Great Theoretical Ideas In Computer Science
Steven Rudich CS 15-251 Spring 2004
Lecture 8 Feb 5, 2004 Carnegie Mellon University

Modular Arithmetic and
the RSA Cryptosystem
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n|m means that m is a an
integer multiple of n.

We say that "n divides m".

True: 5|25 2|-66 7|35,
False: 4|5 8|2




(a mod n) means the

remainder when a is
divided by n.

Ifad+r=n,0<r«<n
Then r = (a mod n)
and d = (a div n)




Modular equivalence
of integers a and b:

a = b [mod n]

a=,b
"a and b are equivalent modulo n”

iff (a mod n) = (b mod n)
iff n|(a-b)




31 equals 81 modulo 2
31 = 81 [mod 2]

31 =, 81

(31 mod 2) = 1= (81 mod 2)

2|(31- 81)




=, IS an equivalence relation

In other words,

Reflexive:
=
Symmetric:
(a=,b)= (b=,q)
Transitive:
(a=,band b =, ¢c)= (a=,c)




a =, b < n|(a-b)
a and b are equivalent modulo n”

=, Induces a natural partition of

the integers into n classes:

a and b are said to be In the same

“residue class” or “congruence class”
exactly when a =, b.




a =, b < n|(a-b)
“a and b are equivalent modulo n”

Define the residue class [i] to
be the set of all integers that
are congruent to | modulo n.
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Equivalence mod n implies
equivalence mod any divisor of n.

If (x =,Yy)and (k|n)
Then: x =,y

Example: 10 =, 16 = 10 =5 16




If (x =,Yy)and (k|n)
Then: x =, y

Proof:

Recall, x=,y < n|(x-y)
kln and n|(x-y)
Hence, k|(x-y)

Of course, k|(x-y) = x=,y




Fundamental lemma of plus,
minus, and times modulo n:

If (x =,Yy)and (a =, b)
Then: 1) x+a =, y+b
2) Xx-a =, y-b
3) xa =, yb




Equivalently,

If n|(x-y) and n|(a-b) Then:
1) n|(x-y + a-b)
2) n | (x-y - [a-b])

3) n|(xa-yb)

Proof of 3:

xa-yb = a(x-y) - y(b-a)
nla(x-y) and n|y(b-a)




Fundamental lemma of plus
minus, and times modulo n:

When doing plus, minus, and time
modulo n, T can at any time in the
calculation replace a number with
a number in the same residue
class modulo n




] Please calculate in your head:

329 * 666 mod 331
2 * 4 =-8-323




A Unique Representation
System Modulo n:

We pick exactly one

representative from each
residue class. We do all our
calculations using the
representatives.




Unique representation system
modulo 3

Finite set S ={0, 1, 2}

+ and * defined on S:

x

1

1 0
2 1
0 2




Unique representation system
modulo 3

Finite set S={0, 1, -1}

+ and * defined on S:

0
0
0
0

1 -1
1 -1
-1 0
0 1




The reduced system modulo n:

Z.={0,1,2, .., n-1}

Define +, and *:
a +, b = (a+b mod n)

a *, b = (a*b mod n)




Z.={0,1,2, .., n-1}
a+,b=(atbmodn) a*,b=(a*bmodn)

+. and * are associative binary
operators from Z, X Z, — Z,;:

When © =+ or >, :

Closure] xye Z, = x0VycZ,

(Associativity]
xy,zeZ,=(xQ0y)0z=xQ0(yQz)




Z.={0,1,2, .., n-1}
a+,b=(atbmodn) a*,b=(a*bmodn)

+. and *, are commutative, associative

binary operators from Z, X Z, — Z,;

[Commutativity]
xyeZ,= xQ0y =y Q© x




The reduced system modulo 3

Z.={0,1,2)

Two binary, associative operators on Zj:

x
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The reduced system modulo 2

Z,={0, 1}

0




The Boolean interpretation of
Z,={0,1}

O means FALSE 1 means TRUE




Z,={0,12,3}
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The reduced system
Z. ={0,1,2,3,45)




The reduced system
Z. ={0,1,2,3,45)

3
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0
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An operator has
the permutation
property if each
row and each
column has a
permutation of
the elements.




For every n, +, on Z, has the
permutation property

An operator has
the permutation
property if each
row and each
column has a
permutation of
the elements.




There are exactly 8 distinct
multiples of 3 modulo 8.




There are exactly 8 distinct
multiples of 3 modulo 8.




There are exactly 8 distinct
multiples of 3 modulo 8.




There are exactly 8 distinct
multiples of 3 modulo 8.




There are exactly 8 distinct
multiples of 3 modulo 8..




