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Counting III: Pascal’'s Triangle,
Polynomials, and Vector Programs
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The Infinite Geometric Series
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Geometric Series (Linear Form)
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Geometric Series
(Quadratic Form)
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Suppose we multiply this out
to get a single, infinite
polynomial.

What is an expression for C,?
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Geometric Series (Quadratic Form)




- Previously, we saw that B

Polynomials Count!
R




What is the
coefficient of
BA3NZ in the
expansion of

(B + A + N)©6?

The number of
ways To rearrange
the letters in the

word BANANA.




Choice tree for terms of (1+X)3
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Combine like terms to get 1 + 3X + 3X% + X3




The Binomial Formula

binomial
expression




The Binomial Formula
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One polynomial,
tfwo representations
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“Product form” or
“Generating form”
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“*Additive form” or
“Expanded form”




Power Series Representation
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“Power series” (“Taylor series”) expansion

“Generating form”




By playing these two representations against
each other we obtain a new representation of
a previous insight:
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The number of
subsets of an
n-element set




By varying x, we can discover new identities

Equivalently,




The number of even-sized subsets of an 7 element
set is the same as the number of odd-sized subsets.

Equivalently,




We could discover new identities
by substituting in different

numbers for X. One cool idea is

to try complex roots of unity,

however, the lecture is going in
another direction.




Proofs that work by manipulating

algebraic forms are called
“algebraic” arguments. Proofs
that build a 1-1 onto
correspondence are called
“combinatorial” arguments.




Let O, be the set of binary strings of
length nwith an odd number of ones.

Let £, be the set of binary strings of
length nwith an even number of ones.

We gave an algebraic proof that

Oal =1 &,




A Combinatorial Proof

Let O, be the set of binary strings of length »
with an odd number of ones.

Let £, be the set of binary strings of length »

with an even number of ones.

A combinatorial proof must construct a one-to-
one correspondence between O, and £,




An attempt at a correspondence

Let f, be the function that takes an
n-bit string and flips all its bits.

f,is clearly a one-to-one ...but do even n work? In f,
and onto function we have

for odd n. £.g.in f; we have 110011 » 001100
0010011 - 1101100 101010 » 010101
1001101 - 0110010

Uh oh. Complementing maps
evens to evens/




A correspondence that works for all 7

Let 7, be the function that takes an
n-bit string and flips only the first bit.
For example,

0010011 - 1010011
1001101 - 0001101

110011 - 010011
101010 - 001010




The binomial coefficients have so
many representations that many
fundamental mathematical
identities emerge...




The Binomial Formula

(1+X)° = 1
(1+X)! = 1+1X

(1+X)? = 1+2X+1X2
(1+X)3 = 1+ 3X + 3X2+ 1X3
(1+X)* = 1+4X + 6X%+4X3+ 1X4




Pascal's Triangle:
kth row are the coefficients of (1+X)X

(1+X)° = 1
(1+X)! = 1+1X

(1+X)? = 1+2X+1X2
(1+X)? = 1+3X + 3X2+ 1X3
(1+X)* = 1+4X + 6X%+4X3+ 1X4




k'h Row Of Pascal’s Triangle:
IS
(1+X)0 = 1
(1+X)! = 1+ 1X

(1+X)? = 1+2X+1X2
(1+X)3 = 1+ 3X + 3X2+ 1X3
(1+X)* = 1+4X + 6X%+4X3+ 1X4




Inductive definition of kth entry of nth row:
Pascal(n,0) = Pacal (n,n) = 1;
Pascal(n, k) = Pascal(n-1,k-1) + Pascal(n,k)

(1+X)° = |
(1+X)! = 1+1X

(1+X)? = 1+2X+1X2
(1+X)? = 1+3X + 3X2+ 1X3
(1+X)* = 1+4X + 6X%+4X3+ 1X4




"Pascal’'s Triangle”

Al-Karaji, Baghdad 953-1029

Chu Shin-Chieh 1303
The Precious Mirror of the Four Elements

... Known in Europe by 1529
Blaise Pascal 1654




Pascal’s Trlangle

"It is extraordinary
how fertile in

’
-
properties the
triangle is.
Everyone can
1 try his
hand.”
1




Summing The Rows
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Summing on 15T Avenue

1 61520 15 o6 1




Summing on k'™ Avenue

1 6 1520 15 o6 1
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Al-Karajl Squares




ﬂll these properties can bx

proved inductively and
algebraically. We will give
combinatorial proofs using
the Manhattan block walking
representation of binomial

coefficients.

