
Induction: One Step At A Time

Carnegie Mellon UniversityJan 11, 2005Lecture 1
CS 15-251 Spring 2005Steven Rudich

Great Theoretical Ideas In Computer Science

Today we will talk
about

INDUCTION

Induction is the
primary way we:

1. Prove theorems
2.Construct and

define objects

Let’s start with dominoes

Domino Principle: Line up any
number of dominos in a row;
knock the first one over and

they will all fall.

n dominoes numbered 1 to n

Fk ´ The kth domino falls

If we set them all up in a row then we
know that each one is set up to knock
over the next one:

For all 1 = k < n:
Fk) Fk+1

n dominoes numbered 1 to n

Fk ´ The kth domino falls
For all 1 = k < n:

Fk) Fk+1

F1) F2) F3) …
F1) All Dominoes Fall

Computer Scientists
don’t start numbering
things at 1, they start at
0.

YOU will spend a career
doing this, so GET USED
TO IT NOW.

n dominoes numbered 0 to n-1

Fk ´ The kth domino falls
For all 0 = k < n-1:

Fk) Fk+1

F0) F1) F2) …
F0) All Dominoes Fall

Standard Notation/Abbreviation
“for all” is written “8”

Example:

For all k>0, P(k)
is equivalent to

8k>0, P(k)

n dominoes numbered 0 to n-1

Fk ´ The kth domino falls
8 k, 0 = k < n-1:

Fk) Fk+1

F0) F1) F2) …
F0) All Dominoes Fall

The Natural Numbers

N = { 0, 1, 2, 3, . . .}

The Natural Numbers

N = { 0, 1, 2, 3, . . .}

One domino for each natural number:

0 1 2 3 4 5 ….

The Infinite Domino Principle
Fk ´ The kth domino falls

Suppose F0
Suppose for each natural number k,

Fk) Fk+1

Then All Dominoes Fall!

F0) F1) F2) …

The Infinite Domino Principle
Fk ´ The kth domino falls

Suppose F0
Suppose for each natural number k,

Fk) Fk+1

Then All Dominoes Fall!

Proof: If they do not all fall, there must
be a least numbered domino d>0 that did
not fall. Hence, Fd-1 and not Fd . Fd-1) Fd.
Hence, domino d fell and did not fall.
Contradiction.

Mathematical Induction:
statements proved instead of

dominoes fallen

Infinite sequence of
statements: S0, S1, …
Fk ´ Sk proved

Infinite sequence of
dominoes.
Fk ´ domino k falls

Establish 1) F0
2) 8 k, Fk) Fk+1

Conclude that Fk is true for all k

Inductive Proof / Reasoning
To Prove ∀k, Sk

Establish “Base Case”: S0
Establish “Domino Property”: ∀k, Sk) Sk+1

Assume hypothetically that
Sk for any particular k;

Conclude that Sk+1

∀k, Sk) Sk+1

Inductive Proof / Reasoning
To Prove ∀k, Sk

“Induction Hypothesis” Sk

Use I.H. to show Sk+1

∀k, Sk) Sk+1

Establish “Base Case”: S0
Establish “Domino Property”: ∀k, Sk) Sk+1

Inductive Proof / Reasoning
To Prove ∀k¸b, Sk

Establish “Base Case”: Sb
Establish “Domino Property”: ∀k¸b, Sk) Sk+1

Assume k¸ b
Assume “Inductive Hypothesis”: Sk

Prove that Sk+1 follows

Theorem?

The sum of the first
n odd numbers is n2.

Theorem?

The sum of the first
n odd numbers is n2.

CHECK IT OUT ON SMALL
VALUES:
1 = 1
1+3 = 4
1+3+5 = 9
1+3+5+7 = 16

Theorem: The sum of
the first n odd numbers
is n2.

The kth odd number is
expressed by the formula
(2k – 1), when k>0.

Sn ≡
“The sum of the first n
odd numbers is n2.”

