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Cantor's Legacy:
Infinity And Diagonalization




Early ideas from the course

Induction

Numbers

Representation

Finite Counting and probability

A hint of the infinite:

Infinite row of dominoes.
Infinite choice trees, and infinite probability




Infinite RAM Model

Platonic Version: One memory location
for each natural number O, 1, 2, ...

Aristotelian Version: Whenever you run

out of memory, the computer contacts
the factory. A maintenance person is
flown by helicopter and attaches 100
Gig of RAM and all programs resume
their computations, as if they had
never been interrupted.




The Ideal Computer:
no bound on amount of memory
no bound on amount of time

Ideal Computer is defined as a computer with
infinite RAM.

You can run a Java program and never have
any overflow, or out of memory errors.




An Ideal Computer Can Be
Programmed To Print Out:

Tt 3.14159265358979323846264...
2: 2.0000000000000000000000...
e: 2.7182818284559045235336...

1/3: 0.33333333333333333333....
¢ 1.6180339887498948482045...




Printing Out An Infinite Sequence..

We say program P prints out the infinite
sequence s(0), s(1), s(2), ...; if when P is
executed on an ideal compu’rer a sequence of
symbols appears on the screen such that

- The kth symbol is s(k)
- For every keN, P eventually prints the k"

symbol. I.e., the delay between symbol k and
symbol k+1 is not infinite.




Computable Real Numbers

A real number r is computable if there
is a program that prints out the decimal
representation of r from left to right.
Thus, each digit of r will eventually be
printed as part of the output sequence.




Describable Numbers

A real number r is describable if it can
be unambiguously denoted by a finite
piece of English text.

2. "Two."
¢ "The area of a circle of radius one."




Is every computable real number,
also a describable real number?

Computable r: some program outputs r
Describable r: some sentence denotes r




Theorem: Every computable real is
also describable

Proof: Let r be a computable real that is
output by a program P. The following is an
unambiguous denotation:

"The real number output by the following
program:” P




MORAL: A computer
program can be viewed as
a description of its
output.

Syntax: The text of the program
Semantics: The real number output by P










Correspondence Principle

If two finite sets can be
placed into 1-1 onto

correspondence, then
they have the same size.




Correspondence Definition

Two finite sets are
defined to have the

same size if and only if
they can be placed into 1-1
onto correspondence.




Georg Cantor (1845-1918)




Cantor's Definition (1874)

Two sets are defined to have
the same size if and only if

they can be placed into 1-1
onto correspondence.




Cantor's Definition (1874)

Two sets are defined to have
the same cardinality if and

only if they can be placed
intfo 1-1 onto correspondence.




Do N and E have the same
cardinality?

N={0,1,2,3,4,5,6,7, ...}

5 = The even, natural numbers.







% and N do have the same

cardinality!

0,1,2,3,4,5, ...
0,2,64,6,8,10,

f(x) = 2x is 1-1 onto.



Lesson:

Cantor's definition only requires
that some 1-1 correspondence
between the two sets is onto,

not that all 1-1 correspondences
are onto.

This distinction never arises
when the sets are finite.



If this makes you feel
uncomfortable

TOUGH! It is the price that

you must pay to reason about
infinity




Do N and Z have the same
cardinality?

N={0,1,2,3,4,5,6,7, ...}

z={..,-2,-1,0,1,2,3, ..}







N and Z do have the same
cardinality!

2,3, 4,5, 6.
-1,2,-2,3,-3, ..

0,1,
0,1,

f(x)=1x/2| if xis odd
-x/2 if x is even




Transitivity Lemma

If f: A~B 1-1onto, and g: B- C 1-1 onto
Then h(x) = g(f(x)) is 1-1 onto A C

Hence, N, E, and Z all have the same
cardinality.




Do N and Q have the same
cardinality?

