

Great Theoretical Ideas In Computer Science

Steven Rudich

Lecture 8

Feb 5, 2004

CS 15-251

Spring 2004

Carnegie Mellon University

Modular Arithmetic and the RSA Cryptosystem

$$=_{p}^{p-1}$$

n|m means that m is a an integer multiple of n.

We say that "n divides m".

True: 5|25 2|-66 7|35, False: 4|5 8|2



(a mod n) means the remainder when a is divided by n.

If ad + r = n, $0 \le r < n$ Then $r = (a \mod n)$ and $d = (a \operatorname{div} n)$

Modular equivalence of integers a and b:

 $a\equiv b\ [mod\ n]$ $a\equiv_n b$ "a and b are equivalent modulo n"

iff (a mod n) = (b mod n)
iff n|(a-b)

31 equals 81 modulo 2

$$31 \equiv_2 81$$

$$(31 \mod 2) = 1 = (81 \mod 2)$$

\equiv_{n} is an equivalence relation

In other words,

Reflexive:

$$a \equiv_n a$$

Symmetric:

$$(a \equiv_n b) \Rightarrow (b \equiv_n a)$$

Transitive:

$$(a \equiv_n b \text{ and } b \equiv_n c) \Rightarrow (a \equiv_n c)$$

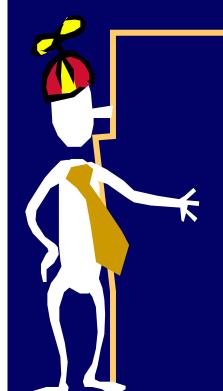
 $a \equiv_n b \leftrightarrow n | (a-b)$ "a and b are equivalent modulo n"

 \equiv_{n} induces a natural partition of the integers into n classes:

a and b are said to be in the same "residue class" or "congruence class" exactly when $a \equiv_n b$.

 $a \equiv_n b \leftrightarrow n | (a-b)$ 'a and b are equivalent modulo n"

Define the residue class [i] to be the set of all integers that are congruent to i modulo n.



Residue Classes Mod 3:

```
[0] = \{ ..., -6, -3, 0, 3, 6, .. \}

[1] = \{ ..., -5, -2, 1, 4, 7, .. \}

[2] = \{ ..., -4, -1, 2, 5, 8, .. \}

[-6] = \{ ..., -6, -3, 0, 3, 6, .. \}

[7] = \{ ..., -5, -2, 1, 4, 7, .. \}

[-1] = \{ ..., -4, -1, 2, 5, 8, .. \}
```


Equivalence mod n implies equivalence mod any divisor of n.

If $(x \equiv_n y)$ and (k|n)Then: $x \equiv_k y$

Example: $10 = 6 16 \Rightarrow 10 = 3 16$

If $(x \equiv_n y)$ and (k|n)Then: $x \equiv_k y$

Proof:

Recall, $x \equiv_n y \Leftrightarrow n|(x-y)$ k|n and n|(x-y)Hence, k|(x-y)

Of course, $k|(x-y) \Rightarrow x \equiv_k y$

Fundamental lemma of plus, minus, and times modulo n:

If
$$(x \equiv_n y)$$
 and $(a \equiv_n b)$
Then: 1) $x+a \equiv_n y+b$
2) $x-a \equiv_n y-b$
3) $xa \equiv_n yb$

Equivalently,

Proof of 3: xa-yb = a(x-y) - y(b-a)n|a(x-y) and n|y(b-a)

Fundamental lemma of plus minus, and times modulo n:

When doing plus, minus, and time modulo n, I can at any time in the calculation replace a number with a number in the same residue class modulo n

Please calculate in your head:

329 * 666 mod 331

A Unique Representation System Modulo n:

We pick exactly one representative from each residue class. We do all our calculations using the representatives.

Finite set $S = \{0, 1, 2\}$

+ and * defined on S:

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

*	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

Finite set $S = \{0, 1, -1\}$

+ and * defined on S:

+	0	1	-1
0	0	1	-1
1	1	-1	0
-1	-1	0	1

*	0	1	-1
0	0	0	0
1	0	1	-1
-1	0	-1	1

The reduced system modulo n:

$$Z_n = \{0, 1, 2, ..., n-1\}$$

Define
$$+_n$$
 and $*_n$:
 $a +_n b = (a+b \mod n)$
 $a *_n b = (a*b \mod n)$

$$Z_n = \{0, 1, 2, ..., n-1\}$$

 $a +_n b = (a+b \mod n)$ $a *_n b = (a*b \mod n)$

 $+_n$ and $*_n$ are associative binary operators from $Z_n \times Z_n \to Z_n$:

When
$$\heartsuit = +_n \text{ or } *_n$$
:

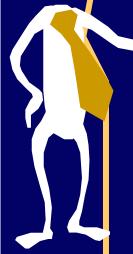
[Closure]
$$x,y \in Z_n \Rightarrow x \heartsuit y \in Z_n$$

[Associativity]

$$x,y,z \in Z_n \Rightarrow (x \heartsuit y) \heartsuit z = x \heartsuit (y \heartsuit z)$$

$$Z_n = \{0, 1, 2, ..., n-1\}$$

 $a +_n b = (a+b \mod n)$ $a *_n b = (a*b \mod n)$



 $+_n$ and $+_n$ are commutative, associative binary operators from $Z_n \times Z_n \to Z_n$:

[Commutativity] $x,y \in Z_n \Rightarrow x \heartsuit y = y \heartsuit x$

The reduced system modulo 3

 $Z_3 = \{0, 1, 2\}$

Two binary, associative operators on Z_3 :

+3	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

*	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

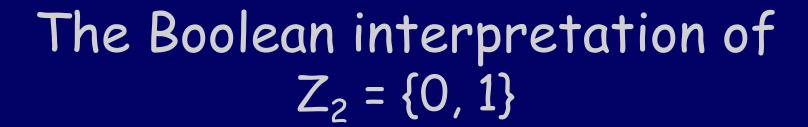
The reduced system modulo 2

$$Z_2 = \{0, 1\}$$

Two binary, associative operators on Z_2 :

