Great Theoretical Ideas In Computer Science

Steven Rudich CS 15-251 Spring 2004
Lecture 17 Mar 16, 2004 Carnegie Mellon University

Grade School Again:
A Parallel Perspective

0000000000000000000
Yy,

AT AR

Plus/Minus Binary
(Extended Binary)

Base 2: Each digit can be -1, O, 1,

Example:

1-1-1=4-2-1=1

One weight for each power of 3.
Left = "negative”. Right = "positive’

How to add 2 n-bit numbers.

How to add 2 n-bit numbers.

How to add 2 n-bit numbers.

How to add 2 n-bit numbers.

How to add 2 n-bit numbers.

How to add 2 n-bit numbers.

How to add 2 n-bit numbers.

Let k be the Time < kn is
maximum time that proportional to n
it takes you to do

of bits In numbers

The time grow linearly with
Input size.

If n people agree to help you add two
n bit numbers, it is not obvious that
they can finish faster than if you had

done it yourself.
00 0

@@@@

» possible to
add two n bit
numbers in less
than linear

parallel-time?

Darn those
carries.

/ A
Q/ Fast parallel

addition is no
obvious in usual
binary. But it is
amazingly direct in
Extended Binary!

_ /

/ h
Q’ Extended binary

means base 2
allowing digits to be

from {-1, O, 1}. We
can call each digit a
“trit”,

_ /

n people can add 2, n-trit, plus/minus
binary numbers in constant timel

8 ¢ 8 e
@@M

An Addition Party
to Add 110-1 to -111-1

¢ @

¢
A

An Addition Party

Invite n people o add two n-trit numbers
Assignh one person to each trit position

An Addition Party

Each person should add the two input
trits in their possession. Problem: 2 and
-2 are not allowed in the final answer.

Pass Left

If you have a 1 or a 2 subtract 2 from yourself and pass
a 1 to the left. (Nobody keeps more than 0)

Add in anything that is given to you from the right.
(Nobody has more than a 1)

After passing left

There will never again be any 2s
as everyone had at most O
and received at most 1 more

Passing left again

If you have a -1 or -2 add 2 to yourself
and pass a -1 to the left
(Nobody keeps less than O)

After passing left again

No -2s anymore either.
Everyone kept at least O and received
At most -1.

Caution:
Parties and Algorithms Do not Mix

4849

Is there a fast
parallel way to

convert an Extended
Binary number into a
standard binary
humber?

_ /

Not obvious: \

Sub-linear addition
in standard Binary.

Sub-linear EB to

-

S

Let's reexamine
grade school
addition from
the view of a
computer circuit.

_ /

Grade School Addition

1011111100
1011111101

+
11010000/ 0XNI10

10100000011

Grade School Addition

C:C,C-C,C,
a,8,3,a,a,

b,0,0,0,b,

Grade School Addition

Ripple-carry adder

Logical representation of
binary: O = false, 1 = true
C:C,C4C,-C,
a,a4a, a b

|
b,bsb, bo ci+1o|:| o

Si
s, = (a; XOR b;) XOR ¢,
¢, = (a; AND b,)
OR (a; AND c,)
OR (b, AND c,)

Ripple-carry adder

umpan b R

How long to add two n bit numbers?

Propagation time through
the circuit will be 8(n)

Circuits compute things in
parallel. We can think of
the propagation delay as

PARALLEL TIME.

Is it possible to
add two n bit
numbers in less
than linear

parallel-time?

I suppose the EB
addition algorithm
could be helpful

somehow.

Plus/minus \

binary means
base 2 allowing

digits to be
from {-1, O, 1}.

We can call

each digit a

“trit”. /

n people ¢an add 2, n-trit, plus/minus
binary numbers in constant time!

@@@@

0 0 0

Can we still do
addition quickly
in the standard

representation?

Yes, but first a neat idea...

Instead of adding two
numbers to make one number,
let's think about adding 3

numbers to make 2 numbers.

Carry-Save Addition

The sum of three numbers can be
converted into the sum of 2 numbers in
constant parallel timel

, 1100111011
1011111101

* 1000000110

Carry-Save Addition

The sum of three numbers can be
converted into the sum of 2 numbers in
constant parallel timel

1100111011

1011111101
1000000110

1111000000

10001111

Cool!

So if we if represent x as a+b,
and y as c+d, then can add xy

using two of these (this is
basically the same as that
plus/minus binary thing).