Equivalently, Sn is the
statement that:
Σ1· k· n (2k-1)
=1 + 3 + 5 + (2k-1) + . . +(2n-1)
= n2

Sn ≡ “The sum of the first n odd numbers is n2.”
“1 + 3 + 5 + (2k-1) + . . +(2n-1)= n2”

Trying to establish that: 8n¸1 Sn

Base case: S1 is true

The sum of the first 1 odd numbers is
1.

Sn ≡ “The sum of the first n odd numbers is n2.”
“1 + 3 + 5 + (2k-1) + . . +(2n-1)= n2”

Trying to establish that: 8n¸1 Sn

Assume “Induction Hypothesis”: Sk(for any particular k¸ 1)
1+3+5+…+ (2k-1) = k2

Sn ≡ “The sum of the first n odd numbers is n2.”
“1 + 3 + 5 + (2k-1) + . . +(2n-1)= n2”

Trying to establish that: 8n¸1 Sn

Assume “Induction Hypothesis”: Sk(for any particular k¸ 1)
1+3+5+…+ (2k-1) = k2

Add (2k+1) to both sides.
1+3+5+…+ (2k-1)+(2k+1) = k2 +(2k+1)
Sum of first k+1 odd numbers = (k+1)2

CONCLUSE: Sk+1

Sn ≡ “The sum of the first n odd numbers is n2.”
“1 + 3 + 5 + (2k-1) + . . +(2n-1)= n2”

Trying to establish that: 8n¸1 Sn

Established base case: S1

Established domino property: 8 k¸ 1 Sk) Sk+1

By induction of n, we conclude that:
8n¸1 Sn

THEOREM:

The sum of the first
n odd numbers is n2.

Theorem?

The sum of the first
n numbers is ½n(n+1).

Theorem? The sum of
the first n numbers is
½n(n+1).

Try it out on small
numbers!

1 = 1 = =½ 1(1+1).
1+2 = 3 =½ 2(2+1).
1+2+3 = 6 =½ 3(3+1).
1+2+3+4 = 10=½ 4(4+1).

Theorem? The sum of
the first n numbers is
½n(n+1).

= 0 = =½ 0(0+1).
1 = 1 = =½ 1(1+1).
1+2 = 3 =½ 2(2+1).
1+2+3 = 6 =½ 3(3+1).
1+2+3+4 = 10=½ 4(4+1).

Notation:
∆0= 0

∆n= 1 + 2 + 3 + . . . + n-1 + n

Let Sn ´
“∆n =n(n+1)/2”

Sn ´ “∆n =n(n+1)/2”
Use induction to prove ∀k¸0, Sk

Establish “Base Case”: S0. ∆0=The sum of the
first 0 numbers = 0. Setting n=0 the formula
gives 0(0+1)/2 = 0.

Establish “Domino Property”: ∀k¸0, Sk) Sk+1

“Inductive Hypothesis” Sk: ∆k =k(k+1)/2

∆k+1 = ∆k + (k+1)
= k(k+1)/2 + (k+1) [Using I.H.]
= (k+1)(k+2)/2 [which proves Sk+1]

THEOREM:

The sum of the first
n numbers is ½n(n+1).

A natural number n>1
is prime if it has no
divisors besides 1 and
itself.

N.B.
1 is not considered
prime.

Easy theorem:
Every natural number>1
can be factored into
primes.

N.B.:
It is much more subtle to
argue for the existence
of a unique prime
factorization

Easy theorem:
Every natural number>1
can be factored into
primes.
Sn ≡ “n can be factored
into primes”

S2 is true because 2 is
prime.

Every natural number>1
can be factored into
primes. Base case: 2

Assume 2,3,…..,k-1 all can
be factored into primes.
Show k can be factored
into primes.

Assume 2,3,…..,k-1 all can be
factored into primes.
Show k can be factored into
primes.

If k is prime, we are done.
If not, k= ab where 1<a,b<k,
hence a and b can be factored
into primes. Thus, k is the
product of the factors of a and
the factors of b.