+2	0	1
0	0	1
1	1	0

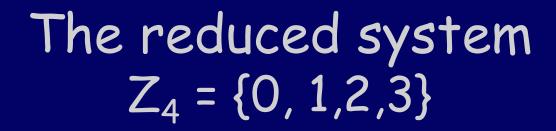
* 2	0	1
0	0	0
1	0	1



0 means FALSE 1 means TRUE

+ ₂ XOR	0	1
0	0	1
1	1	0

* 2 AND	0	1
0	0	0
1	0	1



+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

*	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

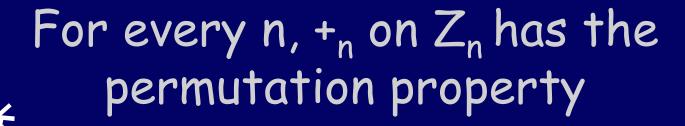
*	0	1	2	3	4
0	0	O	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

l	+	0	1	2	3	4	5
	0	0	1	2	3	4	5
	1	1	2	3	4	5	0
	2	2	3	4	5	0	1
	3	3	4	5	0	1	2
	4	4	5	0	1	2	3
	5	5	0	1	2	3	4

*	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

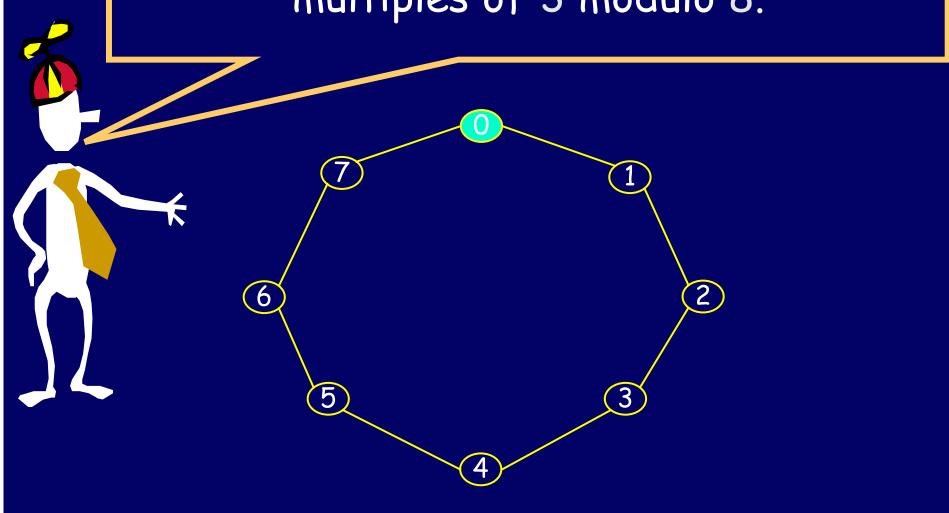
+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

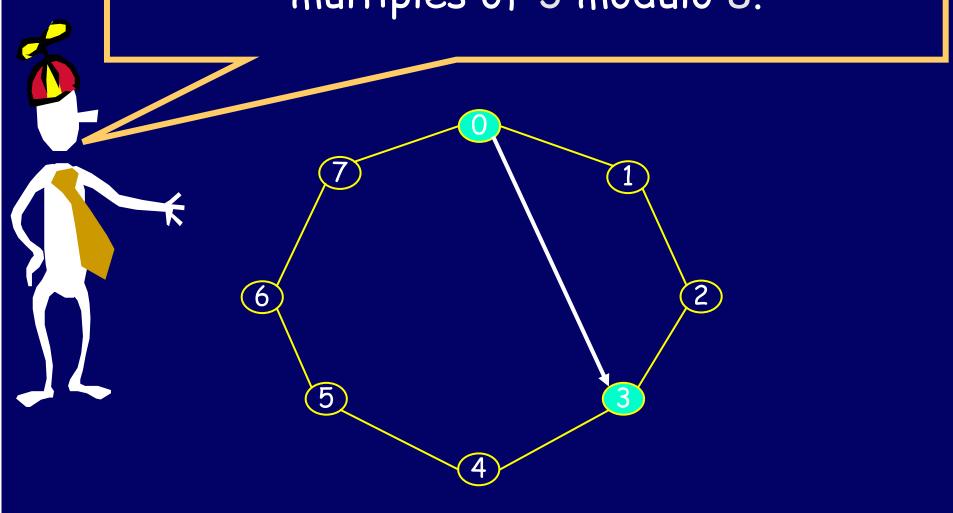
An operator has the permutation property if each row and each column has a permutation of the elements.

