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Ancient Wisdom:
On Raising A Number To A
Power

Rhind Papyrus (1650 BC)

70*13
70 13 * 70
140 6
280 3 x 350
560 1> 910

Rhind Papyrus (1650 BC)

70*13
70 13 * 70
140 6
280 3 * 350
560 1 = 910
Binary for 13 is 1101 = 23 + 22 + 20
70*13 = 70*23 + 70*22 + 70*20

Rhind Papyrus (1650 BC)

17 1

34 2 *

68 4

136 8 *
184 48 14

Rhind Papyrus (1650 BC)

17 1

34 2 *

68 4

136 8 *
184 48 14

184 = 17*8 + 17*2 + 14
184/17 = 10 with remainder 14

/

This method is called “Egyptian
Multiplication/Division” or
“Russian Peasant
Multiplication/Division”.
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Wow. Those Russian
peasants were pretty
smart.

Standard Binary Multiplication
= Egyptian Multiplication

*kkkkk*k*%x
X 101

kkkk k%%

*kkkkk*k*%

*kkkkkkk*kkk*%

Egyptian Base 3

Convention Base 3:
Each digit canbe 0, 1, or 2

Here is a strange new one:
Egyptian Base 3 uses -1, 0, 1

Example:1-1-1=9-3-1=5

How could this be
Egyptian? Historically,
negative numbers first

appear in the writings of
the Hindu mathematician
Brahmagupta (628 AD).

One weight for each power of 3.
Left = "negative”. Right = "positive"




Our story so far ...

We can view numbers in
many different, but
corresponding ways.

Representation:
Understand the relationship between
different representations of the same

information or idea

1 @
2 o0
3 00

So Far We Have Seen:

Induction is how we define
and manipulate
o mathematical ideas.

Let's Articulate A New One:

Abstraction:
Abstract away the inessential
features of a problem or solution

Even very
simple
computational
problems can
be surprisingly
subtle.
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Compiler Translation

A compiler must translate a high
level language (e.g., C) with complex
operations (e.g., exponentiation)
into a lower level language (e.g.,
assembly) that can only support
simpler operations (e.g.,
multiplication).

b:=a*a b:za*a

—h*
bi=b%a b:=b*b

—h*
bi=b"a bi=b*b
b:=b*a

— Rk This method costs only 3
b:=b*a multiplications. The
b:=b*a zavir;gs are signgic?tnt if

:=a8 is executed often.

b:=b*a




General Version

Given a constant k, how do we
implement b:=ak with the
fewest number of
multiplications?

Powering By Repeated

Multiplication
Input: an
Output: A sequence starting with

a, ending with a", and such
that each entry other
than the first is the
product of previous
entries.

Example

Input: ab

Output: a,a? a3, a* ad®
or

Output: a,a? a3,ad
or

Output: a,a? a4 add

Definition of M(n)

M(n) = The minimum number of
multiplications required
to produce a" by
repeated multiplication

What is M(n)? Can we calculate it
exactly? Can we approximate it?

Exemplification:
Try out a problem or
solution on small examples.
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Some Very Small Examples

What is M(1)?

-M(1)=0 [a]
* What is M(0)?

- M(0) is not clear how to define
* What is M(2)?

-M@2)=1 [a, a?]




M(8)="? M(8)="?

a, a?, a*, a8 is a way to make a8 in 3 a, a?, a*, a8 is a way to make a8 in 3
multiplications. What does this fell multiplications. What does this fell
us about the value of M(8)? us about the value of M(8)?

M(8) < 3\

Upper Bound

< M(8) < M(8) <3

Lower Bound Lower Bound
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Exhaustive Search. There are only two
sequences with 2 multiplications. Neither
of them make 8:

a, a2, a3& a, a2, a4

3 < M(8) < 3 Applying Two Ideas

Abstraction:
Abstract away the inessential
Lower Upper features of a problem or solution
Bound Bound r"
? ? ;. _

- 3 Representation:
- il Understand the relationship between

different representations of the same
information or idea

1 (]
2 ([ X ]
3 00




What is the more essential
representation of M(n)?

Abstraction:
Abstract away the inessential
features of a problem or solution

V=N
A

Representation:
Understand the relationship between
different representations of the same

information or idea

1 o
2 o0
3 000

Theaisa

aX times a¥ is ax*Y

Everything besides the exponent
is inessential. This should be
viewed as a problem of repeated
addition, rather than repeated
multiplication.