This illustrates a
technical point
about using and

defining
mathematical

induction.

All Previous Induction
To Prove ∀k, Sk

Establish “Base Case”: S0

Establish that ∀k, Sk) Sk+1

Let k be any natural number.
Induction Hypothesis:

Assume ∀j<k, Sj

Derive Sk

“Strong” Induction
To Prove ∀k, Sk

Establish “Base Case”: S0

Establish that ∀k, Sk) Sk+1

Let k be any natural number.
Assume ∀j<k, Sj

Prove Sk

Least Counter-Example
Induction to Prove ∀k, Sk

Establish “Base Case”: S0
Establish that ∀k, Sk) Sk+1

Assume that Sk is the least counter-
example.
Derive the existence of a smaller
counter-example

All numbers > 1 has a
prime factorization.

Let n be the least
counter-example. n

must not be prime – so n
= ab. If both a and b had

prime factorizations,
then n would. Thus

either a or b is a smaller
counter-example.

Inductive reasoning is
the high level idea:

“Standard” Induction

“Least Counter-example”
“All Previous” Induction

all just
different packaging.

“All Previous” Induction
Can Be Repackaged As

Standard Induction

Establish “Base Case”: S0

Establish that ∀k, Sk) Sk+1

Let k be any natural number.
Assume ∀j<k, Sj

Prove Sk

Define Ti = ∀j· i, Sj

Establish “Base Case”: T0

Establish that ∀k, Tk) Tk+1

Let k be any natural number.
Assume Tk-1

Prove Tk

Induction is also how we
can define and

construct our world.

So many things, from
buildings to computers,
are built up stage by

stage, module by
module, each depending
on the previous stages.

Well,
almost
always

Inductive Definition Of Functions

Stage 0, Initial Condition, or Base Case:
Declare the value of the function on some
subset of the domain.

Inductive Rules
Define new values of the function in terms of
previously defined values of the function

F(x) is defined if and only if it is implied by
finite iteration of the rules.

Inductive Definition Of Functions

Stage 0, Initial Condition, or Base Case:
Declare the value of the function on some
subset of the domain.

Inductive Rules
Define new values of the function in terms of
previously defined values of the function

If there is an x such that F(x) has more than
one value – then the whole inductive definition
is said to be inconsistent.

Inductive Definition
Recurrence Relation for F(X)

Initial Condition, or Base Case:
F(0) = 1

Inductive Rule
For n>0, F(n) = F(n-1) + F(n-1)

1

0

F(n)

7654321n

Inductive Definition
Recurrence Relation for F(X)

Initial Condition, or Base Case:
F(0) = 1

Inductive Rule
For n>0, F(n) = F(n-1) + F(n-1)

1

0

2F(n)

7654321n

Inductive Definition
Recurrence Relation for F(X)

Initial Condition, or Base Case:
F(0) = 1

Inductive Rule
For n>0, F(n) = F(n-1) + F(n-1)

1

0

42F(n)

7654321n

Inductive Definition
Recurrence Relation for F(X)

Initial Condition, or Base Case:
F(0) = 1

Inductive Rule
For n>0, F(n) = F(n-1) + F(n-1)

1

0

128643216842F(n)

7654321n

Inductive Definition
Recurrence Relation for F(X) = 2X

Initial Condition, or Base Case:
F(0) = 1

Inductive Rule
For n>0, F(n) = F(n-1) + F(n-1)

1

0

128643216842F(n)

7654321n

Inductive Definition
Recurrence Relation

Initial Condition, or Base Case:
F(1) = 1

Inductive Rule
For n>1, F(n) = F(n/2) + F(n/2)

0

1F(n)

7654321n

Inductive Definition
Recurrence Relation

Initial Condition, or Base Case:
F(1) = 1

Inductive Rule
For n>1, F(n) = F(n/2) + F(n/2)

0

21F(n)

7654321n

Inductive Definition
Recurrence Relation

Initial Condition, or Base Case:
F(1) = 1

Inductive Rule
For n>1, F(n) = F(n/2) + F(n/2)

0

421F(n)

7654321n

Inductive Definition
Recurrence Relation

Initial Condition, or Base Case:
F(1) = 1

Inductive Rule
For n>1, F(n) = F(n/2) + F(n/2)

%

0

%%%4%21F(n)

7654321n

Inductive Definition
Recurrence Relation

F(X) = X for X a whole power of 2.

