

Steven Rudich

CS 15-251

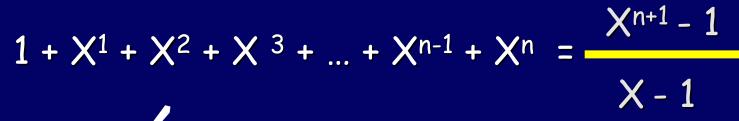
Spring 2003

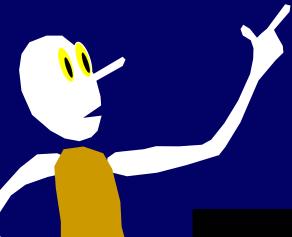
Lecture 11

Feb 14, 2004

Carnegie Mellon University

Counting III: Pascal's Triangle, Polynomials, and Vector Programs





The Geometric Series

The Infinite Geometric Series

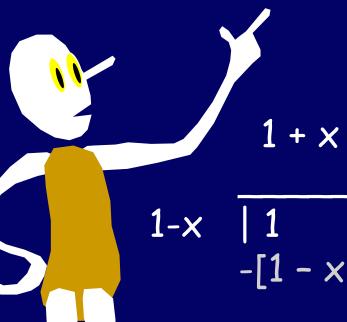
$$1 + X^{1} + X^{2} + X^{3} + ... + X^{n} + = \frac{1}{1 - X}$$

$$(X-1) (1 + X^{1} + X^{2} + X^{3} + ... + X^{n} + ...)$$

$$= X^{1} + X^{2} + X^{3} + ... + X^{n} + X^{n+1} + ...$$

$$- 1 - X^{1} - X^{2} - X^{3} - ... - X^{n-1} - X^{n} - X^{n+1} - ...$$

$$1 + X^{1} + X^{2} + X^{3} + ... + X^{n} + = \frac{1}{1 - X}$$



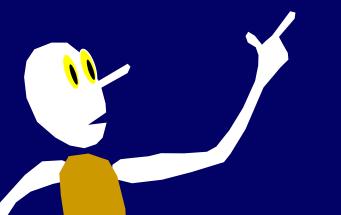
$$-[1 - x] - [x - x^{2}] - [x^{2}]$$

_

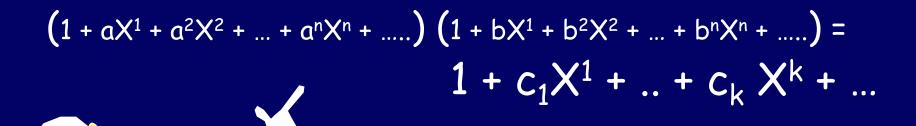
$$1 + aX^{1} + a^{2}X^{2} + a^{3}X^{3} + ... + a^{n}X^{n} + = \frac{1}{1 - aX}$$

Geometric Series (Linear Form)

$$(1 + aX^1 + a^2X^2 + ... + a^nX^n +) (1 + bX^1 + b^2X^2 + ... + b^nX^n +) =$$



Geometric Series (Quadratic Form)

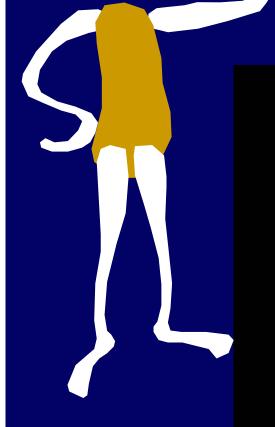


Suppose we multiply this out to get a single, infinite polynomial.

What is an expression for C_n ?

$$(1 + aX^{1} + a^{2}X^{2} + ... + a^{n}X^{n} +) (1 + bX^{1} + b^{2}X^{2} + ... + b^{n}X^{n} +) =$$

$$1 + c_{1}X^{1} + ... + c_{k}X^{k} + ...$$

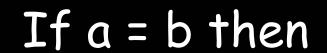


$$C_n =$$

 $a^{0}b^{n} + a^{1}b^{n-1} + ... a^{i}b^{n-i} ... + a^{n-1}b^{1} + a^{n}b^{0}$

$$(1 + aX^{1} + a^{2}X^{2} + ... + a^{n}X^{n} +) (1 + bX^{1} + b^{2}X^{2} + ... + b^{n}X^{n} +) =$$

$$1 + c_{1}X^{1} + ... + c_{k}X^{k} + ...$$



$$c_n = (n+1)(a^n)$$

 $a^{0}b^{n} + a^{1}b^{n-1} + ... a^{i}b^{n-i} ... + a^{n-1}b^{1} + a^{n}b^{0}$

$$a^{0}b^{n} + a^{1}b^{n-1} + ... a^{i}b^{n-i}... + a^{n-1}b^{1} + a^{n}b^{0} = a^{n+1} - b^{n+1}$$

$$(a-b) (a^{0}b^{n} + a^{1}b^{n-1} + ... a^{i}b^{n-i}... + a^{n-1}b^{1} + a^{n}b^{0})$$

$$= a^{1}b^{n} + ... a^{i+1}b^{n-i}... + a^{n-1}b^{1} + a^{n+1}b^{0}$$

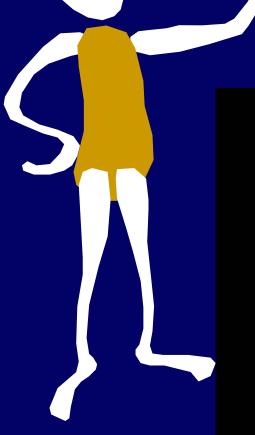
$$- a^{0}b^{n+1} - a^{1}b^{n}... a^{i+1}b^{n-i}... - a^{n-1}b^{2} - a^{n}b^{1}$$

$$= -b^{n+1}$$
 + a^{n+1}

$$a^{n+1} - b^{n+1}$$

$$(1 + aX^{1} + a^{2}X^{2} + ... + a^{n}X^{n} +) (1 + bX^{1} + b^{2}X^{2} + ... + b^{n}X^{n} +) =$$

$$1 + c_{1}X^{1} + ... + c_{k}X^{k} + ...$$



if $a \neq b$ then

$$c_n = a^{n+1} - b^{n+1}$$

$$a - b$$

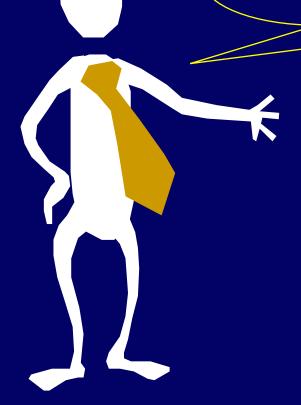
$$a^{0}b^{n} + a^{1}b^{n-1} + ... + a^{n-1}b^{1} + a^{n}b^{0}$$

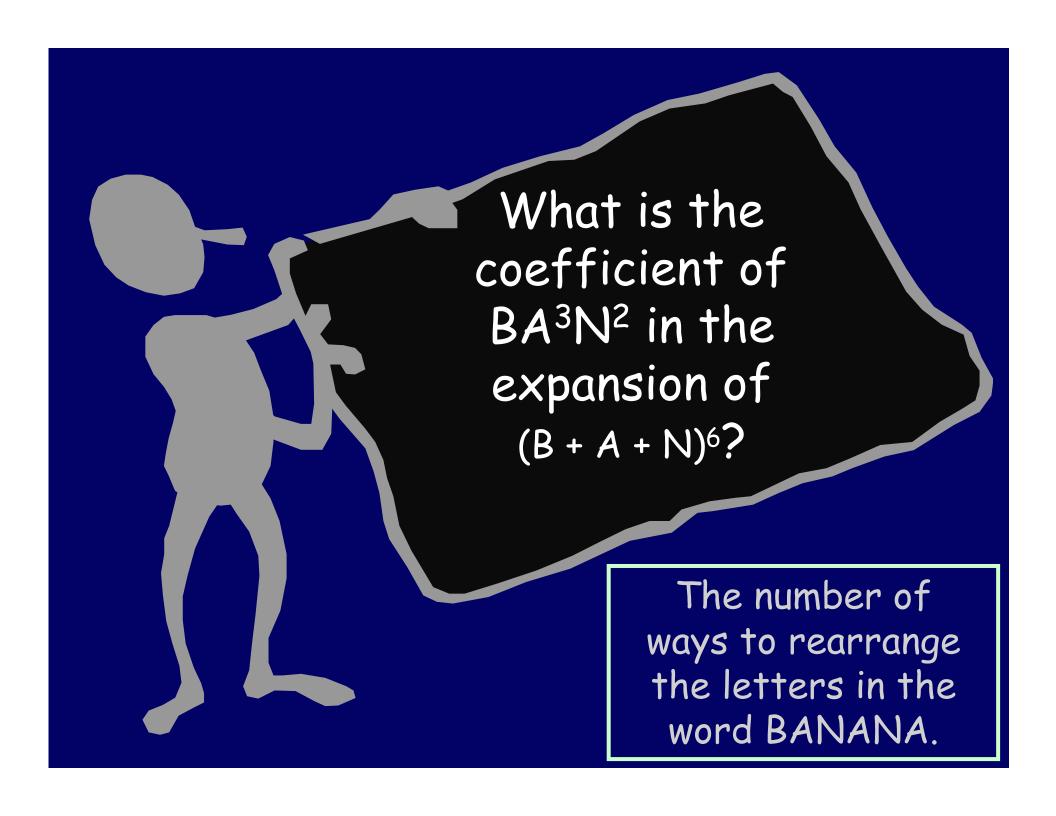
$$(1 + aX^1 + a^2X^2 + ... + a^nX^n +) (1 + bX^1 + b^2X^2 + ... + b^nX^n +) =$$