_/




How many shortest routes from A to
I%A?




Manhattan
j'th Street ) 00 . k'th Avenue

There are (“T*) shortest routes from (0,0) to (j,k).




Manhattan

There are (}) shortest routes from (0,0) to (n-k,k).




Manhattan

n

There are (k) shortest routes from
(0,0) to Level n and k' Avenue.
















By convention:

Ol=1  (empty product = 1)

if k=0

If k<OQork>n







Application (Al-Karaji):

n
Zi2:12+22+32+"'+n2
i=0

= (1 +1) + (2[1+2) + (32 +3) +--- +(n(n-1) + n)

+20+32+---+n(N-D+ ) i
1=1
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Vector Programs

Let's define a (parallel) programming

language called VECTOR that operates
on possibly infinite vectors of numbers.
Each variable V= can be thought of as:




Vector Programs

Let k stand for a scalar constant
<k> will stand for the vector <k,0,0,0,...>

<0>=<0,0,00,..>
<1> =<10,0,0,.»>

V=* T~ means to add the vectors position-wise.

<423,.>+<b11..>=<934 >




Vector Programs

RIGHT(V—) means to shift every number in V= one
position to the right and to place a O in position O.

RIGHT(<1,2,3,.>)=<0,12,3,. .>




Vector Programs

Example: Stare

V=-=+<6,0,00,.>
T(V>)+<42>, V= =2<42600,.>
T(V?)+<2>, V>=<2,426,0,.
T(V-) + <135, V7=<13,2,42,6,>

—>:<13,2,42,6,0,0,0,...>




Vector Programs

Example: Stare
V== <D, V->=<1000,.>

Loop n times: V=-=<1100,.>
V== V= + RIGHT(V~): +=24<1210.>

/ 1=

V- =<13,31.>

V= = n™ row of Pascal'’s triangle.




Vector programs

can be implemented
by polynomials!




Programs > Polynomials

The vector V= =<aq,, a;, a,, ... > will be
represented by the polynomial:




Formal Power Series

The vector V= =<aq,, a4, a,, ... > will be
represented by the formal power series:

1—0 |
PV — Z CLZ"‘X/Z
=10




<0> is represented by
<k> is represented by

V= + T~ is represented by

RIGHT(V~) is represented by




Vector Programs

Example:
V== <D P, = 1;

Loop n times:
V== V= + RIGHT(V~): Py := Py, + P, X:

V= = n™ row of Pascal'’s triangle.




Vector Programs

Example:
V== <D P, =1,

Loop n times:
V== V= + RIGHT(V~): P, := P, (1+ X);

V= = n™ row of Pascal'’s triangle.




Vector Programs

Example:

V= = <1>:

Loop n times: — Py =(1+X)
V== V= + RIGHT(V~);

S

V= = n™ row of Pascal'’s triangle.




" What is the coefficient of
Xk in the expansion of:

(1+ X+ X X3+ X4, .. )n?

= —

Each path in the choice tree for the
cross terms has n choices of exponent

e, > 0. Each exponent can
be any natural number.

Coefficient of XX is the number of
non-negative solutions to:
e;te,+...+e =k




/Wha’r is the coefficient of\

Xk in the expansion of:

(1+ X+ X X3+ X4, .. )n?

i

. n-1

m+ k-1

J
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/Wha’r is the coefficient of XX in the
expansion of:

(GO+01X+02X2+03X3+...)(1+X+X2+X3+. )

=(ag+a X +a,X°+a3X3+.)/(1-X) ?

e

Gy, + @, + A, + .. + qQ




/(GO + 01X + szz + G3X3 + ) / (1 ‘%

k=0 \_i=0

PREFIXSUM(GO + (11)( + szz + C(3X3 + )




K Let's add an ins’rruc’rion\

called PREFIXSUM to our
VECTOR language.

W= 1= PREFIXSUM(V~)

means that the i position
of W contains the sum of all
the numbers in V from

positions O to i. /




What does this program output?

V=i=17;
Loop k times: V= := PREFIXSUM(V~) ;

0 1k"rh Avenue

3

4




~ ™

Can you see how
PREFIXSUM can be
represented by a familiar

polynomial expression?