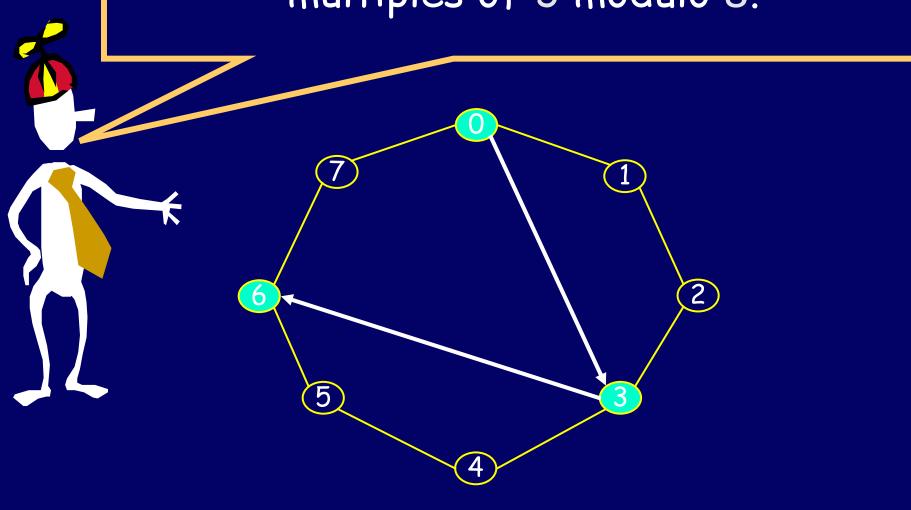


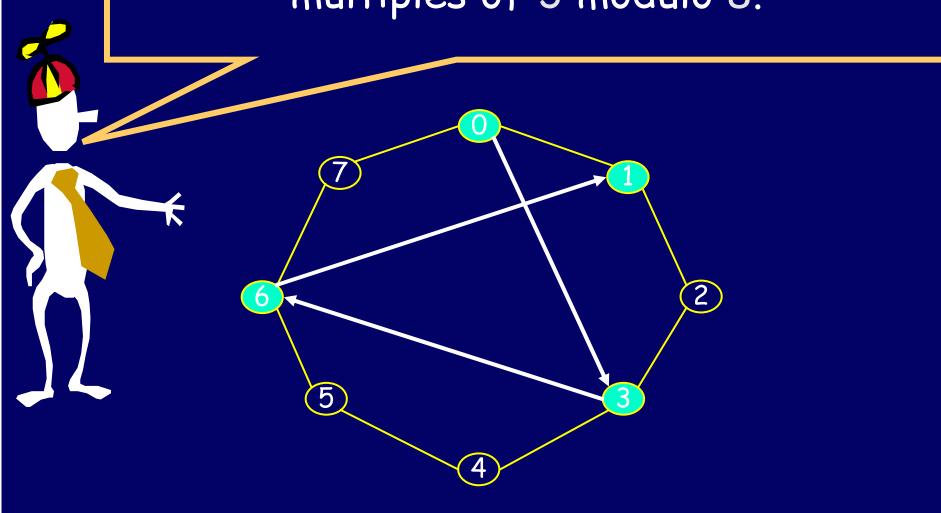
+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

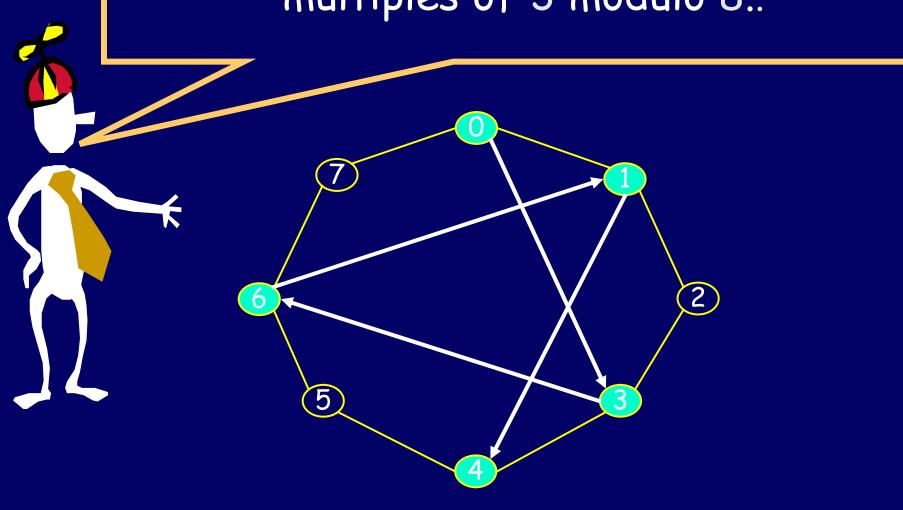
An operator has the permutation property if each row and each column has a permutation of the elements.

