Great Theoretical Ideas In Computer Science
Steven Rudich CS 15-251 Spring 2004
Lecture 15 March 2, 2004 Carnegie Mellon University

On Time Versus Input Size

# of bits




How to add 2 n-bit numbers.




How to add 2 n-bit numbers.




How to add 2 n-bit numbers.




How to add 2 n-bit numbers.




How to add 2 n-bit numbers.




How to add 2 n-bit numbers.




Time complexity of
grade school addition

* % %

* k% T(n) = The amount of
* k% time grade school
addition uses to add
two n-bit numbers

What do you mean by “time”?




Roadblock ???

A given algorithm will take different
amounts of time on the same inputs
depending on such factors as:

— Processor speed
— Instruction set

— Disk speed

— Brand of compiler




Our Goal

We want to define TIME in a sense
that tfranscends implementation details
and allows us to make assertions about

grade school addition in a very general
way.




Hold on! You just admitted that it
makes no sense to measure the time,
T(n), taken by the method of grade
school addition since the time depends
on the implementation details. We will

have to speak of the time taken by a
particular implementation, as opposed
to the time taken by the method in the

abstract.




Don’t jJump to conclusions!
Your objections are serious, but not
Insurmountable. There Is a very nice
sense in which we can analyze grade
school addition without ever having to
worry about implementation details.

Here Is how It works . . .



On any reasonable computer adding 3
bits and writing down the two bit
answer can be done in constant time.
Pick any particular computer A and
define c to be the time It takes to

perform];l on that computer.

Total time to add two n-bit numbers
using grade school addition: cn
[c time for each of n columns]




Implemented on another computer B
the running time will be ¢’n where ¢’ Is

the time it takes to perform ﬂ
on that computer.
\ 4

Total time to add two n-bit numbers
using grade school addition: ¢'n
[c’ time for each of n columns]




# of bits in numbers

The fact that we get a line Is invariant
under changes of implementations.
Different machines result in different

slopes, but time grows linearly as input
Size Increases.



Thus we arrive at an implementation
independent insight: Grade School
Addition Is a linear time algorithm.

Determining the growth rate of the
resource curve as the problem size

Increases Is one of the fundamental
iIdeas of computer science.



Abstraction:
Abstract away the inessential
features of a problem or solution

| see! We can define away the details
of the world that we do not wish to
currently study, in order to recognize
the similarities between seemingly
different things..




TIME vs INPUT SIZE

For any algorithm, define
INPUT SIZE = # of bits to specify inputs,

Define
TIME, = the worst-case amount of time

used on inputs of size n.
We Often Ask:

What is the GROWTH RATE
of Time,, ?




How to multiply 2 n-bit numbers.

X *kk kk k k%
*kk kk k k%

* kk kk k k%

Xk kkkk k%
*kkkk k k%
* kk kk k k%
*kkkk k k%
*kk kk Kk k%
*kk kk k k%
. * % % % % % % %

.Sl i Sl b b i e Sl b S e Sl S b i ¢




How to multiply 2 n-bit numbers.

X * k k k k k k¥ %k
* k k k k k ¥ %

* k Kk k k k k %k
* kkk kk %k %k
* kkkk k k%
* k k k k% %k %k
* k% k k k k k%
. % % % % % % % %

R b I b b S b S b b b b S D <

| get it!

The total time Is Q
bounded by cn?. 3




Grade School Addition: Linear time
Grade School Multiplication: Quadratic time

t
|
m
e

# of bits in numbers

No matter how dramatic the difference in
the constants the quadratic curve will
eventually dominate the linear curve




Ok, so...

How much time does It take to
sqguare the number n using
grade school multiplication?




Grade School Multiplication:
Quadratic time

# of bits in numbers

(log n)? time to square
the number n




Time Versus Input Size

# of bits used to describe input

Input size is measured in bits,
unless we say otherwise.




How much time does it take?

Nursery School Addition
INPUT: Two n-bit numbers, a and b

OUTPUT: a + b

Start at a and add 1, b times

T(n) = ?




What is T(n) ?

Nursery School Addition
INPUT: Two n-bit numbers, a and b

OUTPUT: a + b

Start at a and add 1, b times

If b=000.0000, then NSA takes
almost no time. If b = 111111.11,
then NSA takes ¢ n2" time.




What is T(n) ?