Initial Condition, or Base Case:
F(1) = 1

Inductive Rule
For n>1, F(n) = F(n/2) + F(n/2)

%

0

%%%4%21F(n)

7654321n

Base Case: 8x2N P(X,0) = X
Inductive Rule:

8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

0

76543210P(x,y)

1

3

2

Base Case: 8x2N P(X,0) = X
Inductive Rule:

8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

00

76543210P(x,y)

11

3

2

3

2

Base Case: 8x2N P(X,0) = X
Inductive Rule:

8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

100

76543210P(x,y)

211

3

2

43

32

Base Case: 8x2N P(X,0) = X
Inductive Rule:

8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

2100

76543210P(x,y)

3211

3

2

543

432

Base Case: 8x2N P(X,0) = X
Inductive Rule:

8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

765432100

76543210P(x,y)

876543211

3

2

109876543

98765432

Base Case: 8x2N P(X,0) = X
Inductive Rule:

8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

765432100

76543210X+Y

876543211

3

2

109876543

98765432

Definition of P:

8x2N P(X,0) = X
8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

Any inductive definition with a
finite number of base cases, can

be translated into a program. The
program simply calculates from

the base cases on up.

Definition of P:

8x2{0,1,2,3} P(X,0) = X
8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

What would be the bottom up
implementation of P?

For k = 0 to 3
P(k,0)=k

For j = 1 to 7
For k = 0 to 3

P(k,j) = P(k,j-1) + 1

765432100

76543210P(x,y)

876543211

3

2

109876543

98765432

Bottom-Up
Program for P

Suppose we wanted to
know P(2,3) in

particular, but we had
not yet done any

calculation.

Base Case: 8x2N P(X,0) = X
Inductive Rule:

8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

0

76543210P(x,y)

1

3

?2

Base Case: 8x2N P(X,0) = X
Inductive Rule:

8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

0

76543210P(x,y)

1

3

??2

Base Case: 8x2N P(X,0) = X
Inductive Rule:

8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

0

76543210P(x,y)

1

3

???2

Base Case: 8x2N P(X,0) = X
Inductive Rule:

8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

0

76543210P(x,y)

1

?

3

???2

Base Case: 8x2N P(X,0) = X
Inductive Rule:

8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

0

76543210P(x,y)

1

2

3

???2

Base Case: 8x2N P(X,0) = X
Inductive Rule:

8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

0

76543210P(x,y)

1

2

3

??32

Base Case: 8x2N P(X,0) = X
Inductive Rule:

8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

0

76543210P(x,y)

1

2

3

?432

Base Case: 8x2N P(X,0) = X
Inductive Rule:

8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

0

76543210P(x,y)

1

2

3

5432

Procedure P(x,y):
If y=0 return x
Otherwise return P(x,y-1)+1;

0

76543210P(x,y)

1

2

3

5432

Top Down

Procedure P(x,y):
If y=0 return x
Otherwise return P(x,y-1)+1;

0

76543210P(x,y)

1

2

3

5432

Recursive
Programming

Top-Down, Recursive Program:
Procedure P(x,y):

If y=0 return x
Otherwise return P(x,y-1)+1;

Inductive Definition:
8x2N P(X,0) = X

8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

Bottom-Up, Iterative Program:
For k = 0 to 3

P(k,0)=k
For j = 1 to 7

For k = 0 to 3
P(k,j) = P(k,j-1) + 1

Leonardo Fibonacci

In 1202, Fibonacci proposed a problem
about the growth of rabbit populations.