(a+b+c)+d=(e+)+d=g+h

Even In standard
representation, this is really
useful for multiplication.

Grade School Multiplication

10110111

Xk khkk kK k%
Xk kkkk k%
Xk k Kk kk k%

X

Xk khk Kk kk k%
Xk khkk kK k%

*kkkk Kk k%
2 Ol e e Sl b b e i Sl S b e S S b

Grade School Multiplication

X * kk k k k% %
* k k k% k k%

* %k k k% k *x k%
%k k k k k% %
* kk k k k%%
*k k k k k% %k
*kk k k k% %k
*k k k k k% %
* %k k% k% k% %
*k k k k k% %

EoR S S e e b b b S I S S b b <

We need to add n 2n-bit numbers:
q;, a,, Gs,..., G,

b
| Add the last two |

!

A tree of carry-save adders

| Add the last two |

T(n) = log;,,(n) + [last step]

So let's go back to the problem of
adding two numbers.

In particular, if we can add two

numbers in O(log n) parallel time,
then we can multiply in O(log n)
parallel tfime too!

If we knew the carries it would be very
easy to do fast parallel addition

ol
-

What do we know about the carry-
out before we know the carry-in?

anb

What do we know about the carry-
out before we know the carry-in?

anb

Hey, this is just a function of a
and b. We can do this in
parallel.

b

L&

0
1
0
1

Tdea #1: do this calculation first.

10.1.0
1011111101

+
11010000/ 0XNI10

This takes just one stepl!

Tdea #1: do this calculation first.

10.1.0
1011111101

+
11010000/ 0XNI10

Also, once we have the carries, it
only takes one step more:

s. = (a: XOR b,) XOR c.

10.1.0

So, everything boils down
to: can we find a fast
parallel way to convert

each position to its final

0/1 value?

Called the "parallel prefix problem”

10.1.0
~ ™

So, we need to do
this quickly....

!

Tdea #2:

Can think of 10e C e @19 Oas 6l

partial results in:
(1O0O(- O(-O(-O(-O(-©(1O(~©0))N)

for the operator ©: ®©0

O X=X 0
1O x=1 1
O©x=0 0

1
0
1
1

Idea #2 (cont):

And, the © operator is associative.

10. . -..1.0

(- ©(-©(-0010(-©0)))

(- © .)O (- ©1)O (- ©0)

Just using the fact that we have
an Associative, Binary Operator

Binary Operator: an operation that
takes two objects and returns a third.

e AB=C

Associative:
c(AaB)a C=A4a (BaC)

Examples

o Addition on the integers
e Min(a,b)

B EV(ENR)

o Left(a,b) = a

e Right(a,b) =Db

e Boolean AND
 Boolean OR

- ©

- ™

In what we are about
to do “+” will mean an
arbitrary binary
assoclative operator.

>

Prefix Sum Problem

InpUT: Xn_l, Xn_z,...,xl, XO
Output: Y, Ypo2..Y1. Yo
where

Prefix Sum example

Input: 6, 9,2, 3, 4,7
Output: 31,25,16,14,11,7
where

Example circuitry
(n=4)

X, Xo X, X; X,

Divide, conquer, and glue

for computing vy,
Xn1 Xn2 -« Xzl Xzt - X1 Xo
b }

sum on | n/2]
Items

T(1)=0
HOERITYZAER
T(n) =llog, n |

/Modern computers\

do something slightly
different. This
algorithm is fast, but

how many
‘- components does it
use? 4

Size of Circuit

(number of gates)

Xn1 Xnz -« Xzl Xzl - X1 Xo
v \

Sum on Sum on | n/2 |
| n/2]items items

5(1)=0 Yt
S(n) = S(n/21) + S(Ln/2]) +1
S(n) = n-1

Sum of Sizes

Xi Xoo X X1 X

S(N)=0+1+2+3+..+(n1)=n(n-1)/2

Recursive Algorithm
n items (n = power of 2)

Ifn=1,YO=Xo:

Xn—l Xn—Z Xn-3 ><n-4 X5 ><4 ><3 XZ Xl ><O

Recursive Algorithm
n items (n = power of 2)

Ifn=1,YO=Xo:

Xn—l Xn—Z Xn-3 ><n-4 5 ><4 X XZ Xl O

A

Prefix sum on n/2 items
00 ‘ ‘

Recursive Algorithm
n items (n = power of 2)

