Great Theoretical Ideas In Computer Science
Steven Rudich CS 15-251 Spring 2004
Lecture 6 Jan 29, 2004 Carnegie Mellon University

Rabbits, Continued Fractions,
The Golden Ratio, and Euclid's
GCD
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Leonardo Fibonacci

In 1202, Fibonacci proposed a problem
about the growth of rabbit populations.
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The rabbit reproduction model

*A rabbit lives forever
* The population starts as a single newborn pair

Every month, each productive pair begets a
new pair which will become productive after 2
months old

F,.= # of rabbit pairs at the beginning of the
nth month
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Inductive Definition or
Recurrence Relation for the
Fibonacci Numbers

Stage O, Initial Condition, or Base Case:
Fib(1)=1;, Fib(2) =1

Inductive Rule
For n>3, Fib(n) = Fib(n-1) + Fib(n-2)

q O|1 | 2

Flb(n) yA 1 1




Inductive Definition or
Recurrence Relation for the
Fibonacci Numbers

Stage O, Initial Condition, or Base Case:
Fib(0)=0; Fib (1) =1

Inductive Rule
For n>1, Fib(n) = Fib(n-1) + Fib(n-2)

h O|1 ]2
Fib(n) o1 |1




A (Simple) Continued Fraction Is Any
Expression Of The Form:

where a, b, ¢, ... are whole numbers.




A Continued Fraction can have a finite
or infinite number of terms.

We also denote this fraction by [a,b,c,def..]




A Finite Continued Fraction
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Also denoted [2.3.4.2.0,0,0,0,0,...]




A Infinite Continued Fraction

1+

Also denoted [1,2,2,2,....




Recursively Defined Form For CF

CF = whole number, or

1
= whole number + —

CF




Ancient Greek Representation:
Continued Fraction Representation
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Ancient Greek Representation:
Continued Fraction Representation
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Let r, = [1,0,0,0..]
r, = [1,10,00...
rs = [11,10,0..
and so on.

Theorem:
r, = Fib(n+1)/Fib(n)




Proposition: Any finite
cPhtinued fraction
aluates to a rational.

Theorem (proof later):
Any rational has a finite
continued fraction.




Continued Fraction Representation

J2=1+




Quadratic Equations

X2-3x-1=0 X_3+\Ej
2

X2= 3X+ 1
X =3 +1/X

X=3+1/X=3+1/[3+1/X]=..




Continued Fraction Representation

3+413 N




Conclusion: Any quadratic
solution has a periodic
continued fraction.

Converse (homework):

Any periodic continued
fraction is the solution
of a quadratic equation.




Continued Fraction Representation

e-1=1+




Continued Fraction Representation
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Q/ What a cool representation

Finite CF = Rationals
Periodic CF = Quadratic Roots

And some numbers reveal
hidden regularity.




And there is morel

Let a =
[a;, a5, a3, .. ] be a CF.

Define C, = [a;,0,,0,0,0..]
Define C; = [a;,0,,05,0..]

and so on.




Ley a = [a;, a,,a5,.. ]bea
Q/ CF.

C, is called the kth

convergent of o

where a is the limit of
the sequence C,, C,, C; ...




~

Define a rational p/q to
be a "best
approximator” to a real

o, if no rational number
of smaller denominator

comes closer.
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each convergent of the
CF is a "best
approximator” for a |

For any CF
representation of q,




Continued Fraction Representation

C, = 22/7

C, =333/106

C, = 355/113

Cs= 103993/33102

C, =104348/33215




Is there
life after




Khufu

-+2589-2566 B.C.

+2,300,000 blocks
averaging 2.5 tons each
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Great Pyramid at Gizeh

300m (984ft)

137m (449ft)

96m (316ft)
92m (305ft)
55m (179ft)

s Eiffel Tower
Leaning Tower of Pisa
Big Ben

Statue of Liberty




300m (984ft)

s Eiffel Tower
Leaning Tower of Pisa

Big Ben

Statue of Liberty

137m (449ft)

96m (316ft)
92m (305ft)
55m (179ft)

The ratio of the altitude of a face to half the base




Golden Ratio
Divine Proportion

®=1.6180339887498948482045...

"Phi” is named after the Greek sculptor
Phidias




Parthenon, Athens (400 B.C.)
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Pentagon




Ratio of height of the person to
the height of a person's navel

s




Definition of ¢ (Euclid)

Ratio obtained when you divide a line segment
into two unequal parts such that the ratio of
the whole to the larger part is the same as
the ratio of the larger to the smaller.
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Definition of ¢ (Euclid)

Ratio obtained when you divide a line segment
into two unequal parts such that the ratio of
the whole to the larger part is the same as
the ratio of the larger to the smaller.