Addition Chains

M(n) = Number of stages required
to make n, where we start
at 1 and in each subsequent
stage we add two
previously constructed

numbers.

Examples

Addition Chain for 8:
12358

Minimal Addition Chain for 8:

1248

Addition Chains Are A Simpler To
Represent The Original Problem

Abstraction:
Abstract away the inessential
features of a problem or solution

V=N
e -

Representation:
Understand the relationship between
different representations of the same

information or idea

1 (]
2 ([ X ]
3 00




Some Addition Chains For 30

1 2 4 8 16 24 28 30

1 2 4 5 10 20 30

1 2 3 5 10 15 30

1 2 4 8 10 20 30
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MB0) <6
M

Binary Representation
Let B, be the number of 1s in the binary

representation of n. Ex: B; = 2 since 101 is
the binary representation of 5

Proposition: B, < | log, (n) | +1

The length of the binary representation of
n is bounded by this quantity.

Binary Method
Repeated Squaring Method
Repeated Doubling Method

Phase T (Repeated Doubling)
For | log, n| stages:
Add largest so far to itself
(1,2,4,8,16,...)

Phase IT (Make n from bits and pieces)
Expand n in binary to see how n is the sum
of B, powers of 2. Use B,-1 stages to make n
from the powers of 2 created in phase T

Binary Method Applied To 30

Binary

30 11110
Phase I

1 1
2 10
4 100
8 1000
16 10000

Phase IT: 6 14 30 (Cost: 7 additions)

Rhind Papyrus (1650 BC)
What is 30 times 5?

30 by a chain of 7:

124816242830

16 80

24120 Repeated doubling is
28 140 the same as the
30150 Egyptian binary

multiplication




Rhind Papyrus (1650 BC) . .
Actually used faster chain for 30*5. The Egyptian Connection
1 5 A shortest addition chain for n gives a
2 10 30 by a chain of 6: shortest method for the Egyptian
4 20 approach to multiplying by the number
8 40 124 8102030 n.
10 50
20 100 The fastest scribes would seek to know
30 150 M(n) for commonly arising values of n.
Abstraction:
Abstract away the inessential
features of a problem or solution
I' gi" - _ We saw that applying
M n) < |o nl+ B - 1 < 2 |o n o - ABSTRACTION to the
(n) < [log; n| + B, log, n &8 PROBLEM simplifies
the issue.

PROBLEM = Raising
A Number To A
Power.

Abstraction:

Abstract away the inessential
features of a problem or solution
What about
'?, ‘ ABSTRACTION to What features
ey - - the SOLTUTION did our solution
22772

%

(RQA) actually
make use of?

P

Let SOLUTION be

the Repeated
Squaring Algorithm.




For example,

does the RQA sy The repeated
require the L = = squaring method
underlying quks fo_r modular

. arithmetic and for

objects to be raising a matrix to a

numbers? power.
Abstraction:
Abstract away the inessenti_al
features of a problem or solution GENERALIZAHON
The repeated

squaring method
works for any notion

of “multiplication”
that is associative.

(a*b)*c = a*(b*c)
ak is well defined
aX * ay = aX+y

nnnnnnnnnnn

%% .|  Solution

Always ask yourself what your
solution actually requires.

MB0) <6

?
?2 <M(n) <?2llog. (]

IN 1IN

A Lower Bound Idea

You can't make any number bigger than
2" in n steps.

1248163264 ...

Failure of
Imagination?




Induction Proof

Theorem: For all n=0, no n stage
addition chain will contain a number
greater than 2"

Let Sy be the statement that no k stage
addition chain will contain a number greater
than 2k

Base case: k=0. S, is true since no chain can
exceed 20 after O stages.

Vk}O, Sk :>Sk+1

At stage k+1 we add two numbers from the
previous stage. From S, we know that they
both are bounded by 2k. Hence, their sum is
bounded by 2k*1. No humber greater than 2k
can be present by stage k+1.

Proof By Invariant
(Induction)

Invariant: All the numbers created by stage
n, are less than or equal to 2.

The invariant is true at the start.