$$= \frac{1}{(1-aX)(1-bX)}$$

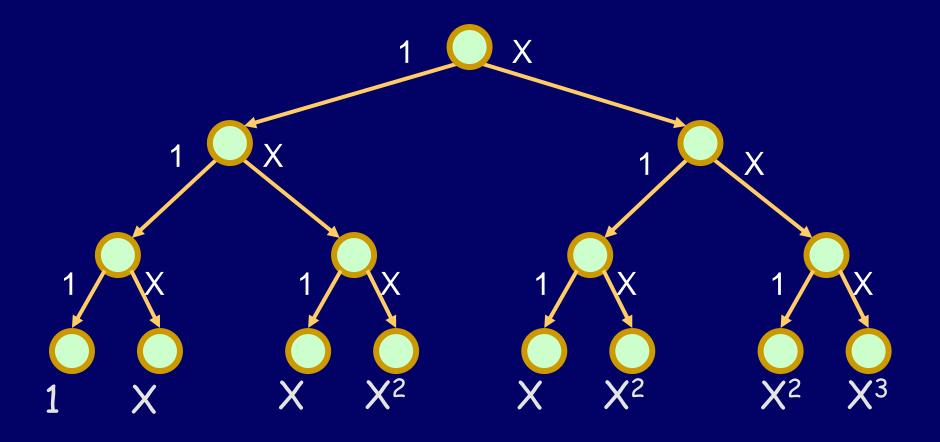
$$= \sum_{n=0..\infty} \frac{a^{n+1}-b^{n+1}}{a-b} X^n$$
or
$$\sum_{n=0..\infty} (n+1)a^n X^n$$
when $a=b$

Geometric Series (Quadratic Form)





Choice tree for terms of (1+X)³



Combine like terms to get $1 + 3X + 3X^2 + X^3$

The Binomial Formula

$$(1+X)^{n} = \binom{n}{0} + \binom{n}{1}X + \binom{n}{2}X^{2} + \ldots + \binom{n}{k}X^{k} + \ldots + \binom{n}{n}X^{n}$$

Binomial Coefficients

binomial expression

The Binomial Formula

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^k$$

One polynomial, two representations

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^k$$

"Product form" or "Generating form"

"Additive form" or "Expanded form"

Power Series Representation

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^k$$
"Closed form" or "Generating form"
$$= \sum_{k=0}^\infty \binom{n}{k} \cdot x^k$$
 Since $\binom{n}{k} = 0$ if $k > n$

"Power series" ("Taylor series") expansion

By playing these two representations against each other we obtain a new representation of a previous insight:

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^k$$

Let x=1.

$$2^n = \sum_{k=0}^n \binom{n}{k}$$

The number of subsets of an *n*-element set

By varying x, we can discover new identities

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^k$$

Let x = -1.

$$0 = \sum_{k=0}^{n} \binom{n}{k} \cdot (-1)^k$$

Equivalently,

$$\sum_{k \text{ even}}^{n} \binom{n}{k} = \sum_{k \text{ odd}}^{n} \binom{n}{k} = 2^{n-1}$$

The number of even-sized subsets of an *n* element set is the same as the number of odd-sized subsets.

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^k$$

Let x = -1.

$$0 = \sum_{k=0}^{n} \binom{n}{k} \cdot (-1)^k$$

Equivalently,

$$\sum_{k \text{ even}}^{n} \binom{n}{k} = \sum_{k \text{ odd}}^{n} \binom{n}{k} = 2^{n-1}$$

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^k$$

We could discover new identities by substituting in different numbers for X. One cool idea is to try complex roots of unity, however, the lecture is going in another direction.

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^k$$

Proofs that work by manipulating algebraic forms are called "algebraic" arguments. Proofs that build a 1-1 onto correspondence are called "combinatorial" arguments.

$$\sum_{k \text{ even}}^{n} \binom{n}{k} = \sum_{k \text{ odd}}^{n} \binom{n}{k} = 2^{n-1}$$

Let E_n be the set of binary strings of length n with an even number of ones.

We gave an <u>algebraic</u> proof that

$$|\mathcal{O}_n| = |\mathcal{E}_n|$$

A Combinatorial Proof

Let O_n be the set of binary strings of length n with an odd number of ones.

Let E_n be the set of binary strings of length n with an even number of ones.

A <u>combinatorial</u> proof must construct a one-toone correspondence between O_n and E_n

An attempt at a correspondence

Let f_n be the function that takes an n-bit string and flips all its bits.

 f_n is clearly a one-to-one and onto function

for odd n. E.g. in f_7 we have

 $0010011 \rightarrow 1101100$

 $1001101 \rightarrow 0110010$

...but do even n work? In f_6 we have

110011 → *001100*

101010 → *010101*

Uh oh. Complementing maps evens to evens!

A correspondence that works for all n

Let f_n be the function that takes an n-bit string and flips only the first bit. For example,

```
0010011 \rightarrow 1010011

1001101 \rightarrow 0001101
```

 $110011 \rightarrow 010011$ $101010 \rightarrow 001010$

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^k$$

The binomial coefficients have so many representations that many fundamental mathematical identities emerge...

The Binomial Formula

$$(1+X)^0 = 1$$

 $(1+X)^1 = 1+1X$
 $(1+X)^2 = 1+2X+1X^2$
 $(1+X)^3 = 1+3X+3X^2+1X^3$
 $(1+X)^4 = 1+4X+6X^2+4X^3+1X^4$

Pascal's Triangle: k^{th} row are the coefficients of $(1+X)^k$

$$(1+X)^0 = 1$$

 $(1+X)^1 = 1+1X$
 $(1+X)^2 = 1+2X+1X^2$
 $(1+X)^3 = 1+3X+3X^2+1X^3$
 $(1+X)^4 = 1+4X+6X^2+4X^3+1X^4$

kth Row Of Pascal's Triangle:

$$\binom{n}{0}$$
, $\binom{n}{1}$, $\binom{n}{2}$, ..., $\binom{n}{k}$, ... $\binom{n}{n}$

$$(1+X)^0 = 1$$

 $(1+X)^1 = 1+1X$
 $(1+X)^2 = 1+2X+1X^2$
 $(1+X)^3 = 1+3X+3X^2+1X^3$
 $(1+X)^4 = 1+4X+6X^2+4X^3+1X^4$

Inductive definition of kth entry of nth row: Pascal(n,0) = Pacal (n,n) = 1; Pascal(n,k) = Pascal(n-1,k-1) + Pascal(n,k)

$$(1+X)^0 = 1$$

 $(1+X)^1 = 1+1X$
 $(1+X)^2 = 1+2X+1X^2$
 $(1+X)^3 = 1+3X+3X^2+1X^3$
 $(1+X)^4 = 1+4X+6X^2+4X^3+1X^4$

"Pascal's Triangle"