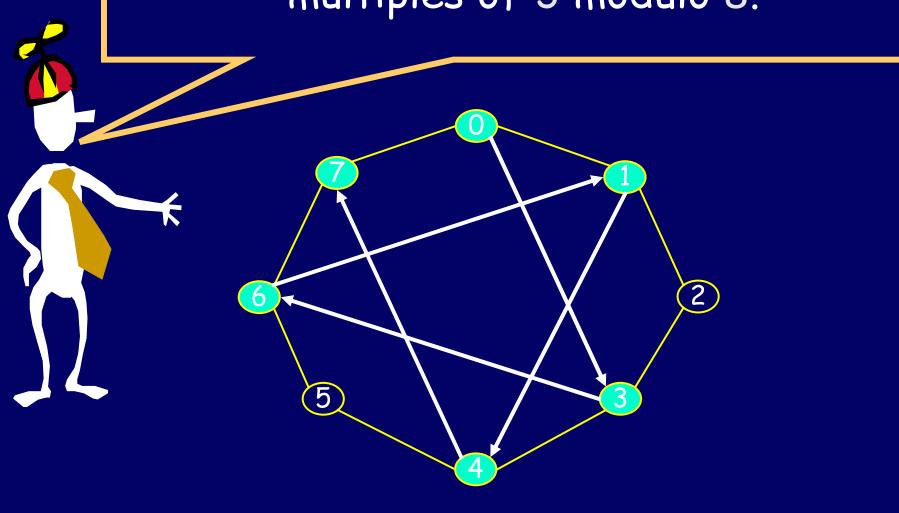


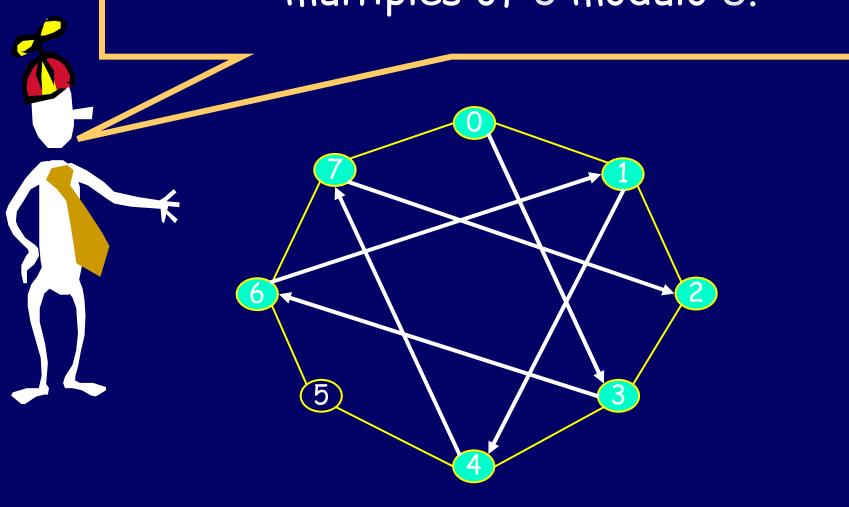


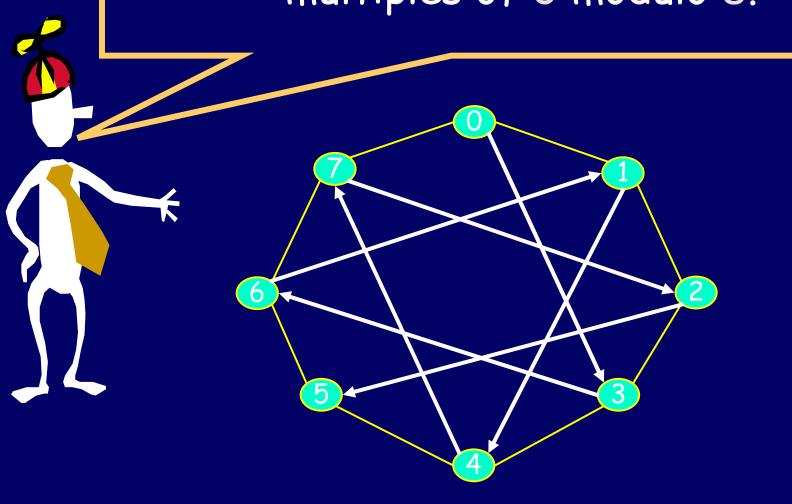


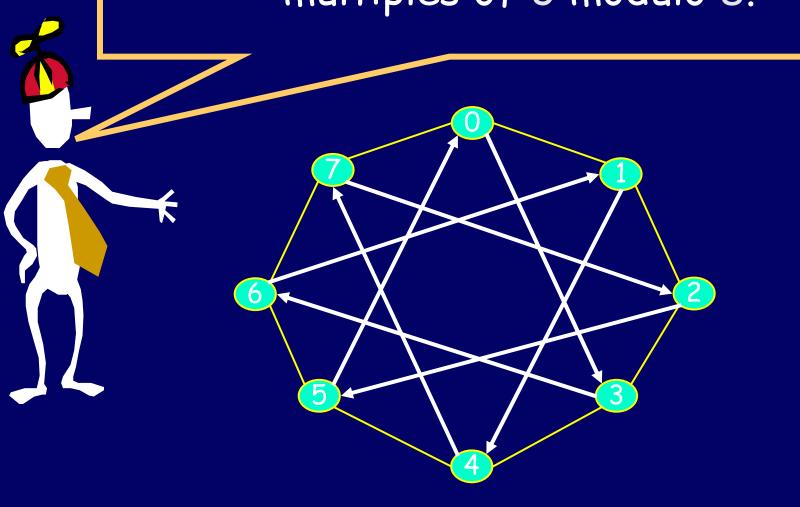


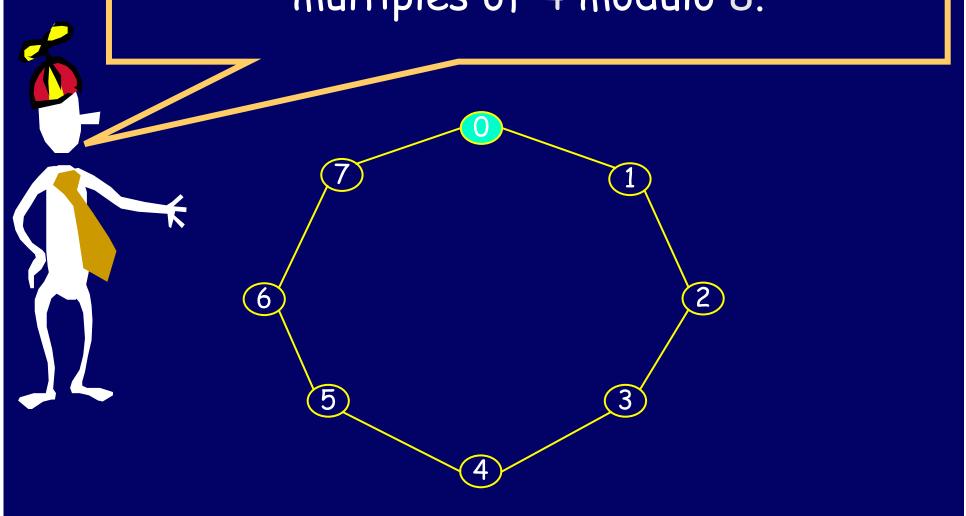


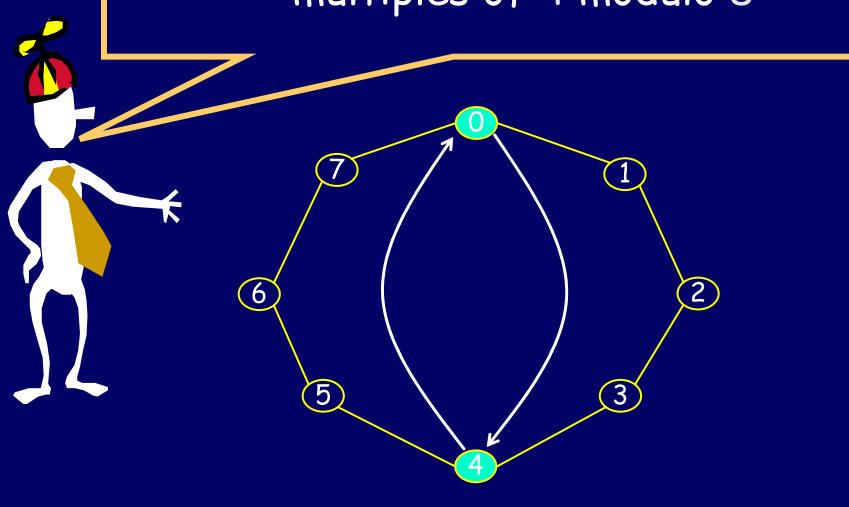




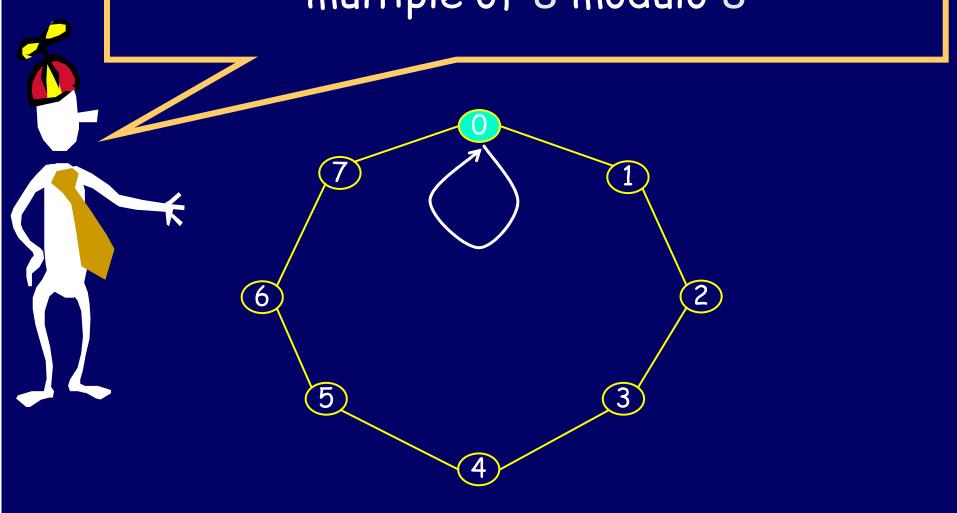


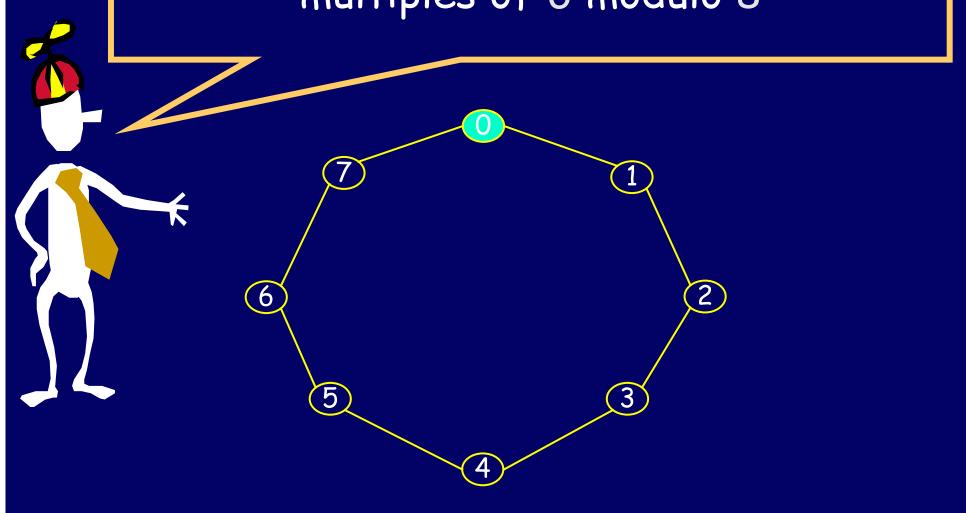


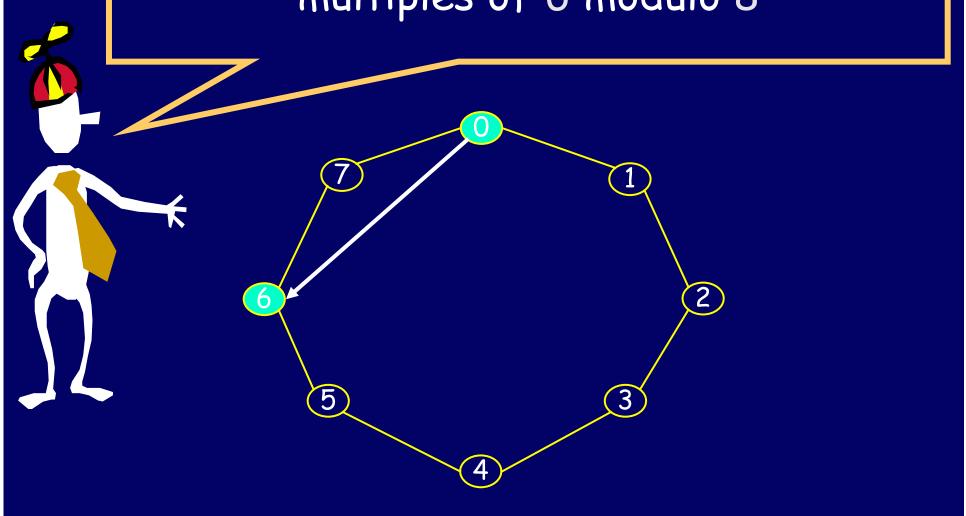


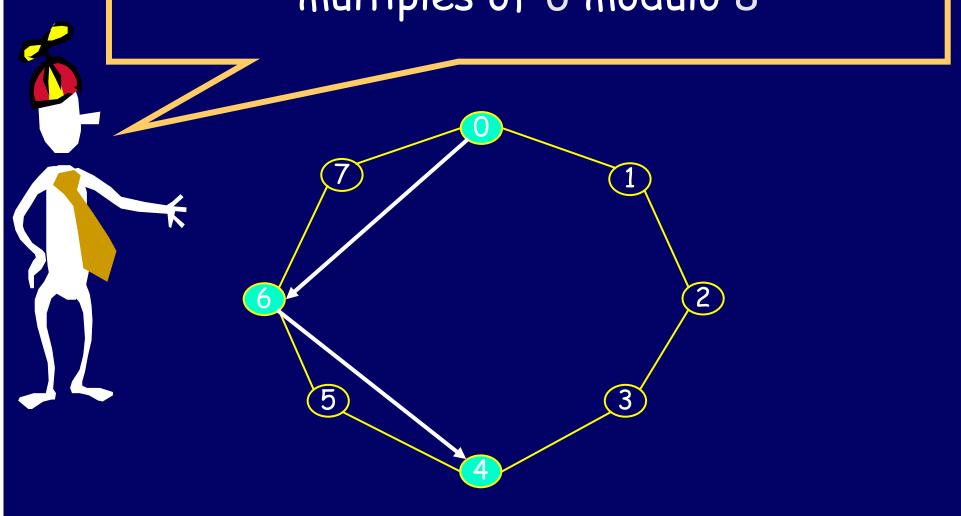


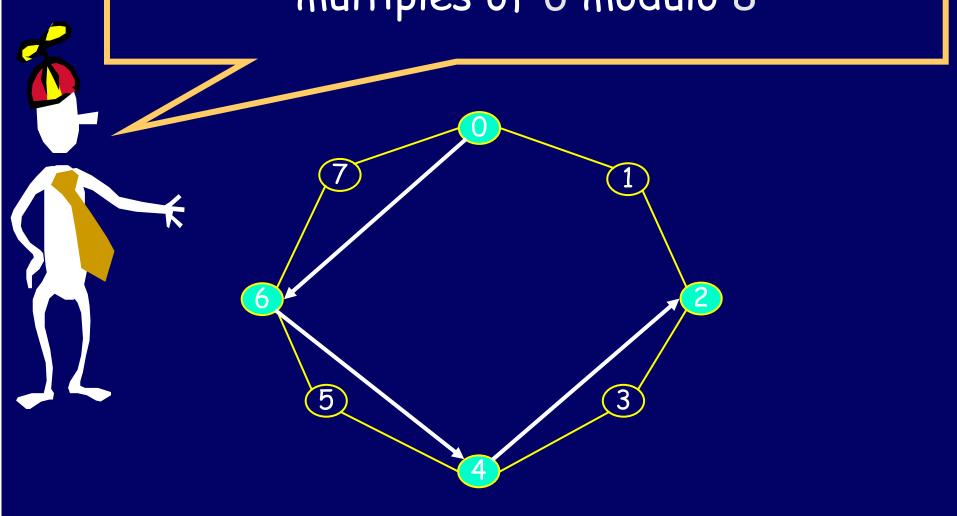
There is exactly 1 distinct multiple of 8 modulo 8