Leonardo Fibonacci

In 1202, Fibonacci proposed a problem
about the growth of rabbit populations.

Leonardo Fibonacci

In 1202, Fibonacci proposed a problem
about the growth of rabbit populations.

The rabbit reproduction model
•A rabbit lives forever
•The population starts as a single newborn pair
•Every month, each productive pair begets a
new pair which will become productive after 2
months old

Fn= # of rabbit pairs at the beginning of the
nth month

13853211rabbits

7654321month

The rabbit reproduction model
•A rabbit lives forever
•The population starts as a single newborn pair
•Every month, each productive pair begets a
new pair which will become productive after 2
months old

Fn= # of rabbit pairs at the beginning of the
nth month

13853211rabbits

7654321month

The rabbit reproduction model
•A rabbit lives forever
•The population starts as a single newborn pair
•Every month, each productive pair begets a
new pair which will become productive after 2
months old

Fn= # of rabbit pairs at the beginning of the
nth month

13853211rabbits

7654321month

The rabbit reproduction model
•A rabbit lives forever
•The population starts as a single newborn pair
•Every month, each productive pair begets a
new pair which will become productive after 2
months old

Fn= # of rabbit pairs at the beginning of the
nth month

13853211rabbits

7654321month

The rabbit reproduction model
•A rabbit lives forever
•The population starts as a single newborn pair
•Every month, each productive pair begets a
new pair which will become productive after 2
months old

Fn= # of rabbit pairs at the beginning of the
nth month

13853211rabbits

7654321month

The rabbit reproduction model
•A rabbit lives forever
•The population starts as a single newborn pair
•Every month, each productive pair begets a
new pair which will become productive after 2
months old

Fn= # of rabbit pairs at the beginning of the
nth month

13853211rabbits

7654321month

The rabbit reproduction model
•A rabbit lives forever
•The population starts as a single newborn pair
•Every month, each productive pair begets a
new pair which will become productive after 2
months old

Fn= # of rabbit pairs at the beginning of the
nth month

13853211rabbits

7654321month

Inductive Definition or
Recurrence Relation for the

Fibonacci Numbers

Stage 0, Initial Condition, or Base Case:
Fib(1) = 1; Fib (2) = 1

Inductive Rule
For n>3, Fib(n) = Fib(n-1) + Fib(n-2)

%

0

13853211Fib(n)

7654321n

Inductive Definition or
Recurrence Relation for the

Fibonacci Numbers

Stage 0, Initial Condition, or Base Case:
Fib(0) = 0; Fib (1) = 1

Inductive Rule
For n>1, Fib(n) = Fib(n-1) + Fib(n-2)

0

0

13853211Fib(n)

7654321n

Top-Down, Recursive Program:
Procedure Fib(k)

If k=0 return 0
If k=1 return 1
Otherwise return Fib(k-1)+Fib(k-2);

Inductive Definition:
Fib(0)=0, Fib(1)=1, k>1, Fib(k)=Fib(k-1)+Fib(k-2)

Bottom-Up, Iterative Program:
Fib(0) = 0; Fib(1) =1;
Input x;
For k= 2 to x do Fib(x)=Fiib(x-1)+Fib(x-2);
Return Fib(k);

What is a closed form formula for
Fib(n) ????

Stage 0, Initial Condition, or Base Case:
Fib(0) = 0; Fib (1) = 1

Inductive Rule
For n>1, Fib(n) = Fib(n-1) + Fib(n-2)

0

0

13853211Fib(n)

7654321n

Leonhard Euler (1765)
J. P. M. Binet (1843)

August de Moivre (1730)

Fibn =³ p
5+1
2

´n¡
³ p

5+1
2

´¡n

p
5

Study Bee

Inductive Proof
Standard Form
All Previous Form
Least-Counter Example Form
Invariant Form

Inductive Definition
Bottom-Up Programming
Top-Down Programming
Recurrence Relations
Solving a Recurrence