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = 1$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1$$

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1$$

$$\begin{pmatrix} 2 \\ 0 \end{pmatrix} = 1$$

$$\begin{pmatrix} 2 \\ 1 \end{pmatrix} = 2$$

$$\begin{pmatrix} 2 \\ 1 \end{pmatrix} = 2$$

$$\begin{pmatrix} 2 \\ 2 \end{pmatrix} = 1$$

$$\begin{pmatrix} 3 \\ 1 \end{pmatrix} = 3$$

$$\begin{pmatrix} 3 \\ 2 \end{pmatrix} = 3$$

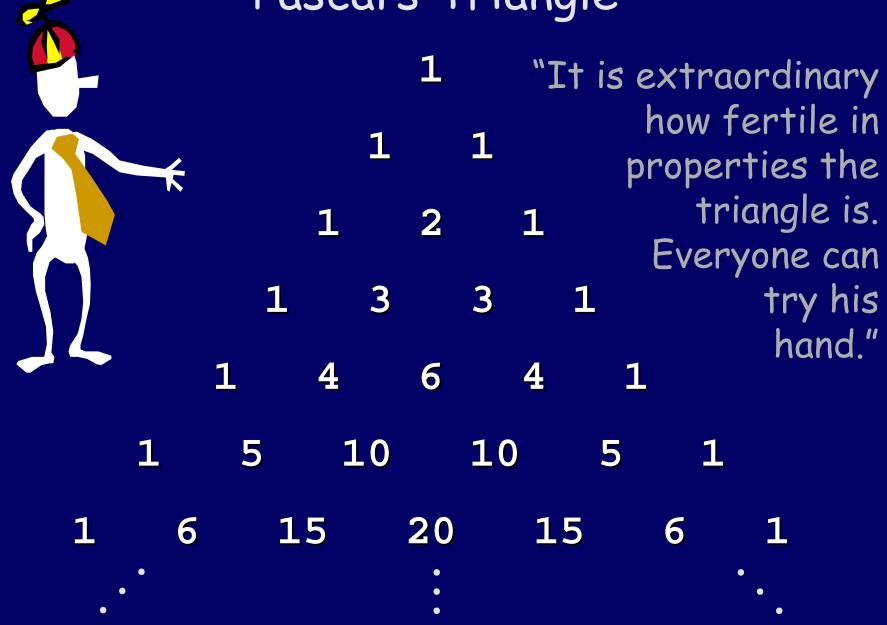
$$\begin{pmatrix} 3 \\ 3 \end{pmatrix} = 1$$

Al-Karaji, Baghdad 953-1029

Chu Shin-Chieh 1303
The Precious Mirror of the Four Elements
... Known in Europe by 1529