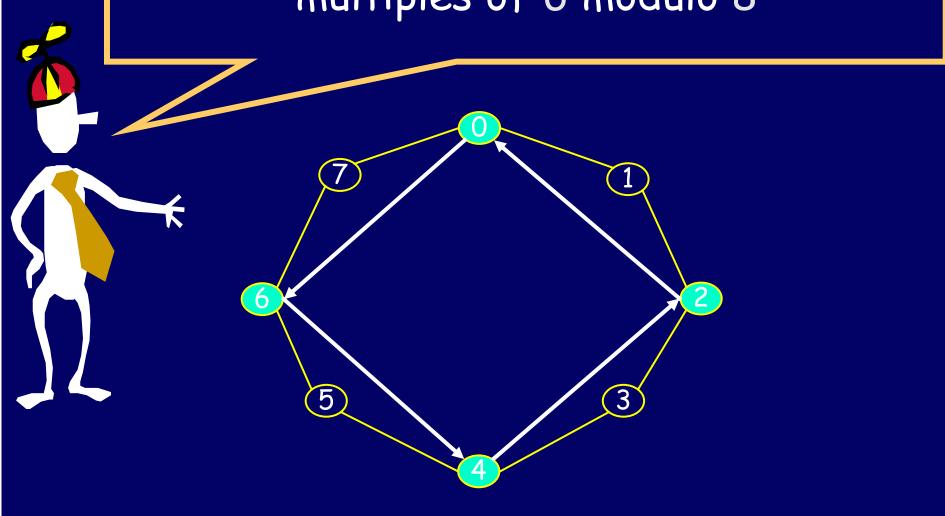








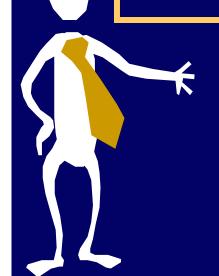


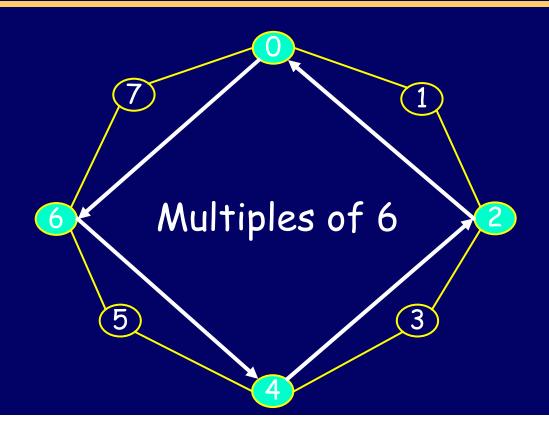


Can you see the general rule?

There are exactly n/GCD(c,n) distinct multiples of c modulo n

The <u>multiples of c modulo n</u> is the set: $\{0, c, c +_n c, c +_n c +_n c,\}$

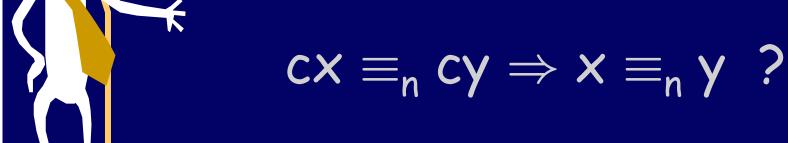




Theorem: There are exactly k=n/GCD(c.n) distinct multiples of c modulo n: $\{c^*i \mod n \mid 0 \le i < k\}$

Clearly, $c/GCD(c,n) \ge 1$ is a whole number $ck = n \left[c/GCD(c,n) \right] \equiv_n 0$ There are $\le k$ distinct multiples of c mod n: c^*0 , c^*1 , c^*2 , ..., $c^*(k-1)$ k is all the factors of n missing from c $cx \equiv_n cy \leftrightarrow n | c(x-y) \Rightarrow k | (x-y) \Rightarrow x-y \ge k$ There are $\ge k$ multiples of c

Is there a fundamental lemma of division modulo n?



Is there a fundamental lemma of division modulo n?

$$cx \equiv_n cy \Rightarrow x \equiv_n y ? NO!$$

If c=0 [mod n], $cx \equiv_n cy$ for any x and y. Canceling the c is like dividing by zero.