The Divine Quadratic




Expanding Recursively

1

p=1+=
@




Expanding Recursively




Expanding Recursively

p=1+"




Continued Fraction Representation

p=1+




Continued Fraction Representation

1+\/§:




We already know that the
convergents of this CF have the

form Fib(n+1)/Fib(n)
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Continued Fraction Representation
1+5 _
5 -
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11,2,3,5,8,13,21,34,55,....

2

1.5

1.666...

1.6

1.625
1.6153846...

1.61904...

1.6180339887498948482045
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Now back to grad schooll
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I mean...

Now back to grade school.




Grade School GCD algorithm

Definition: GCD(A,B) is the greatest common
divisor. IL.e., the largest number that goes evenly
into both A and B.,

What is the GCD of 12 and 18?
12=22*3 18 = 2*3¢

Common factors: 2! and 3!
Answer: 6




Grade School GCD algorithm

Definition: GCD(A,B) is the greatest common
divisor. I.e., the largest number that goes evenly
into both A and B.,

Factor A into prime powers.
Factor B into prime powers.

Create GCD by multiplying together each common
Er'ime raised to the highest power that goes into
oth A and B.
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Q’ The problem with the
grade school method is

that it requires factoring

A and B. No one knows a

particularly fast way to
factor a number into
parts.
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EUCLID had a much
better way to compute
GCD!




Ancient Recursion
Euclid's GCD algorithm

EUCLID(A,B) // requires A=B=0
If B=0 then Return A
else  Return Euclid(B, A mod B)




6CD(67,29) = 1

EUCLID(A,B) // requires A=B=0
If B=0 then Return A
else  Return Euclid(B, A mod B)

Euclid(67,29) 67 mod29=09

Euc
Euc
Euc
Euc

1d(29,9) 29 mod9 =2
1d(9,2) Omod2 =1
id(2,1) 2mod1l =0
id(1,0) outputs 1




Euclid’'s GCD Correctness

EUCLID(A,B) // requires A=B=0
If B=0 then Return A
else  Return Euclid(B, A mod B)

GCD(A,B) = GCD(B, A mod B)

d|A and
admin/: Permission denied.

&> d|Band d| (A - kB)
The set of common divisors of A, B equals




Euclid's GCD Termination

EUCLID(A,B) // requires A=B=0
If B=0 then Return A
else  Return Euclid(B, A mod B)

A mod B < 3
Proof:
IfB>3 AthenAmodB= A-B

If B< 5 A then ANY X Mod B
IfB=%AthenAmodB=0




Euclid's GCD Termination

EUCLID(A,B) // requires A=B=0
If B=0 then Return A
else  Return Euclid(B, A mod B)

GCD(A,B) calls GCD(B, A mod B)

Less than 5 of A




Euclid's GCD Termination

EUCLID(A,B) // requires A=B=0
If B=0 then Return A
else  Return Euclid(B, A mod B)

GCD(A,B) calls GCD(B, <3A)




Euclid's GCD Termination

EUCLID(A,B) // requires A=B=0
If B=0 then Return A
else  Return Euclid(B, A mod B)

GCD(A,B) calls GCD(B, <5A)

which calls GCD(<3A, B mod <3A)

Less than 3 of A




Euclid's GCD Termination

EUCLID(A,B) // requires A=B=0
If B=0 then Return A
else  Return Euclid(B, A mod B)

Every two recursive calls,
the input numbers drop by

half.




Euclid's GCD Termination

EUCLID(A,B) // requires A=B=0
If B=0 then Return A
else  Return Euclid(B, A mod B)

Theorem:

If two input numbers have an n
bit binary representation,
Euclid Algorithm will not take
more than 2n calls to terminate.




¢ 3
Trick Question: i

If X and Y are less than n,
what is a reasonable upper
bound on the number of
recursive calls Euclid(X,Y)
will make?.




Q/ Answer:

If X and Y are less than n,

Euclid(X,Y) will make no
more than 2log,n calls.