Blaise Pascal 1654

Pascal's Triangle



Summing The Rows

$$2^{n} = \sum_{k=0}^{n} \binom{n}{k} \qquad 1 \qquad = 1$$

$$1 + 2 + 1 \qquad = 4$$

$$1 + 3 + 3 + 1 \qquad = 8$$

$$1 + 4 + 6 + 4 + 1 \qquad = 16$$

$$1 + 5 + 10 + 10 + 5 + 1 \qquad = 32$$

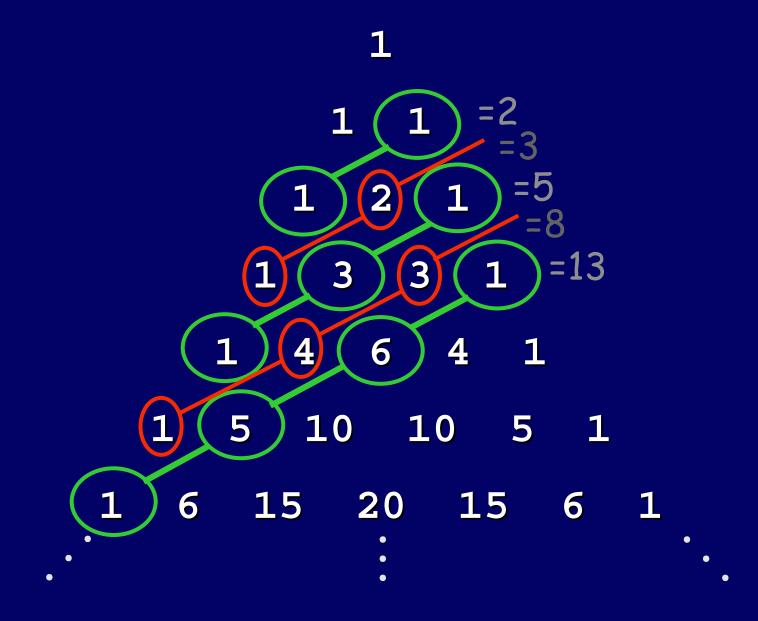
$$1 + 6 + 15 + 20 + 15 + 6 + 1 = 64$$

$$\vdots \qquad \vdots$$

6+20+6 = 1+15+15+1

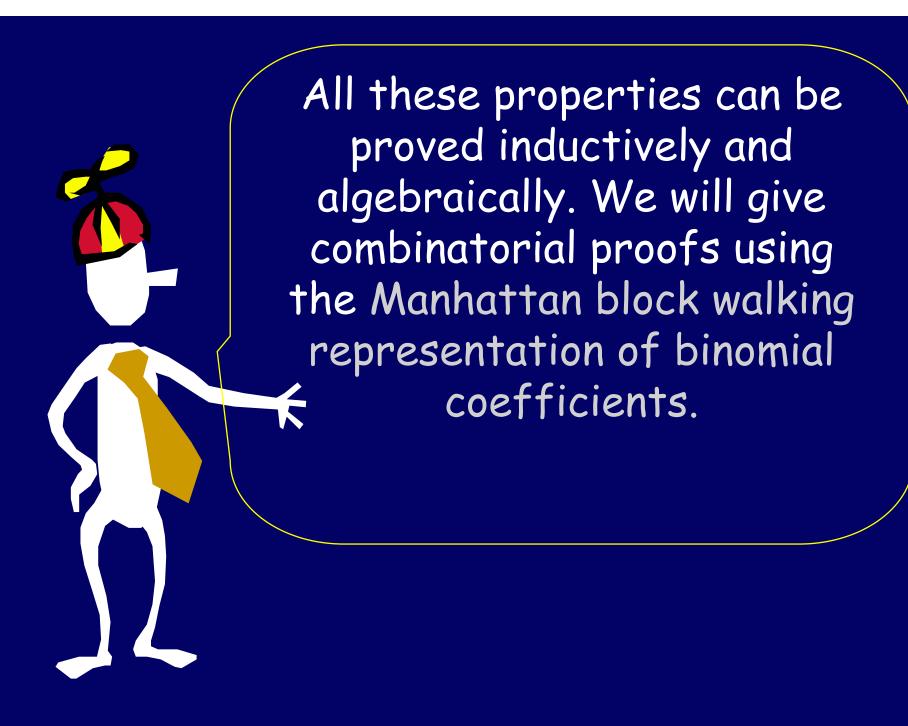
Summing on 1st Avenue

Summing on kth Avenue

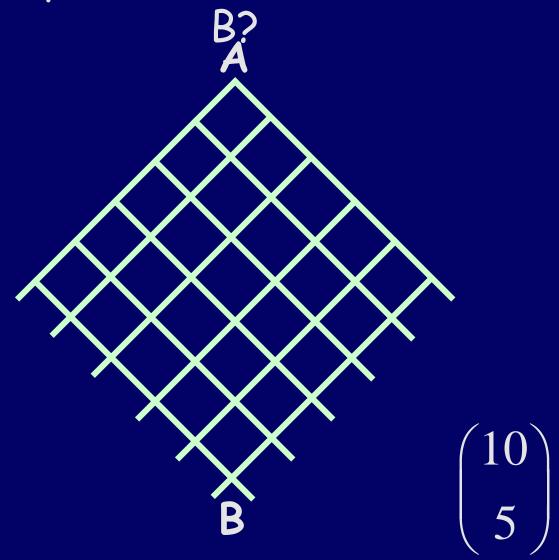


6 5 10 10 5 1 6 15 20 15 6 1

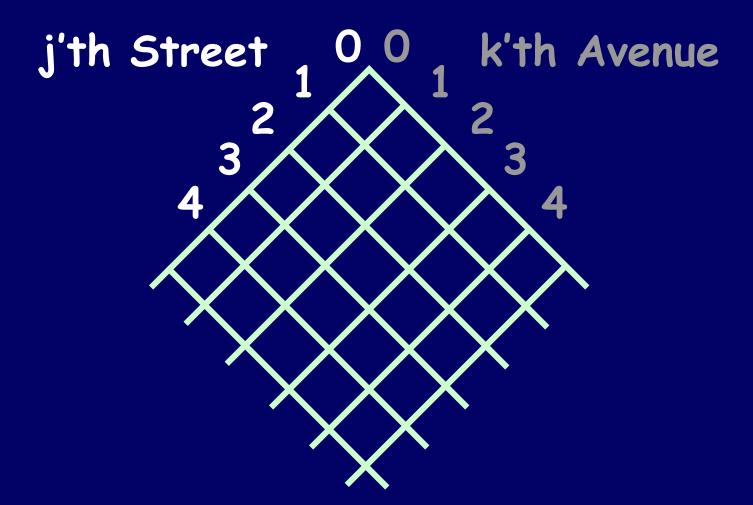
Al-Karaji Squares



How many shortest routes from A to

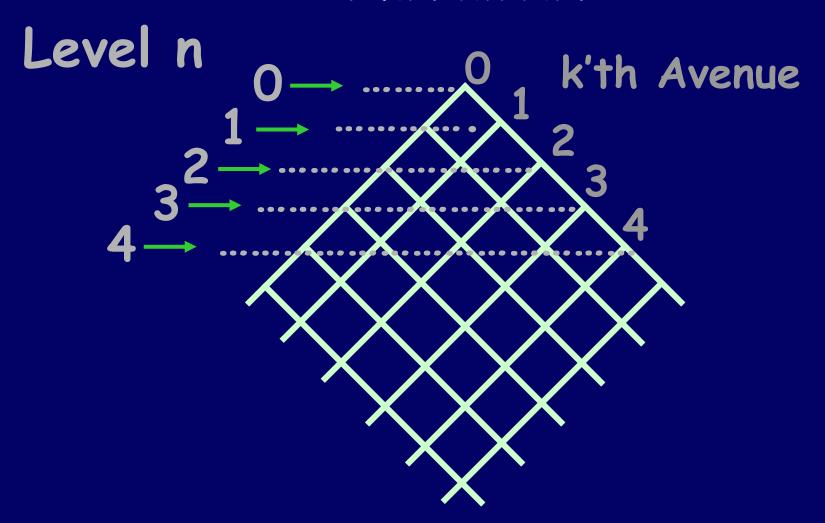


Manhattan



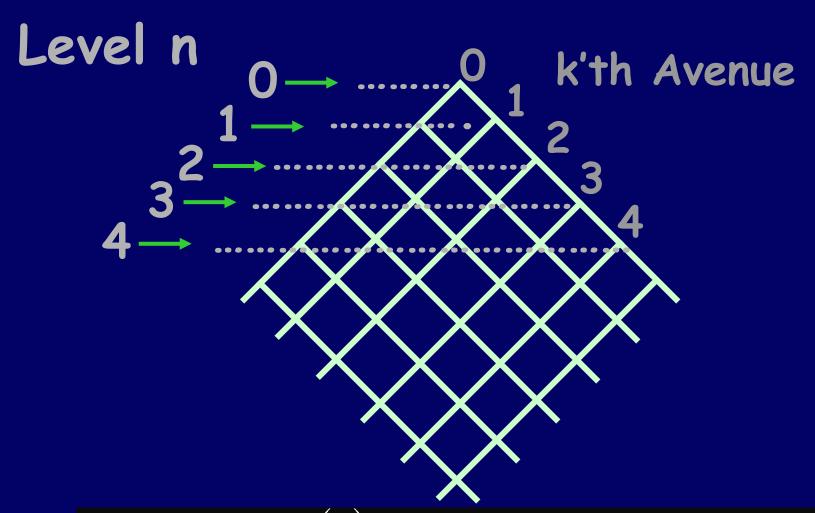
There are $\binom{j+k}{k}$ shortest routes from (0,0) to (j,k).

Manhattan

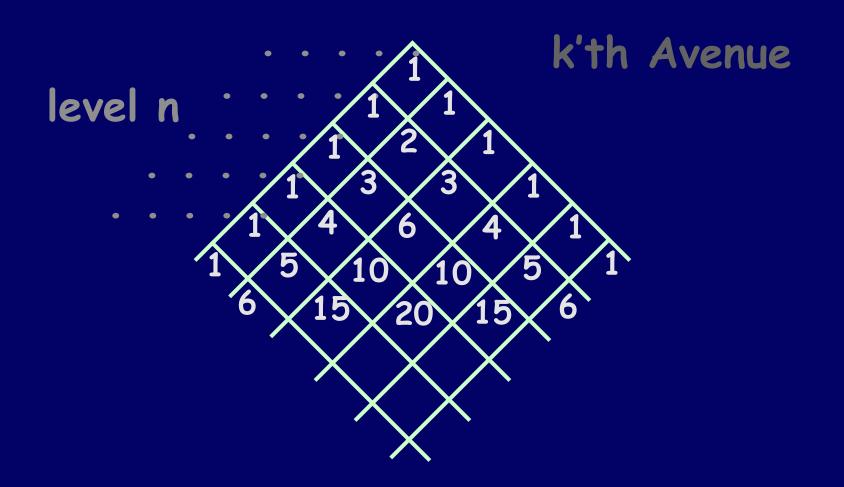


There are $\binom{n}{k}$ shortest routes from (0,0) to (n-k,k).

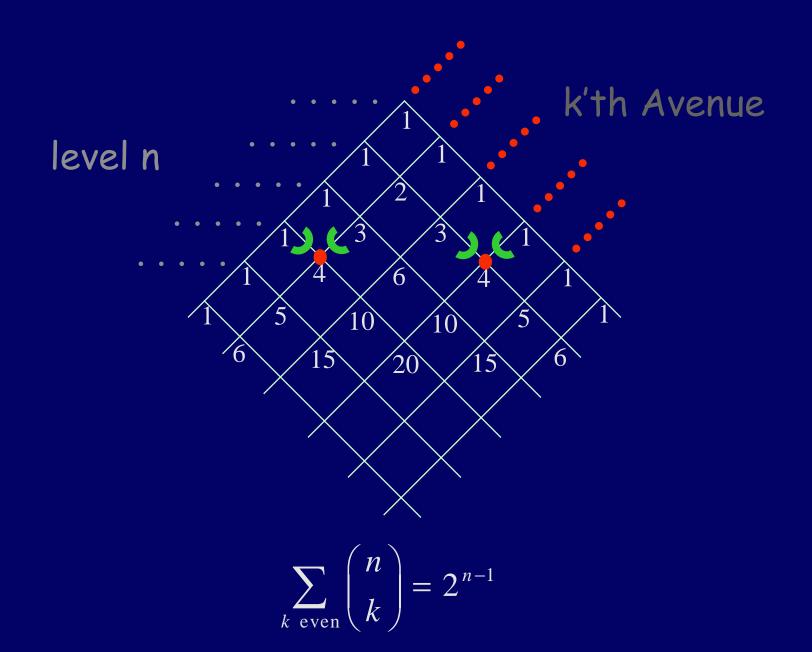
Manhattan

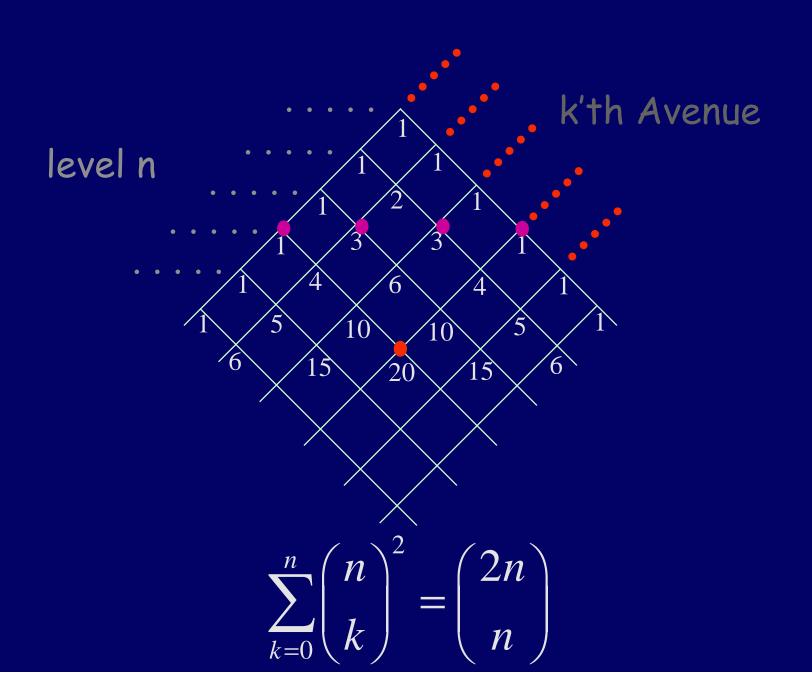


There are $inom{n}{k}$ shortest routes from (0,0) to Level n and k^{th} Avenue.