Nursery School Addition
INPUT: Two n-bit numbers, a and b

OUTPUT: a + b

Start at a and add 1, b times

Worst case time is ¢ n2"  Exponentialt




Worst-case Time T(n)
for algorithm A means that
we define a measure of
Input size n, and we define

T(n) =

M'A_‘Xall_permissible Inputs X of size n
running time of algorithm A on X.




Worst-case Time Versus Input Size

# of bits used to describe input

Worst Case Time Complexity




What is T(n)?

Kindergarden Multiplication
INPUT: Two n-bit numbers, a and b

OUTPUT: a* b

Start at a and add a, b-1 times

We always pick the WORST CASE

for the input size n.
Thus, T(n) = ¢ n2" Exponential




Thus, Nursery School adding
and multiplication are

exponential time. They SCALE
HORRIBLY as input size grows.

Grade school methods scale
polynomially — just linear and
guadratic. Thus, we can add and
multiply fairly large numbers.




Multiplication is efficient, what
about reverse multiplication?

Let's define FACTORING n to
any method to produce a non-

trivial factor of n, or to assert
that n Is prime.



Factoring The Number n
By Trial Division

Trial division up 1o va

for k= 2 to Vndo
if k|n then
return n “has a non-trivial factor” k

return n"is prime”

O(Vn (logn)?) time if division is O((logn)?)




On input n, ftrial factoring uses
O(Vn (logn)?) time. Is that
efficient?

No! The input length is log(n).
Let k = log n. In terms of k,

we are using 2%'2 k? time.

The time is EXPONENTTIAL in
the input length.




We know methods of
FACTORING that are
sub-exponential

(about 2cube root of k)’ but
nothing efficient.




Useful notation to discuss growth rates

For any monotonic function f from the
positive integers to the positive integers, we

say 'f = O(n)" or “f is O(n)"

if:
Some constant times n eventually
dominates f

[ There exists a constant ¢ such that for all
sufficiently large n: f(n) < cn ]




f = O(n) means that there Is a line that
can be drawn that stays above f from
some point on

# of bits in numbers




Useful notation to discuss growth rates

For any monotonic function f from the
positive integers to the positive integers, we
say "f = Q(n)" or "f is Q(n)"
iIf:
f eventually dominates some constant
fimes n

[ There exists a constant ¢ such that for all
sufficiently large n: f(n) > cn ]




f = Q (n) means that there is a line
that can be drawn that stays below f
from some point on

# of bits in numbers




Useful notation to discuss growth rates

For any monotonic function f from the
positive integers to the positive
Integers, we say

“f = ©(n)" or “f is O(n)"
if:
f = O(n) and f = Q(n)




f = ®(n) means that f can be
sandwiched between two lines

# of bits in numbers




Useful notation to discuss growth rates

For any monotonic functions f and g from the
positive integers to the positive integers, we

say 'f = O(g)" or "f is O(g)"

if:
Some constant times g eventually
dominates f

[ There exists a constant ¢ such that for all
sufficiently large n: f(n) <= cg(n) ]




Useful notation to discuss growth rates

For any monotonic functions f and g from the
positive integers to the positive integers, we

Say \\f - Q(g)" or “f |S Q(g)"
iIf:
f eventually dominates some constant
Times g

[ There exists a constant ¢ such that for all
sufficiently large n: f(n) >= cg(n) ]




Useful notation to discuss growth rates

For any monotonic functions f and g
from the positive integers to the
positive integers, we say

“f = ©(g)" or “f is ©(g)"
if:
f = 0(9) and f = Q(g)




e nN=0(n%"?
— YES

 n = O(sqrt(n)) ?
— NO

e 3n° +4n + = 0(n?) ?
— YES

e3n°+4n+m=Q (n%) ?
— YES
e N2 = Q(nlogn) ?
— YES
* n¢logn = ©(n?)
— NO Quickies




Names For Some Growth Rates

Linear Time T(n) = O(n)
Quadratic Time T(n) = O(n?)
Cubic Time T(n) = O(n3)

Polynomial Time mean that for some
constant k, T(n) = O(nk).

Example: T(n) = 13n°




Names For Some Growth Rates

Exponential Time means that for some
constant k, T(n) = O(k")
Example: T(n) = n2" = O(3")

Almost Exponential Time means that
for some constant k, T(n) = 2kthroot of n




Names For Some Growth Rates

Logorithmic Time T(n) = O(logn)
Example: T(n) = 15log,(n)

Polylogarithmic Time means that for
some constant k, T(n) = O(log*(n))

Note: These kind of algorithms can't
possibly read all of their inputs.