There are exactly 8 distinct
multiples of 3 modulo 8.




There are exactly 8 distinct
multiples of 3 modulo 8.




There are exactly 8 distinct
multiples of 3 modulo 8.




There are exactly 8 distinct
multiples of 3 modulo 8.




There are exactly 2 distinct
multiples of 4 modulo 8.




There are exactly 2 distinct
multiples of 4 modulo 8




There is exactly 1 distinct
multiple of 8 modulo 8




There are exactly 4 distinct
multiples of 6 modulo 8




There are exactly 4 distinct
multiples of 6 modulo 8




There are exactly 4 distinct
multiples of 6 modulo 8




There are exactly 4 distinct
multiples of 6 modulo 8




There are exactly 4 distinct
multiples of 6 modulo 8




There are exactly ? distinct
multiples of ? modulo ?

Can you see the general rule?




There are exactly n/GCD(c,n) distinct
multiples of ¢ modulo n




The multiples of ¢ modulo n is the sef:
{O,c,c+,c,c+,c+,c, ..}
= {kc mod n | 0< k < n-1}




Theorem: There are exactly
k= n/GCD(c.n)
distinct multiples of ¢ modulo n:
{c*imodn|O0<i <k}

Clearly, c/GCD(c,n) > 1 is a whole number
ck=n[c/GCD(c,n)]=,0
There are < k distinct multiples of ¢ mod n:
c*0, c*1, c*2, ..., c*(k-1)
kis all the factors of n missing from c
cx =, cy <> n|c(x-y) = k|(x-y) = x-y> k
There are > k multiples of ¢




Ts there a fundamental lemma
of division modulo n?

CX=,Cy=>X=,Y ?




Ts there a fundamental lemma
of division modulo n?

cx=,cy=>x=,y ? NO

If c=0 [mod n], cx =, cy for any x
and y. Canceling the c is like
dividing by zero.




Repaired fundamental lemma
of division modulo n?

C#£0(modn), CX=,CYy = X =,y ?

2*2 =, 2*H, but not 2 =, 5.
6*3 =5, 6*8, but not 3 =, 8.




When can I divide by ¢?

Theorem: There are exactly n/GCD(c.n)
distinct multiples of ¢ modulo n.

Corollary: If GCD(c,n) > 1, then the number
of multiples of c is less than n.

Corollary: If GCD(c,n)>1 then you can't
always divide by c.

Proof: There must exist distinct x,y<n such
that c*x=c*y (but xzy)




Fundamental lemma of division modulo n.

6CD(c,n)=1,ca=,cb=a=,b

ab =ac mod n

n|(ab—ac)

n|la(b—c)

n|b-c since (a,n) =1
b=cmodn




Corollary for general c:
CX =, CY = X En/GCD(c,n) M

CX =, CY
— CX =n/(c.n) cy and ( ¢, n/eev(c,n) )=1

= X En/(c,n) M




Fundamental lemma of division modulo n.

6CD(c,n)=1,ca=,cb=a=,b

Z ={xeZ | 6CD(x,n) =1}

Multiplication over Z,” will have the
cancellation property.




Z, ={0,1,2,3,45)
Z.* = {1,5)




Suppose GCD(x,nh) =1 and GCD(y,n) =1

Let z=xy and z' = (xy mod n)
It is obvious that GCD(z,n) =1

It requires a moment fto convince
ourselves that GCD(zZ' n) =1




Z ={xeZ, | 6CD(x,n) =1}

* 1S an associative, binary operator. In
particular, Z," is closed under *, :

XyezZ =x*vyeZ .

Proof: Let z=xy.Let z =zmodn.z= 2z +kn.
Suppose there exists a prime p>1 p|z' and p|n.

z is the sum of two multiples of p, so p|z.
plz = that p|x or ply. Contradiction of X,y € Zn*










The column permutation property is
equivalent to the right cancellation
property:

[b*a=c*a] = b=c

e ¢

4
3
2
1

3
|
4
2




The row permutation property is
equivalent to the left cancellation
property:

[a*b=a*c] = b=c

) -
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Euler Phi Function

®d(n) = size of z,

= number of 1<k<n that are
relatively prime to n.

p prime = Z.={1,2,3,..p-1}
= @(p) = p-1




Z.," = {15711
o(12) = 4




®pq) = (p-1)(q-1)
if p,q distinct primes

pq = # of numbers from 1 to pq
p = # of multiples of q up to pqg
q = # of multiples of p up to pq
1 = # of multiple of both p and q up to pq

®pq)=pq-p-q+1=(p-1)(g-1)




Let's consider how

we do arithmetic in Z, and in Z,~




The additive inverse of ac Z, is the
-# unique be Z, such that a +, b = =n 0]

v, We deno’re this inverse by Sa

It is trivial to calculate:
"-a" = (n-q).