Repaired fundamental lemma of division modulo n?

$$C\neq 0 \pmod{n}$$
, $cx\equiv_n cy\Rightarrow x\equiv_n y$?

$$2*2 \equiv_6 2*5$$
, but not $2 \equiv_6 5$.
 $6*3 \equiv_{10} 6*8$, but not $3 \equiv_{10} 8$.

When can I divide by c?

Theorem: There are exactly n/GCD(c.n) distinct multiples of c modulo n.

Corollary: If GCD(c,n) > 1, then the number of multiples of c is less than n.

Corollary: If GCD(c,n)>1 then you can't always divide by c.

Proof: There must exist distinct x,y< n such that c*x=c*y (but $x\neq y$)

Fundamental lemma of division modulo n.

$$GCD(c,n)=1$$
, $ca \equiv_n cb \Rightarrow a \equiv_n b$

$$ab = ac \mod n$$

 $n \mid (ab - ac)$
 $n \mid a(b - c)$

$$n \mid b - c$$
 since $(a, n) = 1$

$$b = c \mod n$$

Corollary for general c:

$$\leftarrow$$
 $cx \equiv_{n} cy \Rightarrow x \equiv_{n/GCD(c,n)} y$

$$cx \equiv_{n} cy$$

$$cx \equiv_{n} cy$$

 $\Rightarrow cx \equiv_{n/(c,n)} cy \text{ and } (c, n/gcb(c,n))=1$
 $\Rightarrow x \equiv_{n/(c,n)} v$

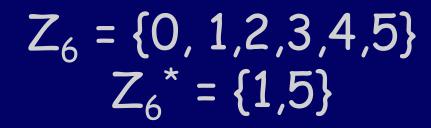
$$\Rightarrow \mathbf{x} \equiv_{\mathsf{n/(c,n)}} \mathbf{y}$$

Fundamental lemma of division modulo n.

$$GCD(c,n)=1$$
, $ca \equiv_n cb \Rightarrow a \equiv_n b$

$$Z_n^* = \{x \in Z_n \mid GCD(x,n) = 1\}$$

Multiplication over Z_n^* will have the cancellation property.



+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

*	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

Suppose GCD(x,n) = 1 and GCD(y,n) = 1

Let z = xy and $z' = (xy \mod n)$

It is obvious that GCD(z,n) = 1

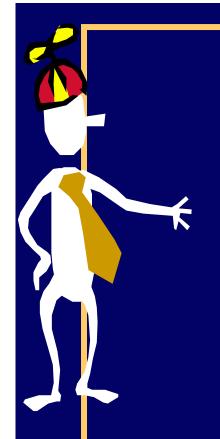
It requires a moment to convince ourselves that GCD(z',n) = 1

$$Z_n^* = \{x \in Z_n \mid GCD(x,n) = 1\}$$

 $*_n$ is an associative, binary operator. In particular, Z_n^* is closed under $*_n$:

$$x,y \in Z_n^* \Rightarrow x_n^* y \in Z_n^*$$
.

Proof: Let z = xy. Let $z' = z \mod n$. z = z' + kn. Suppose there exists a prime p>1 p|z' and p|n. z is the sum of two multiples of p, so p|z. $p|z \Rightarrow that <math>p|x$ or p|y. Contradiction of $x,y \in Z_n^*$



$$Z_{12}^{*} = \{1,5,7,11\}$$

* 12	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

Z₁₅*

*	1	2	4	7	8	11	13	14
1	1	2	4	7	8	11	13	14
2	2	4	8	14	1	7	11	13
4	4	8	1	13	2	14	7	11
7	7	14	13	4	11	2	1	8
8	8	1	2	11	4	13	14	7
11	11	7	14	2	13	1	8	4
13	13	11	7	1	14	8	4	2
14	14	13	11	8	7	4	2	1

The column permutation property is equivalent to the right cancellation property:

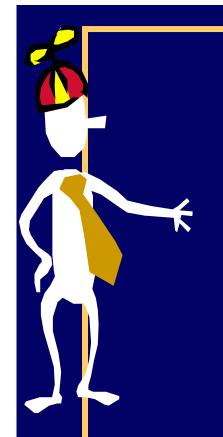
[b * a = c * a]
$$\Rightarrow$$
 b=c

*	1	2	α	4
Ь	1	2	3	4
2	2	4	1	3
С	3	1	4	2
4	4	3	2	1

The row permutation property is equivalent to the left cancellation property:

$$[a * b = a * c] \Rightarrow b=c$$

*	Ь	2	С	4
1	1	2	3	4
2	2	4	1	3
а	3	1	4	2
4	4	3	2	1



$$Z_5^* = \{1,2,3,4\}$$

* 5	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

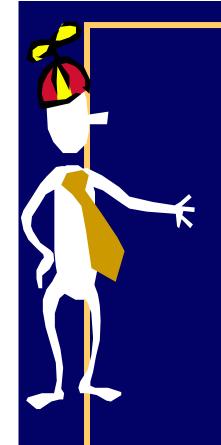
Euler Phi Function

$$\Phi(n) = size of z_n^*$$

= number of 1<k<n that are relatively prime to n.

p prime
$$\Rightarrow Z_p^* = \{1,2,3,...,p-1\}$$

 $\Rightarrow \Phi(p) = p-1$



$$Z_{12}^* = \{1,5,7,11\}$$

 $\phi(12) = 4$

* 12	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

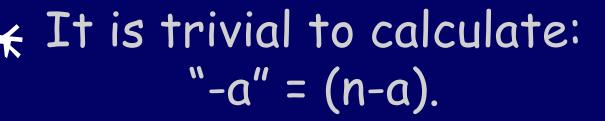
$\phi(pq) = (p-1)(q-1)$ if p,q distinct primes

pq = # of numbers from 1 to pq p = # of multiples of q up to pq q = # of multiples of p up to pq 1 = # of multiple of both p and q up to pq

$$\phi(pq) = pq - p - q + 1 = (p-1)(q-1)$$

Let's consider how we do arithmetic in Z_n and in Z_n^*

The additive inverse of $a \in Z_n$ is the unique $b \in Z_n$ such that $a +_n b \equiv_n 0$. We denote this inverse by "-a".



