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The probabilistic method &
infinite probability spaces




Events and Random Variables

* An event is a subset of sample space S.
+ A random variable is a (real-valued) function on S.

Eg: we throw a black and a white
ball into 2 equally likely bins.

event E = {both balls fall in same bin}

R.V. X = number of empty bins.




Events and Random Variables

« An event is a subset of S.
+ A random variable is a (real-valued) function on S.

Eg: we throw a black and a white
ball into 2 equally likely bins.

event E = {both balls fall in same bin}

R.V. X = number of empty bins.
Y = number of balls in bin #1




Thinking about R.V.'s

Distribution
onY

Distribution
Distribution onh the reals

+ real-valued function

Y = number of balls in bin #1




The guises of a random variable

It's a variable with a
probability distribution
on its values.

Q It's a function on
K the sample space S. f’

'“;“Vou should be comfortable
with both views.




Definition: expectation

The expectation, or expected value of a
random variable Y is

E[Y]=2, . < Pr(x) x Y(x)

:Zk Pr'(y:k)xk

\

2ix e5|Y(x) =k Pr(x)




Thinking about expectation

Distribution
onY

> k Pr(Y = k)




Linearity of Expectation

If Z = X+Y, then

E[Z] E[X] + E[Y]

N Even if X and Y are not
independent.




Question

There are 156 students in a class

There are 156 "alphabet cookies”
(six for each letter of the alphabet)

I hand the cookies randomly to students, one to each.

What is the average number of students who have a
cookie with letter = first letter of their name?




Use Linearity of Expectations

X; = 1if student j got a cookie with the right letter
O otherwise

X = ZJ - 1156 XJ = H# IUCky STUdenTS

E[X]1= 6/156 = 1/26.

“
E[X] = B[X-1.15¢ X;] = T “
2i=1.156 E[X;1= 156 * 1/26 = 6. \1




Some things to note

Random variables X; and X; not independent

But we don't carelll
E[Y+Z] = E[Y] + E[Z] even if Y and Z are dependent.

E[X] does not depend on distribution of people’'s names

We are correct even when all students have names
beginning with Alll




New topic: The probabilistic
method

Use a probabilistic argument
to prove a non-probabilistic

mgThemaTical theorem.




Definition: A cut in a graph.

A cutis a partition of the nodes of a graph
info two sets: U and V.

We say that an edge crosses the cut if it
goes from a node is U to a node in V.

Cut V




Theorem:

In any graph, there
exists a cut such that at

i least half the edges cross
the cut.




G has 11 edges.
This is a cut with 8 > 3(11) edges.




I/%— \\
N

G has 11 edges.
This is a cut with 9 > 3(11) edges.




Theorem:

In any graph, there exists a cut such
that > 3(# edges) cross the cut.

How are we going to prove this?

We will show that if we pick a cut
at random, the expected number of
edges crossing is 3(# edges).




Not

everybody
can be below
average!




What might

be is surely
possiblel

The Probabilistic Method




Theorem:

In any graph, there exists a cut such
that > 7(# edges) cross the cut.

Proof:

Pick a cut of G uniformly at random.
L.e., for each node, flip a fair coin to
determine if it isin U or V.

Let X, be the indicator RV for the
event that edge e crosses the cut.

What is E[X,]?




Theorem:

In any graph, there exists a cut such
that > 7(# edges) cross the cut.

Proof:

*Pick random cut.

Let X,=1if e crosses, else X_=0.

‘Let X = #(edges crossing cut).

S0, X =2, X,.

-Also, E[X,.] = 3.

‘By linearity of expectation,
E[X] = #(total #edges).




E[ # of edges crossing cut ]
= 3(# of edges)

The sample space of all possible
cuts must contain at least one
cut that at least half the edges
cross: if not, the average
number of edges would be less

than half!




Pictorial view (important!)

View all the cuts as leaves of a choice tree
where the ith choice is where to put node i.
Label each leaf by value of X
— E[X] = avg leaf value.




The Probabilistic Method

Goal: show that there exists an object of
value at least v.

Proof strategy:

» Define distribution D over objects.

* Define a RV X:
X(object) = value of object.

» Show E[X] > v. Conclude it must be
possible to have X > v.