Binary Search

A very common example of logarithmic
time is looking up a word in a sorted
dictionary.




Some Big Ones

Doubly Exponential Time means that
for some constant k, T(n) = is 2 to the
2n

Triply Exponential.

And so forth.




2STACK(0) = 1

2STACK(n) = 225TACK(n-1)

2STACK(1) =2
2STACK(2)=4
2STACK(3) =16
2STACK(4) = 65536
2STACK(5) > 1089

= atoms in universe




log™(n) = Inverse 2STACK(n)
# of times you have to apply the log
function to n to get it ito 1

2STACK(n) = 22STACK(n-1)

2STACK(1) =2
2STACK(2)=4
2STACK(4) = 65536
2STACK(D) > 1080

= atoms in universe

Log'(1)=0

.—09*(2) = 1
Log'(4) =2
._09*(16) =3
,09*(65536) =4

_og (way big) = 5




So an algorithm ’rha’r\
Q/ can be sh.own to run
in
O(nlog'(n) ) Time

1S
LINEAR TIME FOR
ALL PRACTICAL

PURPOSES!
\ /




Ackermann's Function

AO,n=n+1 fornx0
Am,0)= Am-1,1) form>1
Alm, n) = Aim-1, A(m, n- 1)) for m, n>1

A(4,2) > # of particles in universe

A(D5,2) can't be written out in this
universe




Inverse Ackermann

AO,n=n+1 fornx0
Aim,0)=Am-1,1) form2z1
Alm, n) = Aim-1, Aim, n-1)) for m, n>1

A'(k) = A(k k)

Inverse Ackerman is the inverse of A’

Practically speaking:
n*inverse-Ackermann(n) < 4n




n*i nver'se—Acker‘mann(n)\

arises in the seminal
paper of

D. D. Sleator and R. E.
Tarjan. A data structure
for dynamic trees.
Journal of Computer and
System Sciences,

\26(3):362—391, 1983.J







Q/ One the last day of this

course we will define the

BUSYBEAVER function -

It makes Akermann look
like dust.

\ /




\

Let's get back to our
original thinking...

~

/




Time complexity of
grade school addition

* % % % %

ST TRE R T(n) = The amount of
ok ok Kk Kk * time grade school
addition uses to add
two n-bit numbers

* % % % % *

f We saw that T(n) was linear.




Time complexity of
grade school multiplication

T(n) = The amount of
time grade school
multiplication uses to
add two n-bit numbers

i We saw that T(n) was quadratic.




Grade School Addition: Linear time
Grade School Multiplication: Quadratic time

t
|
m
e

# of bits in numbers

No matter how dramatic the difference in
the constants the quadratic curve will
eventually dominate the linear curve




Neat! We have demonstrated that as
things scale multiplication is a harder

Q problem than addition.

Mathematical confirmation of our

common sense.




/ Don’t jJump to conclusions! \
We have argued that grade school

multiplication uses more time than
grade school addition. This is a
comparison of the complexity of two
algorithms.

To argue that multiplication is an
Inherently harder problem than
addition we would have to show that

“the best” addition algorithm Is faster

@ “the best” multiplication algorithm.




Grade school addition Is

liInear time.

Q Is there a sub-linear time for

addition?




Any algorithm for addition must
read all of the input bits

e Suppose there is a mystery algorithm A that
does not examine each bit

e Give A a pair of numbers. There must be

some unexamined bit position | in one of the
numbers

e |f the A IS not correct on the numbers, we
found a bug

o |If Ais correct, flip the bit at position | and give
A the new pair of numbers. A give the same
answer as before, which is now wrong.




So any algorithm for addition must use
time at least linear in the size of the
numbers.

Grade school addition can’t be
Improved upon by more than a

constant factor.



- ™

To argue that multiplication is an
Inherently harder problem than
addition we would have to show that
no possible multiplication algorithm
runs in linear time.

N




Grade School Addition: ®(n) time
Furthermore, it is optimal

Grade School Multiplication: ©(n?) time

Q Is there a clever algorithm to

multiply two numbers in linear
time?




Despite years of research, no one
knows! If you resolve this question,
Carnegie Mellon will give you a PhD!

\




Can we even brake the
guadratic time barrier — In
other words can we do

something very different than
grade school multiplication?




Grade School Multiplication: ©(n?) time
Kissing Intuition

Intuition: Let’s say that each time

an algorithm has to multiply a digit

from one number with a digit from
the other number, we call that a
“kiss”. It seems as If any correct

algorithm must kiss at least n?
times.