$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$



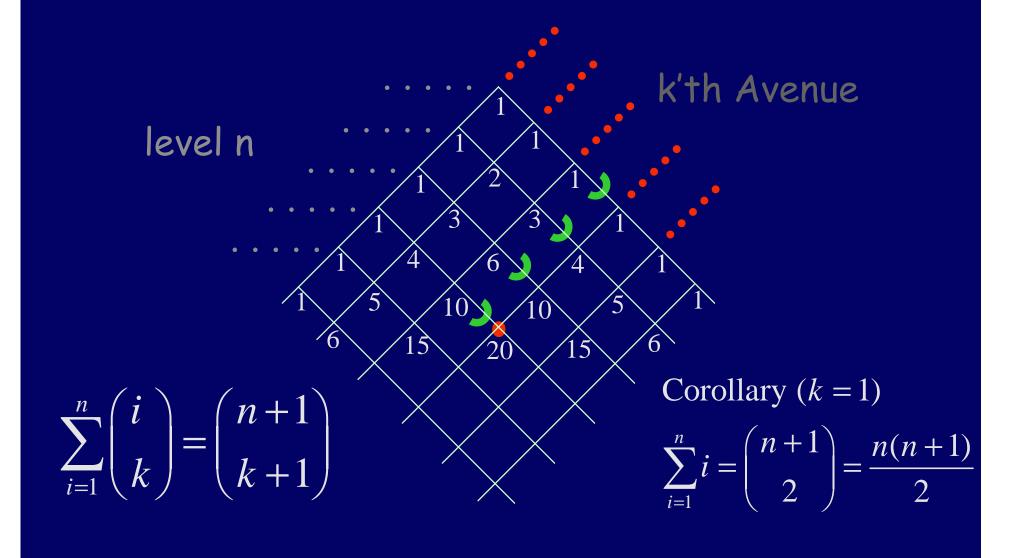


By convention:

$$0! = 1 (empty product = 1)$$

$$\binom{n}{k} = 1 if k = 0$$

$$\binom{n}{k} = 0 if k < 0 or k > n$$



Application (Al-Karaji):

$$\sum_{i=0}^{n} i^{2} = 1^{2} + 2^{2} + 3^{2} + \dots + n^{2}$$

$$= (1 \cdot 0 + 1) + (2 \cdot 1 + 2) + (3 \cdot 2 + 3) + \dots + (n(n-1) + n)$$

$$= 1 \cdot 0 + 2 \cdot 1 + 3 \cdot 2 + \dots + n(n-1) + \sum_{i=1}^{n} i$$

$$= 2 \left[\binom{2}{2} + \binom{3}{2} + \binom{4}{2} + \binom{5}{2} + \dots + \binom{n}{2} \right] + \binom{n+1}{2}$$

$$= 2 \binom{n+1}{3} + \binom{n+1}{2} = \frac{(2n+1)(n+1)n}{6}$$

Let's define a (parallel) programming language called VECTOR that operates on possibly infinite vectors of numbers. Each variable V^{\rightarrow} can be thought of as:

0 1 2 3 4 5

Let k stand for a scalar constant <k> will stand for the vector <k,0,0,0,...>

 $V^{\rightarrow +} T^{\rightarrow}$ means to add the vectors position-wise.

RIGHT(V^{\rightarrow}) means to shift every number in V^{\rightarrow} one position to the right and to place a 0 in position 0.

RIGHT(<1,2,3,...>) = <0,1,2,3,...>

Example:

Stare

$$V^{\rightarrow} := \langle 6 \rangle;$$
 $V^{\rightarrow} = \langle 6,0,0,0,0,... \rangle$
 $V^{\rightarrow} := RIGHT(V^{\rightarrow}) + \langle 42 \rangle;$ $V^{\rightarrow} = \langle 42,6,0,0,... \rangle$
 $V^{\rightarrow} := RIGHT(V^{\rightarrow}) + \langle 2 \rangle;$ $V^{\rightarrow} = \langle 2,42,6,0,... \rangle$
 $V^{\rightarrow} := RIGHT(V^{\rightarrow}) + \langle 13 \rangle;$ $V^{\rightarrow} = \langle 13,2,42,6,... \rangle$

 $V \rightarrow = \langle 13, 2, 42, 6, 0, 0, 0, ... \rangle$

Example:

Stare

V→ := <1>;

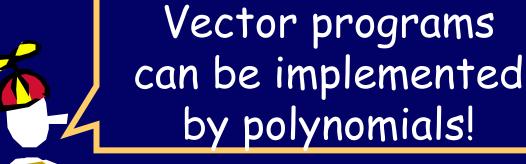
 $V \rightarrow = \langle 1,0,0,0,... \rangle$

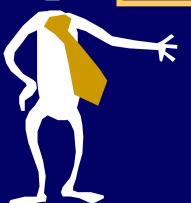
Loop n times:

 $V^{\rightarrow} := V^{\rightarrow} + RIGHT(V^{\rightarrow}); V^{\rightarrow} = \langle 1,2,1,0,...\rangle$

 $V \rightarrow = \langle 1, 1, 0, 0, ... \rangle$

 $V \rightarrow = \langle 1, 3, 3, 1, \rangle$





Programs ----> Polynomials

The vector $V^{\rightarrow} = \langle a_0, a_1, a_2, ... \rangle$ will be represented by the polynomial:

$$P_V = \sum_{i=0}^{i=\infty} a_i X^i$$

Formal Power Series

The vector $V \rightarrow = \langle a_0, a_1, a_2, ... \rangle$ will be represented by the formal power series:

$$P_V = \sum_{i=0}^{i=\infty} a_i X^i$$

$$V^{\rightarrow} = \langle a_0, a_1, a_2, \ldots \rangle$$

$$P_V = \sum_{i=0}^{i=\infty} a_i X^i$$

$$V^{\rightarrow} + T^{\rightarrow}$$
 is represented by $(P_V + P_T)$

RIGHT(
$$V^{\rightarrow}$$
) is represented by $(P_V X)$

Example:

$$P_{V} := 1;$$

Loop n times:

$$V^{\rightarrow} := V^{\rightarrow} + RIGHT(V^{\rightarrow});$$

$$P_V := P_V + P_V X$$
;

Example:

$$P_{V} := 1;$$

Loop n times:

$$V^{\rightarrow} := V^{\rightarrow} + RIGHT(V^{\rightarrow});$$

$$P_{V} := P_{V} (1 + X);$$

Example:

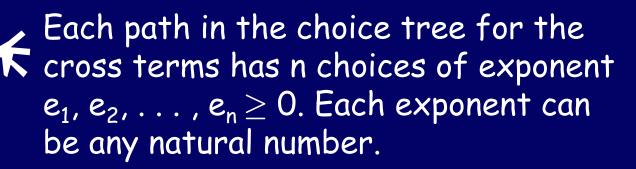
Loop n times:

$$V^{\rightarrow} := V^{\rightarrow} + RIGHT(V^{\rightarrow});$$

$$P_V = (1+X)^n$$

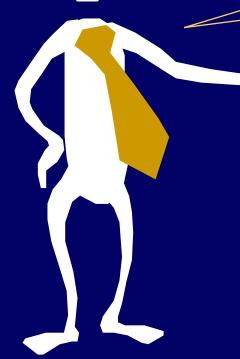
What is the coefficient of X^k in the expansion of:

$$(1 + X + X^2 + X^3 + X^4 + \dots)^n$$
?



