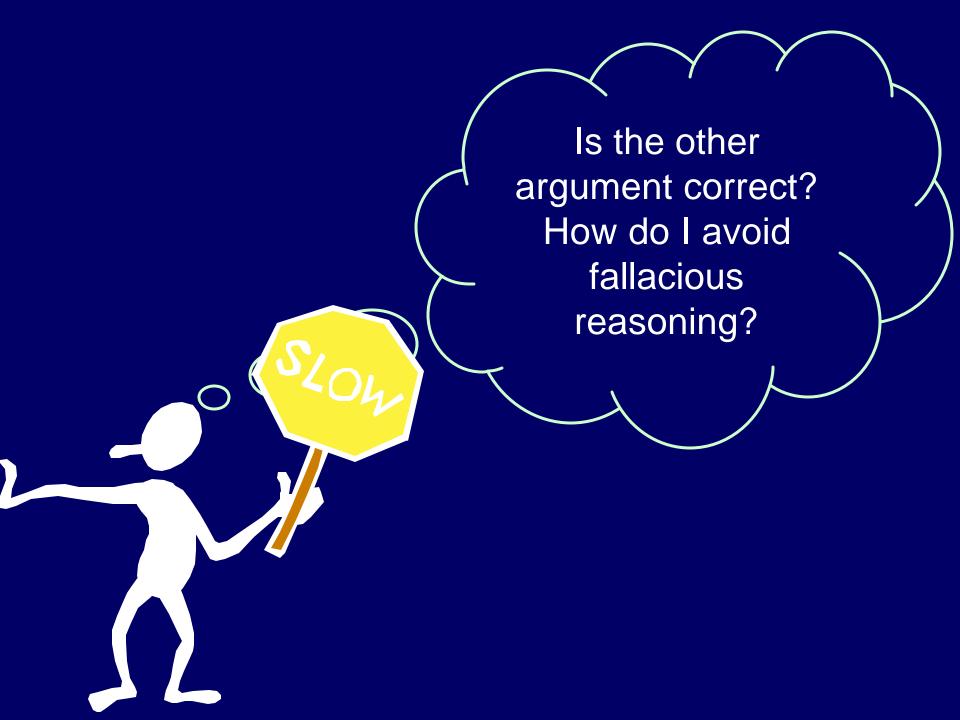
#### The Sleuth's Criterion

Condition (2) of the product rule:

For any object it should be possible to reconstruct the sequence of choices which lead to it.

- 1) Choose 3 of 4 aces
- 2) Choose 2 of the remaining cards

Sleuth can't determine which cards came from which choice.



- 1) Choose 3 of 4 aces
- 2) Choose 2 non-ace cards

Sleuth reasons:

The aces came from the first choice and the non-aces came from the second choice.

# 1) Choose 4 of 4 aces 2) Choose 1 non-ace

Sleuth reasons:

The aces came from the first choice and the non-ace came from the second choice.