N={0,1,2,3,4,5,6,7, ..}

Q = The Rational Numbers







Don't jump to
conclusions!
There is a clever way
to list the rationals,

ohe at a time, without
missing a single onel



First, let's warm up
with another
Interesting one:

N can be paired
with NxN



Theorem: N and NxN have the
same cardinality

" The point (x,y)
represents the

ordered pair
(x.y)




Theorem: N and NxN have the
same cardinality

" The point (x,y)
represents the

ordered pair
(x.y)




Defining 1,1 onto f: N -> NxN

k;=0;
For sum = O to forever do

{For x = 0 to sum do
{y = sum-x;
Let f(k):= The point (x,y);
K+
}




Onto the Rationals!




The point at x,y represents x/y




The point at x,y represents x/y




1877 letter to Dedekind:

I see it, but I don't believe it/




We call a set countable
if it can be placed into

1-1 onto
correspondence with

the natural numbers.

So far we know that N,
E,Z,and Q are
countable.



Do N and R have the same
cardinality?

N={0,1,2,3,4,5,6,7, ...}

R = The Real Numbers




No way!
You will run out of
natural numbers long
before you match up

every real.






I am sure!
Cantor proved if.
He invented a very
important technique

called
"DIAGONALIZATION"



Theorem: The set I of reals
between O and 1 is not countable.

Proof by contradiction:

Suppose I is countable. Let f be the 1-1
onto function from N to I. Make a list L

as follows:

0: decimal expansion of f(0)
1: decimal expansion of f(1)

k: decimal expansion of f(k)




Theorem: The set I of reals
between O and 1 is not countable.

Proof by contradiction:

Suppose I is countable. Let f be the 1-1
onto function from N to I. Make a list L

as follows:

0:.3333333333333333333333...
1. .3141592656578395938594982..

ki .345322214243555345221123235..










Confuse =. C,




5, if d.=6

6, otherwise

Confuse =. C,




5, if d.=6

6, otherwise




5, if d.=6

6, otherwise




5, if d.=6

6, otherwise




5, if d.=6

6, otherwise

By design, Confuse, can't be on the list!
Confuse, differs from the k' element on the
list in the k™ position. Contradiction of
assumption that list is complete.




The set of reals IS
uncountable!







The argument works the
same for Q until the

punchline. CONFUSE,
IS not necessarily

rational, so there Is no
contradiction from the
fact that It IS missing.



Standard Notation

> = Any finite alphabet
Example: {a,b,c,de,..,z}

>U= All finite strings of symbols
from Z including the empty
string €




Theorem: Every infinite subset S
of X" is countable

Proof: Sort S by first by length and
then alphabetically. Map the first word

to O, the second to 1, and so on....




Stringing Symbols Together
> = The symbols on a standard
keyboard

The set of all possible Java
programs is a subset of X"

The set of all possible finite
pieces of English text is a
subset of Z-




Thus:

The set of all possible
Java programs is
countable.

The set of all possible
finite length pieces of
English text is countable.




There are countably many
Java program and
uncountably many reals.

HENCE: f.

MOST REALS ARE NOT (@™
COMPUTABLE.
















Power Set

The power set of S is the set of all

subsets of S. The power set is denoted
P(S).

Proposition: If S is finite, the power
set of S has cardinality 2!5|




Theorem: S can't be put info 1-1
correspondence with P(S)

Suppose f:S->P(S) is 1-1 and ONTO.




Theorem: S can't be put info 1-1
correspondence with P(S)

Suppose f:5->P(S) is 1-1 and ONTO. 7

Let CONFUSE ={x | x € S, x O f(x) }

There is some y such that f(y)=CONFUSE
Isy in CONFUSE?

YES: Definition of CONFUSE implies ho
NO: Definition of CONFUSE implies yes




This proves that there are
at least a countable
number of infinities.

The first infinity is called: f-




0L

17

2,---




0L

Let S =

17

2,---

| KEN}
P(S) is provably larger
than any of them.



In fact, the same
argument can be used
to show that no single

Infinity Is big enough

to count the number of
INnfinities!



0? 13 Vy=ne
Cantor wanted to show

that the number of

reals was




Cantor called his
conjecture that U, was
the number of reals the
"Continuum Hypothesis."

However, he was unable
to prove it. This helped
fuel his depression.




The Continuum
Hypothesis can't be
proved or disproved
from the standard

axioms of set theory!
This has been proved