Probabilistic Method for MaxCut

Theorem:

If we take a random cut in a graph G, then
E[cut value] > 3(# of edges of 6).

Theorem: l

Any graph G has a cut which contains half its edges.




And furthermore...

Suppose I already placed nodes 1,2,... k into U and V
in some way. M of the edges between these nodes
are already cut.

If we were to now split the nodes
k+1 through n randomly between
Uand V, we'd get

E[edges cut] = M edges already cut
+ 3 (number of edges not already determined)




Can we use the probabilistic
method to find a cut of size
3(# of edges)? /

" In this case you can, through

a heat strategy called the
conditional expectation

\ method

I'dea: make decisions in
greedy manner to maximize
expectation-to-go.




Pr(A N B) = Pr(A) Pr(B|A)

If B independent of A,
then Pr(B|A) = Pr(B)

and then
Pr(A N B) = Pr(A) Pr(B)

Conditional Probabilities




Def: Conditional Expectation

For RV X and event A,
the "conditional expectation of X given A" is:

E[X | A]=3, kxPr(X=k| A)

E.g., roll two dice. X = sum of dice, E[X] = 3.5+3.5
Let A be the event that the first die is 5.
E[X|A]=5+3.5=85




A very useful formula using
Conditional Expectation

If S is partitioned into
two events A and = A, then

E[X]=E[X | A]Pr(A) + E[X | =A]Pr(=A)




the proof uses a convenient fact

For any partition of the sample space S into disjoint
events A;, A,, ..., A,, and any event B,

Pr(B) =2, Pr(B N A))
=Y. Pr(B|A) Pr(A).




Proof

For any partition of S into A, A,, ..., we have
E[X] =2 E[X | A;] Pr(A).

E[X] =X, k x Pr(X = k)

A
a I
=2 kx [ 2 Pr(X =k | A) Pr(A) ]

(changing order of summation)

=Zi[Zk kaiPr(X:klAi)]XPr‘(Ai)
" /

= 2 EIX | A]]Pr(A).




Conditional Expectation

If S is partitioned into
two events A and = A, then

E[X]=E[X | A]Pr(A) + E[X | =A]Pr(=A)

Hence: both E[X | A]and E[X | - A] cannot
be less than E[X].




Recap of cut argument

Pick random cut.

Let X,=1if e crosses, else X_=0.
‘Let X = total #edges crossing.
S0, X =2, X,.

‘E[X.] = 3.

‘By linearity of expectation,
E[X] = #(total #edges).




Conditional expectation method

Let us have already decided fate of nodes 1 to i-1.

Let X = number of edges crossing cut if we place
rest of nodes into U or V at random.

So, E[X]= 3 E[ X | node i is put into U ]
+ 3 E[ X | node i is not put into U ]

One of the terms on the RHS is at least E[X].
Put node i into the side which makes the conditional
expectation larger.




Pictorial view (important!)

View sample space S as leaves of choice tree
the i™h choice is where to put node i.

Label leaf by value of X
hence E[X] = avg leaf value.




Pictorial view (important!)

If A is some node (event corresponding to choices made already),
then E[X | A] = average value of leaves under it.

= Algorithm = greedily go to side maximizing E[X | A]
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Pictorial view (important!)

If A is some node (event corresponding to choices made already),
then E[X | A] = average value of leaves under it.

= Algorithm = greedily go to side maximizing E[X | A]




Pictorial view (important!)

How to figure out E[X | A]? (Note: tree has 2" leaves)

E[X|A] = edges already cut in A
+ $E[ edges not yet determined]




Conditional expectation method

When the dust settles, our
algorithm is just this:

Put node i into the set that has
fewer of i's neighbors so far.

The Probabilistic Method was just
useful to prove it correct.




Sometimes, though, we can't get an
exact handle on these expectations.

The Probabilistic Method often gives us
proofs of existence without an

algorithm for finding the object.

In many cases, no efficient algorithms for
finding the desired objects are known!




Now for something

slightly different...




An easy question

What is 2, (%)27 A: 2.

/




Q / It never actually

\LIS that a problem’
R

/No. By > (i), we r'eally<

mean lim, . >, f(i).
[if this is undefined, so is the sum]

In this case, the
artial sum is 2-(3)" - 2

g

<




A related question

Suppose I flip a coin of bias p,
stopping when I first get heads.