Y




/ = = PREFIXSUM(V%)\

IS represented by

Pw =Py /7 (1-X)




Al-Karaji Program

Zero_Ave = PREFIXSUM(<1>);
First_Ave := PREFIXSUM(Zero_Ave);
Second_Ave :=PREFIXSUM(First_Ave);

Output:=
First_Ave + 2*RIGHT(Second_Ave)

OUTPUT— =<1,4,9, 25, 36,49, ...>




Al-Karaji Program

Zero_Ave = 1/(1-X);
First_Ave = 1/(1-X)3;
Second_Ave = 1/(1-X)3;

Output =
1/(1-X)? + 2X/(1-X)3

(1-X)/(1-X)3 + 2X/(1-X)3

= (1+X)/(1-X)3



(1+X)/(1-X)3

Zero_Ave = PREFIXSUM(<1>);
First_Ave := PREFIXSUM(Zero_Ave);
Second_Ave :=PREFIXSUM(First_Ave);

Output:=

RIGHT(Second_Ave) + Second_Ave
Second_Ave = «1, 3,6,10, 15,.
RIGHT(Second_Ave) =<0, 1, 3, 6, 10,.
Output <1,4,9, 16, 25




(1+X)/(1-X)3
outputs <1, 4,9, .»

X(1+X)/(1-X)3
outputs <0, 1, 4,9, .»

The k™ entry is k2




X(1+X)/(1-X)3 = X kaXX

What does X(1+X)/(1-X)* do?




X(1+X)/(1-X)* expands to :

> S, Xk

where S, is the sum of the
first k squares




Ahal Thus, if there is an
alternative interpretation of
the kth coefficient of

X(1+X)/(1-X)*
we would have a new way to
get a formula for the sum of
the first k squares.




Using pirates and gold we\
> found that:
e
b
& y




Coefficient of Xkin P, = (X?+X)(1-X)*is
the sum of the first k squares:

X24 X




Vector programs -> Polynomials
-> Closed form expression

X2 4 X O k42
(1—X)4 Z ( )




Expressions of the form

Finite Polynomial / Finite Polynomial

are called Rational Polynomial
Expressions.

Clearly, these expressions have some
deeper interpretation as a
programming language.




/

What about this one?

X/(1-X-X?)

\

_/
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The action of dividing one
polynomial by another can

simulate a program to recursively
compute Fibonacci numbers.




Vector Program I/0

Example:

INPUT I /* not allowed to alter I */
V= =17+ 1;

Loop n times:

V= = V7 + RIGHT(V~) + I7;

OUTPUT V=




Vector Recurrence Relations

Let P be a vector program that takes input.

A vector relation is any statement of the
form:

V== P(V)

If there is a unique V— satisfying the
relation, then V~ is said to be defined by the
relation V= = P( V).




Fibonacci Numbers

Recurrence Relation Definition:

=0 F =1
|:n = I:n—l-l- |:n—2’n>1

Vector Recurrence Relation
Definition:

F+ = RIGHT( F~+<1> ) + RIGHT( RIGHT(F~ ) )




F~ = RIGHT( F~7+<1> ) + RIGHT( RIGHT( F~ ))

F~7 = ag, q4 , Gy, Q3, Qq, . . .

RIGHT(F_)+<1>) - O, ap + 1, a, a,, as,

RIGHT( RIGHT( F— ) )
= O, 0, . Qo, a, a,, as, .




F> = RIGHT(F~+ 1 ) + RIGHT( RIGHT( F~ ) )

a, + a; X + a, X2 + a; X3 +

RIGHT(F + 1) = (F+1) X

RIGHT( RIGHT( F ) )
= FX?




F=(F+1)X +F X2

ap +a; X +a, X2 +a; X3+, .

RIGHT(F + 1) = (F+1) X

RIGHT( RIGHT( F ) )
= FX?




Solve for F.
F-FX-FX%2=X

F(1-X-X2) = X

F = X/(1-X-X?)




What is the Power Series
Expansion of x / (1-x-x2) ?




Since the bottom is
quadratic we can factor it.

FAIDOOE

X/(1- eX)(1 - (-9)*X)

1+ 5

where @ = .

"The Golden Ratio”
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(1 - eX)(1- (-¢1X)
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Linear factors on the bottom
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4
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Geometric Series (Quadratic Form)




1
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Zn:O..oo V5 X"

Geometric Series (Quadratic Form)




S
(1 - eX)(1- (-¢1X)
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1 ( (P-I)nl +]
Zn:O.. i V5 X"

Power Series Expansion of F
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