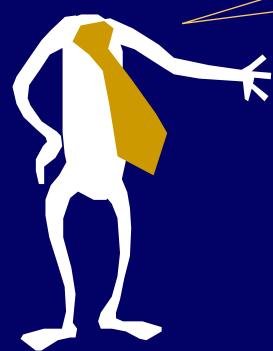
Coefficient of X^k is the number of non-negative solutions to:

$$e_1 + e_2 + ... + e_n = k$$





$$(1 + X + X^2 + X^3 + X^4 + \dots)^n$$
?



$$n+k-1$$
 $n-1$

$$(1 + X + X^2 + X^3 + X^4 +)^n =$$

$$\frac{1}{(1-X)^n} = \sum_{k=0}^{\infty} {n+k-1 \choose n-1} X^k$$

What is the coefficient of X^k in the expansion of:

$$(a_0 + a_1X + a_2X^2 + a_3X^3 + ...) (1 + X + X^2 + X^3 + ...)$$

$$= (a_0 + a_1X + a_2X^2 + a_3X^3 + ...) / (1 - X) ?$$

$$a_0 + a_1 + a_2 + ... + a_k$$

$$(a_{0} + a_{1}X + a_{2}X^{2} + a_{3}X^{3} + ...) / (1 - X)$$

$$= \sum_{k=0}^{\infty} \left(\sum_{i=0}^{j=k} a_{j} \right) X^{k}$$

$$= \sum_{k=0}^{\infty} \left(\sum_{i=0}^{j=k} a_{i} \right) X^{k}$$

$$= \sum_{k=0}^{\infty} \left(\sum_{i=0}^{j=k} a_{i} \right) X^{k}$$

Let's add an instruction called PREFIXSUM to our VECTOR language.

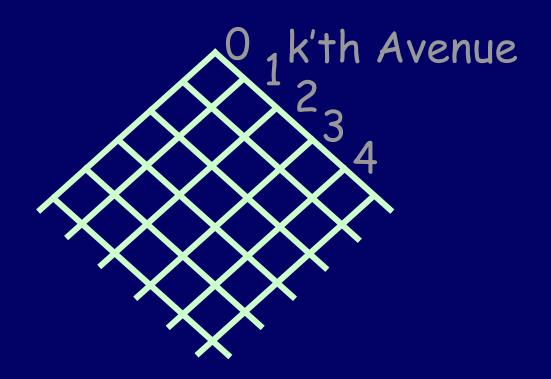
 $W^{\rightarrow} := PREFIXSUM(V^{\rightarrow})$

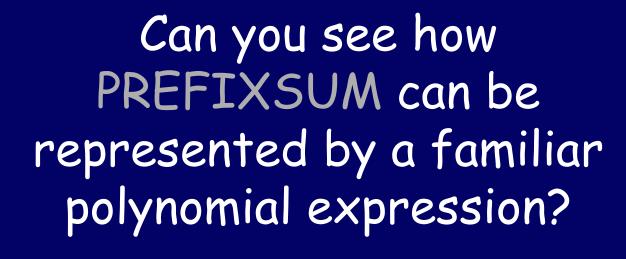
means that the ith position of W contains the sum of all the numbers in V from positions 0 to i.

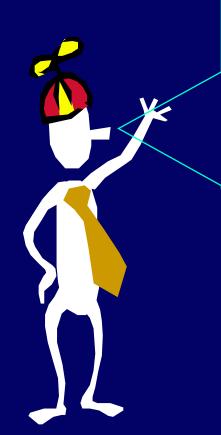


What does this program output?

```
V^{\rightarrow} := 1^{\rightarrow};
Loop k times: V^{\rightarrow} := PREFIXSUM(V^{\rightarrow});
```







$W^{\rightarrow} := PREFIXSUM(V^{\rightarrow})$

is represented by



$$P_W = P_V / (1-X)$$

= $P_V (1+X+X^2+X^3+....)$

Al-Karaji Program

```
Zero_Ave := PREFIXSUM(<1>);
First_Ave := PREFIXSUM(Zero_Ave);
Second_Ave := PREFIXSUM(First_Ave);
```

```
Output:=
First_Ave + 2*RIGHT(Second_Ave)
```

OUTPUT \rightarrow = <1, 4, 9, 25, 36, 49, >

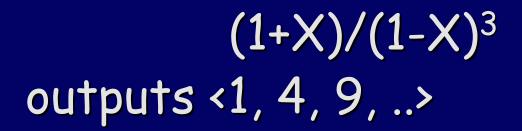
Al-Karaji Program

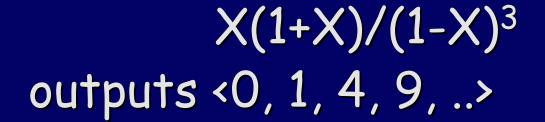
```
Zero_Ave = 1/(1-X);
First Ave = 1/(1-X)^2;
Second_Ave = 1/(1-X)^3;
Output =
    1/(1-X)^2 + 2X/(1-X)^3
    (1-X)/(1-X)^3 + 2X/(1-X)^3
          = (1+X)/(1-X)^3
```

```
(1+X)/(1-X)^3
Zero Ave := PREFIXSUM(<1>);
First_Ave := PREFIXSUM(Zero_Ave);
Second_Ave := PREFIXSUM(First_Ave);
Output:=
    RIGHT(Second_Ave) + Second_Ave
Second Ave
                       = \langle 1, 3, 6, 10, 15, ...
RIGHT(Second_Ave) = <0, 1, 3, 6, 10,.
```

Output

 $= \langle 1, 4, 9, 16, 25 \rangle$





The kth entry is k2

$X(1+X)/(1-X)^4$ expands to:

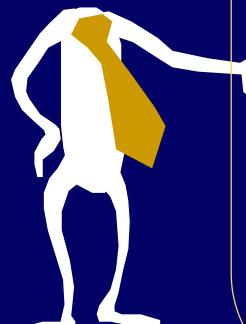
 $\sum S_k X^k$

where S_k is the sum of the first k squares

Aha! Thus, if there is an alternative interpretation of the kth coefficient of X(1+X)/(1-X)⁴ we would have a new way to get a formula for the sum of the first k squares.

Using pirates and gold we found that:

$$\frac{1}{(1-X)^n} = \sum_{k=0}^{\infty} {n+k-1 \choose n-1} X^k$$



THUS:

$$\frac{1}{(1-X)^4} = \sum_{k=0}^{\infty} {k+3 \choose 3} X^k$$

Coefficient of X^k in $P_V = (X^2 + X)(1 - X)^{-4}$ is the sum of the first k squares:

$$\frac{X^2 + X}{(1 - X)^4} = (X^2 + X) \sum_{k=0}^{\infty} {k+3 \choose 3} X^k$$

$$= \sum_{k=0}^{\infty} {\binom{k+2}{3} + \binom{k+1}{3}} X^{k}$$

$$\frac{1}{(1-X)^4} = \sum_{k=0}^{\infty} {k+3 \choose 3} X^k$$

Vector programs -> Polynomials-> Closed form expression

$$\frac{X^2 + X}{(1 - X)^4} = \sum_{k=0}^{\infty} (\binom{k+2}{3} + \binom{k+1}{3})X^k$$