The multiplicative inverse of $a \in \mathbb{Z}_n^*$ is the unique $b \in \mathbb{Z}_n^*$ such that $a *_n b \equiv_n 1$. We denote this inverse by "a-1" or "1/a".

The unique inverse of a must exist because the a row contains a permutation of the elements and hence contains a unique 1.

*	1	Ь	3	4
1	1	2	3	4
2	2	4	1	3
а	3	1	4	2
4	4	3	2	1

$$Z_n = \{0, 1, 2, ..., n-1\}$$

 $Z_n^* = \{x \in Z_n \mid GCD(x,n) = 1\}$

Define
$$+_n$$
 and $*_n$:

$$a +_{n} b = (a + b \mod n)$$
 $a *_{n} b = (a * b \mod n)$

$$a *_n b = (a*b \mod n)$$

$$c *_{n} (a +_{n} b) \equiv_{n} (c *_{n} a) +_{n} (c *_{n} b)$$

$$\langle Z_n, +_n \rangle$$

- 1. Closed
- 2. Associative
- 3. 0 is identity
- 4. Additive Inverses
- 5. Cancellation
- 6. Commutative

$$\langle Z_n^*, *_n \rangle$$

- 1. Closed
- 2. Associative
- 3. 1 is identity
 - 4. Multiplicative Inverses
 - 5. Cancellation
 - 6. Commutative

The multiplicative inverse of $a\in Z_n^*$ is the unique $b\in Z_n^*$ such that $a *_n b \equiv_n 1$. We denote this inverse by "a-1" or "1/a".

Efficient algorithm to compute a-1 from a and n.

Execute the Extended Euclid Algorithm on a and n (previous lecture). It will give two integers r and s such that:

$$ra + sn = (a,n) = 1$$

Taking both sides mod n, we obtain: $rn \equiv_n 1$ Output r, which is the inverse of a

Fundamental lemma of powers?

If
$$(a \equiv_n b)$$

Then $x^a \equiv_n x^b$

If $(a \equiv_n b)$ Then $x^a \equiv_n x^b$

NO!

(16 \equiv_{15} 1) , but it is not the case that: $2^1 \equiv_{15} 2^{16}$

Calculate ab mod n:

Except for b, work in a reduced mod system to keep all intermediate results less than $\lfloor \log_2(n) \rfloor + 1$ bits long.

Phase I

(Repeated Multiplication)

For log b steps

multiply largest so far by a

 $(a, a^2, a^4, ...)$

Phase II

(Make ab from bits and pieces)

Expand n in binary to see how n is the sum powers of 2. Assemble a^b by multiplying together appropriate powers of a.

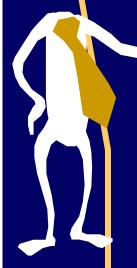
Two names for the same set:

$$Z_n^* = Z_n^a$$

$$Z_n^a = \{a *_n x \mid x \in Z_n^*\}, a \in Z_n^*$$

*	Ь	2	С	4
1	1	2	3	4
2	2	4	1	3
а	3	1	4	2
4	4	3	2	1

Two products on the same set:



$$Z_n^* = Z_n^a$$

$$Z_n^a = \{a *_n x \mid x \in Z_n^*\}, a \in Z_n^*$$

 $\Pi x \equiv_{n} \Pi ax [as x ranges over <math>Z_{n}^{*}]$

$$\prod x \equiv_n \prod x (a^{size \text{ of } Zn^*})$$
 [Commutativity]

$$1 = a^{\text{size of } Zn^*}$$
 [Cancellation]

$$a^{\Phi(n)} = 1$$

Euler's Theorem

$$a \in \mathbb{Z}_n^*$$
, $a^{\Phi(n)} \equiv_n 1$

Fermat's Little Theorem

p prime,
$$a \in \mathbb{Z}_p^* \Rightarrow a^{p-1} \equiv_p 1$$

Fundamental lemma of powers.

Suppose $x \in \mathbb{Z}_n^*$, and a,b,n are naturals.

If
$$a \equiv_{\Phi(n)} b$$
 Then $x^a \equiv_n x^b$

Equivalently, $\mathbf{x}^{\text{a mod }\Phi(n)} \equiv_{\mathbf{n}} \mathbf{x}^{\text{b mod }\Phi(n)}$

Defining negative powers.

Suppose $x \in \mathbb{Z}_n^*$, and a,n are naturals.

* x^{-a} is defined to be the multiplicative inverse of X^a

$$X^{-a} = (X^a)^{-1}$$

Rule of integer exponents

Suppose $x,y \in \mathbb{Z}_n^*$, and a,b are integers.

$$(xy)^{-1} \equiv_{n} x^{-1} y^{-1}$$

$$X^a X^b \equiv_n X^{a+b}$$

Lemma of integer powers.

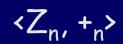
Suppose $x \in \mathbb{Z}_n^*$, and a,b are integers.

If
$$a \equiv_{\Phi(n)} b$$
 Then $x^a \equiv_n x^b$

Equivalently, $\mathbf{x}^{\text{a mod }\Phi(n)} \equiv_{\mathbf{n}} \mathbf{x}^{\text{b mod }\Phi(n)}$

$Z_n = \{0, 1, 2, ..., n-1\}$ $Z_n^* = \{x \in Z_n \mid GCD(x,n) = 1\}$

Quick raising to power.



- 1. Closed
- 2. Associative
- 3. 0 is identity
- 4. Additive Inverses
 Fast + amd -
- 5. Cancellation
- 6. Commutative

$$\langle Z_n^*, *_n \rangle$$

- 1. Closed
- 2. Associative
- 3. 1 is identity
- 4. Multiplicative Inverses Fast * and /
- 5. Cancellation
- 6. Commutative

$$\Phi(n) = size of z_n^*$$

p prime
$$\Rightarrow Z_p^* = \{1,2,3,...,p-1\}$$

 $\Rightarrow \Phi(p) = p-1$

 $\phi(pq) = (p-1)(q-1)$ if p,q distinct primes

The RSA Cryptosystem

Rivest, Shamir, and Adelman (1978)

RSA is one of the most used cryptographic protocols on the net. Your browser uses it to establish a secure session with a site.