Ifn=1,YO=Xo:

Parallel time complexity
Ifﬂz l,yOsz:

X n-1 Xn 2 Xn 3 Xn 4 X5 X4 X3 XZ Xl XO

1{ [5 J| W\ &

T/2){ Prefix sum on n/2 items

1{ I n n | J
Yoo Y, e YaYy Y,Yr Y
T(1)=0; T(2) =1, T(n) = T(n/2) + 2
T(n) = 2 log,(n) - 1

Size
Ifﬂz l,yO=XO:
X1 Xno X3 X4 X5 X4 X3 X X1 X

n/2{ | o v W

s(/2){ Prefix sum on n/2 items

(n/2)-1{ I | n | J
Yoo Y, e YaYy Y,Yr Y
S(1)=0; S(n) = S(nh/2) + n -1
S(n) = 2n - log,n -2

Putting it all together: Carry Look-
Ahead Addition

To add two n-bit numbers: aand b

e 1 step to compute x values (- 01)

e 2 log,n - 1 steps to com

e 1 step to compute ¢ XO

oute carries ¢

R (a XOR b)

2 log,n + 1 steps total

Putting it all Together: multiplication

[carry look ahead]

T(n) = logs,,(n) + 2log,2n + 1

For a 64-bit word that
works out to a
parallel time of 22 for

Qnultiplication, and 13
for addition.
0- _

And this is how addition works
on commercial chips

Processor n 2log,n +1

80186 16

Pentium 32

Alpha

In order to handle \

Integer
addition/subtraction
we use 2's compliment
representation, e.q.,

WVE
-64| 32| 16

11 0] 1

S

Addition of two
numbers works the

same way (assuming ho
overflow).

32| 16
O 1

To negate a number, \
flip each of its bits

and add 1.

-64| 32 16
1 |01

-64| 32 16
O | 1] O

32| 16
1, 0

To negate a number,
flip each of its bits
and add 1.

-64| 32 16| 8 | 4| 2
1 11,1} 1 1

x + flip(x) = -1.

\So, -x = flip(x)+1. /

S

Most computers use
two's compliment
representation to

perform integer
addition and
subtraction.

_ /

Grade School Division

*xkkhkkkkkk k%

k kk k k% I

>(_>(->('>('

% % ¥ * ¥ ¥
* X

* X

* * *

% X X

% X X

& % & ¥ ¥ F

*
*
*
*
*
*
*

s % Ok F ¥ X F
s F F * 3k
* X* X

>(.>(->F>('>F>('
>(.>(->F>('>F>('
>(.>(->F>(->(->('
*

n bits of precision:
n subtractions costing 2log,n + 1 each
B(n logn)

~ ™

Let’s see If we can
reduce to O(n) by

Qeing clever about it.
0- _

Idea: internally, allow ourselves to
"go negative” using trits so we can
do constant-time subtraction.

Then convert back at the end.

(technically, called "extended
binary")

SRT division algorithm

11-110 r-1-11 21r6 22 r-5

1011 11101101 11| 237 11 237
10-1-1
Rule: Each bit of quotient
10-11 . . |
is determined by comparing
-10-1-1 first bit of divisor with first
20 bit of dividend. Easy!

=-1001

1011 Time for n bits of precision in result:
12

=~ 3n + 2log,(n)+1
1000 \ i 92()}

1 0-1-1 ! M

1 addition Convert to standard

0-1-11 per bit representation by
subtracting negative
bits from positive.

Intel Pentium division error

* The Pentium uses essentially the same
algorithm, but computes more than one bit
of the result in each step. Several leading
bits of the divisor and quotient are
examined at each step, and the difference
is looked up in a table.

-The table had several bad entries.

-Ultimately Intel offered to replace any
defective chip, estimating their loss at
$475 million.

If millions of
processors, how
much of a
speed-up might

I get over a
single
processor?

Brent's Law

At best, p processors will
give you a factor of p

speedup over the time it
takes on a single
processor.

The traditional
GCD algorithm will
take linear time to

operate on two n
bit numbers. Can it

be done faster in
parallel?

If n° people agree to help you compute
the GCD of two n bit numbers, it is
not obvious that they can finish faster
than if you had done it yoursel ‘

@@@@

Deep Blue

Many processors help DB look many
chess moves ahead. It was not obvious
that more processors could really help
with game tree search. I remember a

heated debate in C.B.'s Ph.D. thesis
defense.