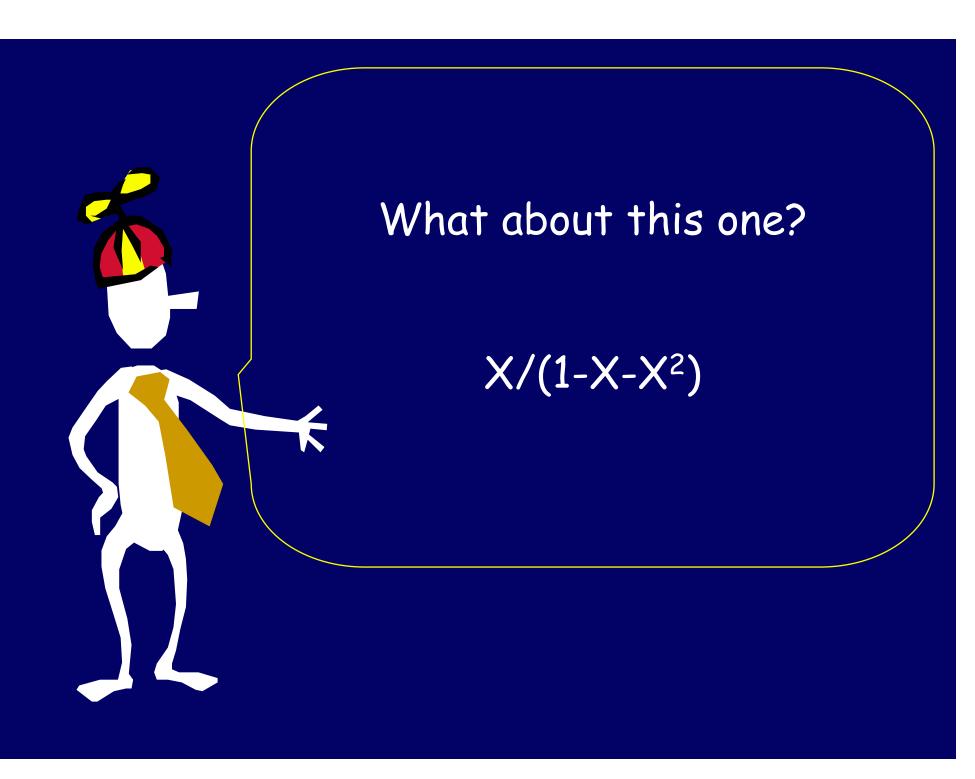
$$\sum_{i=0}^{n} i^2 = \binom{n+2}{3} + \binom{n+1}{3}$$

Expressions of the form Finite Polynomial

are called <u>Rational Polynomial</u> <u>Expressions</u>.

Clearly, these expressions have some deeper interpretation as a programming language.





$$\frac{x}{1 - x - x^2} = F_0 x^0 + F_1 x^1 + F_2 x^2 + F_3 x^3 + \dots = \sum_{i=0}^{\infty} F_i x^i$$

The action of dividing one polynomial by another can simulate a program to recursively compute Fibonacci numbers.

Vector Program I/O

Example:

INPUT I^{\rightarrow} ; /* not allowed to alter I^{\rightarrow} */

```
V \rightarrow := I \rightarrow + 1;

Loop n times:

V \rightarrow := V \rightarrow + RIGHT(V \rightarrow) + I \rightarrow ;
```

OUTPUT V

Vector Recurrence Relations

Let P be a vector program that takes input.

A <u>vector relation</u> is any statement of the form:

$$V\rightarrow$$
 = P($V\rightarrow$)

If there is a unique V^{\rightarrow} satisfying the relation, then V^{\rightarrow} is said to be <u>defined</u> by the <u>relation</u> $V^{\rightarrow} = P(V^{\rightarrow})$.

Fibonacci Numbers

Recurrence Relation Definition:

$$F_0 = 0, \quad F_1 = 1,$$

$$F_n = F_{n-1} + F_{n-2}, n > 1$$

Vector Recurrence Relation Definition:

$$F^{\rightarrow}$$
 = RIGHT(F^{\rightarrow} + <1>) + RIGHT(RIGHT(F^{\rightarrow}))

F^{\rightarrow} = RIGHT(F^{\rightarrow} + <1>) + RIGHT(RIGHT(F^{\rightarrow}))

$$F^{\rightarrow} = a_0, a_1, a_2, a_3, a_4, \dots$$

RIGHT($F^{\rightarrow} + <1>$) = 0, $a_0 + 1$, a_1 , a_2 , a_3 ,

RIGHT(RIGHT(F^{\rightarrow}))

= 0, 0, a_0 , a_1 , a_2 , a_3 , .

F^{\rightarrow} = RIGHT(F^{\rightarrow} + 1) + RIGHT(RIGHT(F^{\rightarrow}))

$$F = a_0 + a_1 X + a_2 X^2 + a_3 X^3 +$$

$$RIGHT(F + 1) = (F+1) X$$

RIGHT(RIGHT(F))
$$= F X^{2}$$

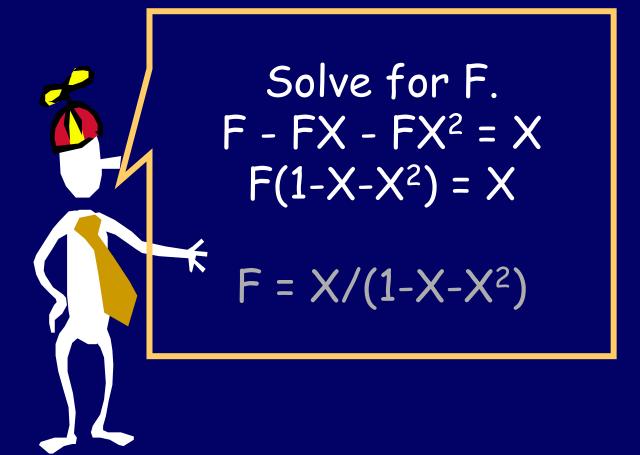
$$F = (F + 1) X + F X^2$$

$$F = a_0 + a_1 X + a_2 X^2 + a_3 X^3 + \dots$$

$$RIGHT(F + 1) = (F+1) X$$

RIGHT(RIGHT(F)) =
$$F X^2$$

$F = F X + X + F X^2$



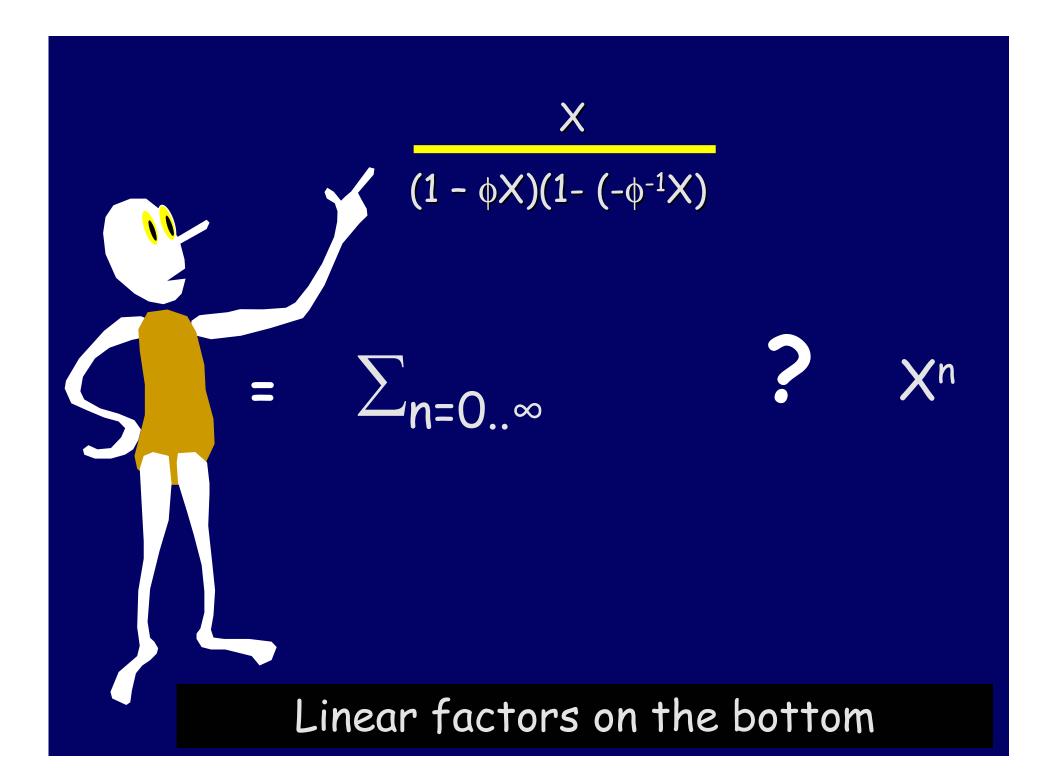
What is the Power Series Expansion of $x / (1-x-x^2)$?