EUCLID(A,B) // requires A=B=0 If
B=0 then Return A
else Return Euclid(B, A mod B)

id(67,29) 67 -2*29=67mod29=9
1d(29,9) 29-3*9=29mod9 =2
1d(9,2) 9-4*2 =9 mod 2 |
id(2,1) 2-2*1=2mod1 0
id(1,0) outputs 1




Let <r,s> denote the number
r*67 + s*29 . Calculate all
intfermediate values in this

representation.

67=<10> 29=<0,1>

Euclid(67,29) 9=<10> - 2*<0,1> 9 =<1-2>
Euclid(29,9) 2=<0,1> - 3*<1,-2> 2=<-37>
Euclid(9,2) 1=<1-2> - 4*<-3,7> 1=<13,-30»
Euclid(2,1) 0=2 - 2*1 2:=4-37>

Euclid(1,0) outputs 1=13*67 - 30*29




Euclid's Extended GCD algorithm

Input: XY
Output: r,s,d such that rX+sY = d = GCD(X,Y)

67=<10> 29=<0,1>
Euclid(67,29) 9=67 - 2*29 9 =<1,-2>
Euclid(29,9) 2=29 - 3*9 2=<-3,7>
Euclid(9,2) 1=9 - 4*2 1=<13,-30>
Euclid(2,1) 0=2 - 2*1 2=<-3,7>

Euclid(1,0) outputs 1=13*67 - 30*29




Euclid's GCD algorithm

EUCLID(A,B) // requires A=B=0
If B=0 then Return A

else Return Euclid(B, A mod B)

T(m) = the largest number of recursive
calls that Euclid makes on any input pair
with B=m




Euclid's GCD algorithm

EUCLID(A,B) // requires A=B=0
If B=0 then Return A

else Return Euclid(B, A mod B)

We already know that T(m)< 2log,m




Lame: T(F,) = k [1845]

EUCLID(A,B) // requires A=B=0
If B=0 then Return A

else Return Euclid(B, A mod B)

First we show that T(F,) > k




Lemma:
Euclid(F,.;,F,) makes k recursive calls

Euclid(F,.;,F.) will call ..
Euclid(Fy,Fy_1) will call ...
Euclid(Fy_{,F\.») will call ...

Euclid(F,,F;) will call ...
EUC“d(Fl,Fo)
Hence T(Fk) 2 k




Lemma: Euclid(F,.;,F,) makes k
recursive calls

Corollary: T(F,) = k




Lemma: Euclid(F,.;,F,) makes k
recursive calls

We have: T(F,) = k
We now want to show: T(F,) < k

We prove T(F,) < k it by proving that:
Euclid(A,B) makes k calls =
A > Fk+1 and B > Fk




Lemma: Euclid(F,.;,F,) makes k
recursive calls

We proceed by induction on k, starting
at k=2.

Euclid(A,B) makes k calls =
A > Fk+1Clnd B> Fk




k > 2, Euclid(A,B) makes k calls
- A=2F,,;and B> F,

Base: k=2
B > O since EUCLID doesn't halt right away.

B>1land A=2
B>F, Az=F;




k > 2, Euclid(A,B) makes k calls
- A=2F,,;and B> F,

Assume we have proved the hypothesis up to k-1

K>2 means EUCLID(A, B) will call

EUCLID(B, A mod B) which will make
k-1 recursive calls

By induction: B > F,and A mod B = F, 4




k > 2, Euclid(A,B) makes k calls
- A=2F,,;and B> F,

By induction: B > F and A mod B = F

B"‘(AmOdB)ZFk Fkl Fk+1

A =B+ (A mod B)

Thus:




k > 2, Euclid(A,B) makes k calls
- A=2F,,;and B> F,

Corollary:
If T(m) >k thenm > F,

Hence, T(F,) = K for all k.

And a worst case input for requiring k steps
in the p(lir' Fk+1 and Fk.




Continued fraction representation of a
standard fraction

67_2+

g




67/29 =2 with remainder 9/29
=2+1/(29/9)




A Representational Correspondence

2+

L1
29

9

Euclid(67,29) 67 div29 =2
Euclid(29,9) 29div9 =3
Euclid(9,2) 9dived =4
Euclid(2,1) 2divl =2
Euclid(1,0)




Euclid’'s GCD = Continued Fractions

A | A 1
= +
B | B B

e Amod B

Euclid(A,B) = Euclid(B, A mod B)
Stop when B=0




Theorem: All fractions have finite
continuous fraction expansions

A_
B

a
B

+

1

B

Amod B

Euclid(A,B) = Euclid(B, A mod B)
Stop when B=0




Fibonacci Magic Trick
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