':' The multiplicative inverse of ac Z,” is
the unique be Z," such that
a *, b =,1 We denote this inverse by
“a! or "1/a".

’ The unique inverse of a must exist because

the a row contains a permutation of the
elements and hence contains a unique 1.
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Z,={0,1,2, .., n1}
Z ={xeZ, | 6CD(x,n) =1}

Define +, and *,:
a +,b = (a+b mod n) a*, b= (a*b mod n)

c* (a+,b)=,(c*,a)+,(c*,b)

<an W <Zn*1 *n>

. Closed . Closed

. Associative . Associative

. Ois identity . lisidentity

. Additive Inverses . Multiplicative Inverses
. Cancellation . Cancellation

. Commutative . Commutative




The multiplicative inverse of ac Z,” is the unique be Z,~
such that
a*, b =,1 We denote this inverse by "a'" or "1/a".

Efficient algorithm to compute a! from a and n.

»
0

\ Execute the Extended Euclid Algorithm on a

4

and n (previous lecture). It will give two
infegers r and s such that:
ra+sn=(an)=1

Taking both sides mod n, we obtain:
rn =, 1
Output r, which is the inverse of a







If (a=,b) Then xo =, x°

NO!

(16 =5 1) , but it is not the
case that: 2! =5 21




Calculate a® mod n:
Except for b, work in a reduced mod system to

keep all intermediate results less than | log, (n) | +1
bits long.

Phase T (Repeated Multiplication)
For | log b steps

multiply largest so far by a
(a, a2, a4, ...)

Phase IT (Make aP from bits and pieces)

Expand n in binary to see how n is the sum
powers of 2. Assemble a® by multiplying fogether
appropriate powers of a.




Two names for the same set:

Zn* = Zna

},ae Z~




Two products on the same set:

Zn* = Zna
Zi={a* x| xeZ},acZ

Nx=, Nax [as x ranges over Z,” ]

l_lx = l—l % (asize of Zn*) [CommuTaTiviTy]

1 = g@sizeof Zn” [Cancellation]

a®) = 1




Fermat's Little Theorem

b prime, an =>0P1—p1




Fundamental lemma of powers.

Suppose x€ Z,”, and a,b,n are naturals.

If a =4y b Thenxe=, x°

Equivalently,
@ mod d(n) =3 xb mod d(n)




Defining negative powers.

Suppose xe Z,”, and a,n are naturals.

x2is defined to be the
multiplicative inverse of X

X-a = (Xa)-l




Rule of integer exponents

Suppose x,ye Z,”, and a,b are integers.

(xy)*=n xy"

Xa Xb =3 Xa+b




Lemma of integer powers.

Suppose xe Z,”, and a,b are integers.

If a =4y b Thenxe=, x°

Equivalently,
@ mod d(n) =3 xb mod d(n)




Z.={0,1,2, .. n-1}
Z ={xeZ | 6CD(x,n) =1}

Quick raising to power.

</ +>

1

b.
. Commutative

ne n

Closed

2. Associative
3.
4. Additive Inverses

0 is identity

Fast + amd -
Cancellation

<Zn*, x>

1. Closed

2. Associative

3. lisidentity

4. Multiplicative Inverses
Fast * and /

5. Cancellation

6. Commutative




Euler Phi Function

d(n) = size of z,

p prime = Z ={1,2,3,..p-1}

= ®(p) = p-1

®(pq) = (p-1)(q-1)
if p,q distinct primes




The RSA Cryptosystem

Rivest, Shamir, and Adelman (1978)

RSA is one of the most used
cryptographic protocols on the net.
Your browser uses it to establish a

secure session with a site.




Pick secret, random k-bit primes: p,g
"Publish": n = p*q
®(n) = @(p) ®(q) = (p-1)*(q-1)

Pick random e O Z°
"Publish”: e

Compute d = inverse of e in Z° ;
/Hence e*d =1[ mod ¢@(n) ]

"Private Key": d




—~— ~—>
P.g randommes, e random O Z° ;s
n = p*g
e*d =1[ mod ¢@(n) ]
A

A\

>
S

| ——

n.e is my public

ey’

I key. Use it to
‘ |’7 send a

message to

/X/Z\ me.




p.q prime, e random O Z~ ;5
h=p*q
e*d =1[ mod ¢(n) ]




p.q prime, e random O Z~ ;5
h=p*q
e*d =1[ mod ¢(n) ]

@[mod n] @@




p.q prime, e random O Z~ ;5
h=p*q
e*d =1[ mod ¢(n) ]