What's the chance that I:
‘Flip exactly once?
Ans: p
‘Flip exactly two times?
Ans: (1-p) p
‘Flip exactly k times?
Ans: (1-p)<tp
*Eventually stop?
Ans: 1. (assuming p>0)




A related question

Pr(flip once)
+ Pr(flip 2 times)
+ Pr(flip 3 times) + ...
=1

So, p + (1-p)p + (1-p)°p + (1-p)°p + ...

Or, using q = 1-p,

> qi=
q =
(=0 1

_q.

=1




Pictorial view of coin tossing

Sample space S = leaves in this tree.
Pr(x) = product of edges on path to x.

If p>0, Pr[not halted by fime n] — 0 as n — oc.




Use to reason about expectations too

Pr(x|A) = product of edges on path from A to x.
(It is as if we started the game at A.)
E[X] = 2, Pr(x) X(x).
EIX|A] =2, 4 Pr(x|A)X(x).




Use to reason about expectations too

Flip bias-p coin until you see heads.
What is expected number of flips?

>k kPr(X=Kk)=2>, k [(1-p)x1p]




Use to reason about expectations too

Let X = # flips. Let A = event that 1st flip is tails.

E[X] = E[X|-A]Pr(-A) + E[ X|A ]Pr(A)
=1%p + (1+E[XD)*(1-p).
Solves to p E[X]=p + (1-p) = 1, so E[X] = 1/p.




Infinite Probability spaces

Note:

We are using infinite probability spaces, but
we really only defined things for finite
spaces so far.

Infinite probability spaces can be weird.

Luckily, in CS we will almost always look at spaces

that can be viewed as choice trees with
Pr(haven't halted by time 1) — 0 as t—oc.




More generally

Let S be sample space we can
view as leaves of a choice tree.

S, = leaves at depth < n

Let A be some event,
and A, =ANS,

If lim, . Pr(S,) =1, can define

Pr(A) = lim,_., Pr(A,)




Setting that doesn't fit our model

= Flip a coin until N

#(heads) > 2 x #(tails)

There's a reasonable
chance this will never

stop...
5




Random walk on a line

You go into a casino with $k, and at each time step,
you bet $1 on a fair game.

You leave when you are broke or have $n.

-

0 ol h

%

k

Question 1.
what is your expected amount of money at time 1?

Let X, be aR.V. for the amount of money at time .




Random walk on a line

You go into a casino with $k, and at each time step,
you bet $1 on a fair game.

You leave when you are broke or have $n.

-

0 il
X,

X, =k+3+8,+ ..+,
(6, is a RV for the change in your money at time i.)

E[5]= 0, since E[5.|A] = O for all situations A at time i.
So, E[X,] = k.




Random walk on a line

You go into a casino with $k, and at each time step,
you bet $1 on a fair game.

You leave when you are broke or have $n.

-

O ol

k

Question 2:
what is the probability that you leave with $n ?




Random walk on a line

Question 2:
what is the probability that you leave with $n ?

E[X;]= k.
E[X:]1= E[X;| X, = 0] x Pr(X, = O) 0
+ E[X; | X; = n]xPr(X; = n) +nx Pr(X, = n)

+ E[ X, | neither] x Pr(neither)  + (something,
x Pr(neither))

As t - oo, Pr(neither) - 0O, also something, < n
Hence Pr(X; = n) - k/n.




Expectations in infinite spaces

Let S be sample space we can
view as leaves of a choice tree.

S, = leaves at depth < n
Let lim, . Pr(S,) =1

Define
E[X]=Ilim, .2, s, X(x) Pr(x)

If this limit is undefined, then
the expectation is undefined.




Expectations in infinite spaces

Let S be sample space we can
view as leaves of a choice tree.

S, = leaves at depth < n
Let lim, . Pr(S,) =1

Define
E[X]=Ilim, .2, s, X(x) Pr(x)

Can get weird: so we want all the
conditional expectations E[X|A] to exist as well.




Boys and Girls

A country has the following law:

Each family must have children until they have a
girl, and then they must have no more children.

What is the expected number of boys?
The expected number of girls?
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