Suppose we are af stage k. If the invariant
is Trye, then the two numbers we decide tq
sum for stage k+1 are < 2% and hence create
a number less than or equal to 2k, The
invariant is thus true at stage k+1.

Change Of Variable

All numbers obtainable in m stages are
bounded by 2™. Let m = log,(n).

Thus, All numbers obtainable in log,(n)
stages are bounded by n.

M(n) 2 log,(n)
In fact, M(n) = [log,(n)]|

Theorem: 2'is the largest number that
can be made in i stages, and can only
be made by repeated doubling

Base i = O is clear.

To make anything as big as 2/ requires
having some X as big as 2! in i-1
stages. By I.H., we must have all the
powers of 2 up to 2! at stage i-1.
Hence, we can only double 27{i-1} at
stage i. The theorem follows.

? <MB0)<6
log,n SM (n) < 2| log, (n) |
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5 < M(30)

Suppose that M(30)=5. At the last stage, we
added two numbers x; and x, to get 30.

Without loss of generality (WLOG), we
assume that x; 2 x,.

Thus, x;2 15
By doubling bound, x, < 16
But x, can't be 16 since there is only one way
to make 16 in 4 stages and it does not make
14 along the way.

Thus, x, = 15 and M(15)=4

Suppose M(15) = 4

At stage 3, a number bigger than 7.5, but not
more than 8 must have existed. There is only
one sequence that gets 8 in 3 additions: 12 4
8

That sequence does not make 7 along the way
and hence there is nothing to add to 8 fo
make 15 at the next stage.

Thus, M(15)>4. CONTRADICTION.

¥, M@30)=6

M@B0) =6
log,n SM (n) < 2| log, (n) |

Rhind Papyrus (1650 BC)

30 =1248102030

Factoring Bound

M(ab) < M(a)+M(b)

11



Factoring Bound

M(ab) < M(a)+M(b)

Proof:

¢ Construct a in M(a) additions

¢ Using a as a unit follow a construction
method for b using M(b) additions. In
other words, every time the

construction of b refers to a number x,
use the number a times x.

Example
45=5*9
M(5)=3 [1245]
M(9)-4 [12489]
M(45) < 3+4 [12 45102040 45]

Corollary (Using Induction)
M(a,0,a5...a,) < M(a)+*M(ay)+...+M(a,)

Proof: For n=1 the bound clearly holds.
Assume it has been shown for up to
n-1. Apply theorem using a= a,a,a;...a,; and
b=a, to obtain:
M(a,0,a;...a,) < M(0a,a,0;...a, 1)+*M(a,)
By inductive assumption,
M(a,0,0;...a, 1) < M(a;)+*M(a,)+..+M(a, )

More Corollaries

Corollary: M(a¥) < kM(a)
Corollary: M(p,*1p,*2p;°3...p,"")
< ayM(p;) + aM(p;) +...+ a,M(p,)

Does equality hold?

M(33) < M(3) + M(11)
M@3)=2 [123]
M(11)=5 [12351011]
M@B3)+ M1 =7
M@33)=6 [124816 32 33]

The conjecture of equality fails. There have
been many nice conjectures. . . .

Conjecture: M(2n) = M(n) +1
(A. Goulard)

A fastest way to an even number is to make
half that number and then double it.

Proof given in 1895 by E. de Jonquieres in
LIntermediere Des Mathematiques rolume
2, pages 125-126

FALSE! M(191)=-M(382)=11
Furthermore, there are
infinitely many such
examples.
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Open Problem

Is there an n such that:

M(2n) < M(n)

Conjecture

Each stage might as well consist of
adding the largest number so far to one
of the other numbers.

First Counter-example: 12,509
[12481617 32 64 128 256 512
1024 1041 2082 4164 8328 8345
12509]

Open Problem

Prove or disprove the Scholz-
Brauer Conjecture:

M(2"-1)<n-1+8,

(The bound that follows from this
lecture is too weak: M(27-1) < 2n - 1)

High Level Point

Don't underestimate “simple” 5)
problems. Some “simple”

mysteries have endured for
thousand of years.

¥
Raising To A Power
Minimal Addition Chain

3 00

Abstraction
Abstract away the inessential
features of a problem or solution

B¢
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'f‘ - solution

)] GENERALIZE

Study Bee
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