Since the bottom is quadratic we can factor it.

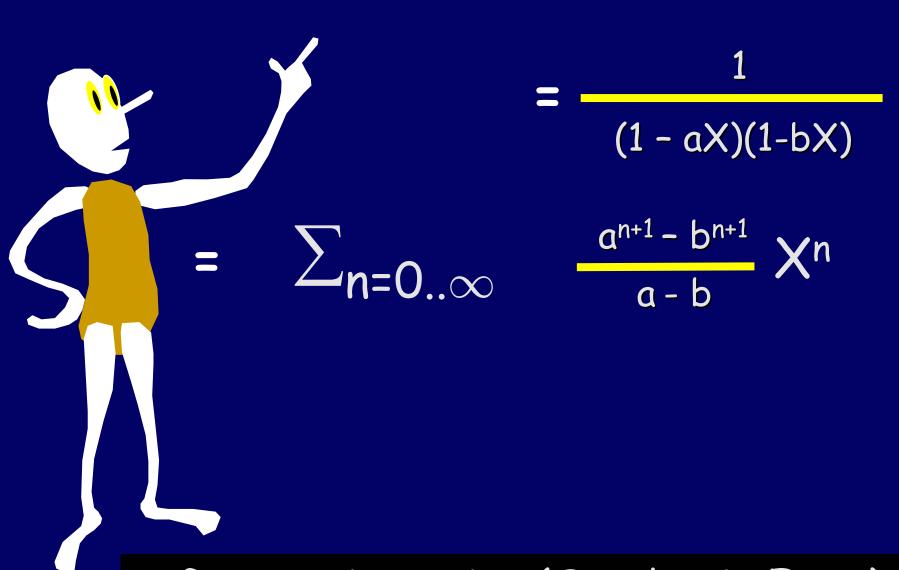
$$X/(1-\phi X)(1-(-\phi)^{-1}X)$$

where
$$\phi = \frac{1 + \sqrt{5}}{2}$$

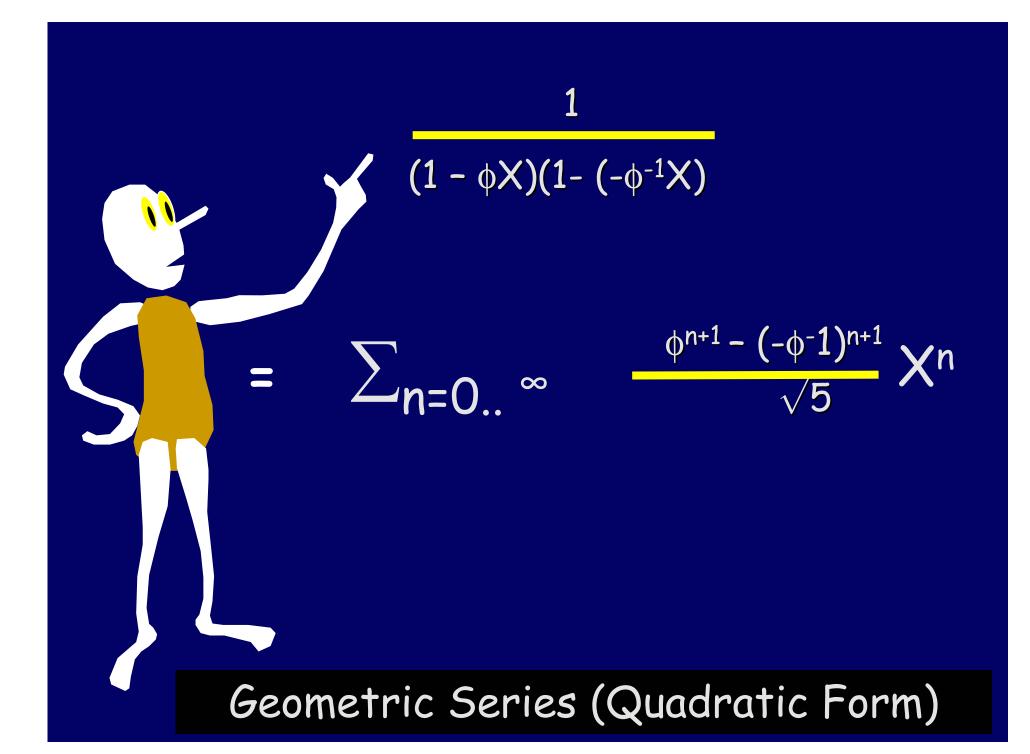
"The Golden Ratio"

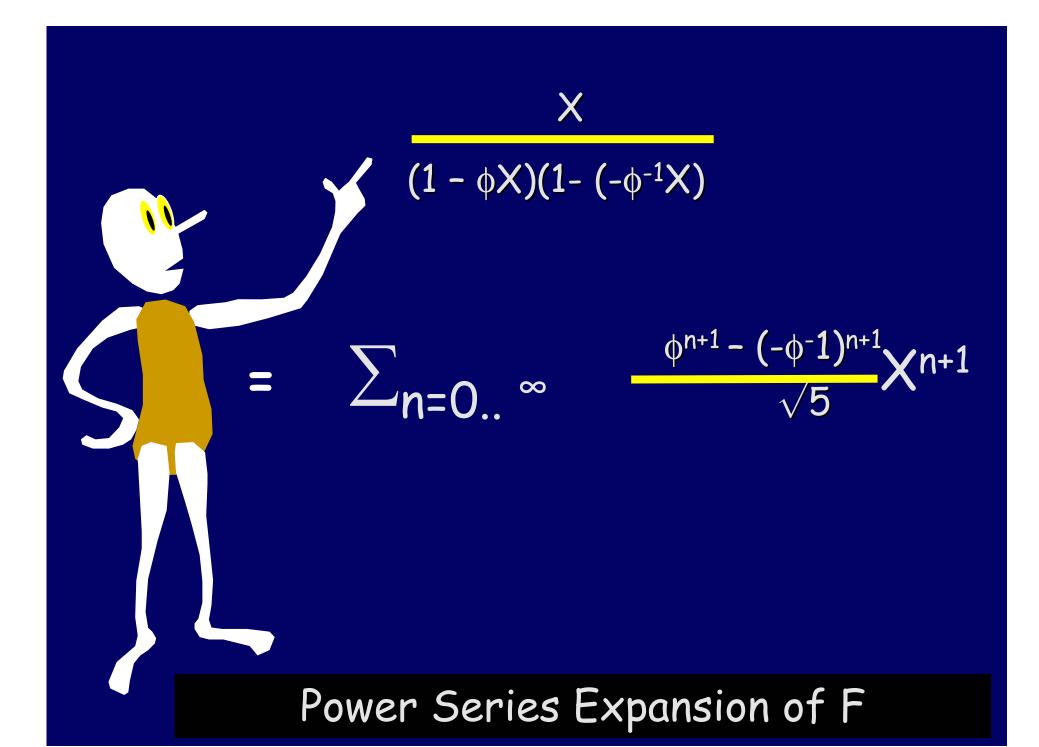


$$(1 + aX^1 + a^2X^2 + ... + a^nX^n +) (1 + bX^1 + b^2X^2 + ... + b^nX^n +) =$$



Geometric Series (Quadratic Form)





$$\frac{x}{1 - x - x^2} = F_0 x^0 + F_1 x^1 + F_2 x^2 + F_3 x^3 + \dots = \sum_{i=0}^{\infty} F_i x^i$$

$$\frac{x}{1 - x - x^2} = \sum_{i=0}^{\infty} \frac{1}{\sqrt{5}} \left(\phi^i - \left(-\frac{1}{\phi} \right)^i \right) x^i$$

$$\frac{x}{1 - x - x^2} = F_0 x^0 + F_1 x^1 + F_2 x^2 + F_3 x^3 + \dots = \sum_{i=0}^{\infty} F_i x^i$$

The ith Fibonacci number is:

$$\frac{1}{\sqrt{5}} \left(\phi^i - \left(-\frac{1}{\phi} \right)^i \right)$$

References

Applied Combinatorics, by Alan Tucker

Generatingfunctionology, Herbert Wilf