Great Theoretical Ideas In Computer Science
Steven Rudich CS 15-251 Spring 2004
Lecture 4 Jan 22, 2004 Carnegie Mellon University

Induction: One Step At A Time

Last time we talked
Q’ about different

ways to represent
numbers: unary,

binary, decimal,
base b, plus/minus

binary, Egyptian
_ /

binary . . .

\
Q/ Different

representations had
different

advantages and
disadvantages.

_ /

Today we will TG'N

about
INDUCTION

4 VP
‘v 7, ,’/
/' & -~
/ Z P
\, ,/ =

=

N

Induction is the
primary way we:
1. Prove theorems

2.Construct and
define objects

_ fle Y,

N

Representing a
problem or object

inductively is one of
the most

fundamental
abstract

representations.

y o

@T with dominoes ﬁ

¥

- e

Domino Principle: Line up any
number of dominos in a row;
knock the first one over and

they will all fall.

I

n dominoes numbered 1 to n

F. = The k™ domino will fall

If we set them all up in a row then we
know that each one is set up to knock
over the next one:

For all 1< k < n:
Fr. = F.q

n dominoes numbered 1 to n

F. = The k™ domino will fall
For all 1< k < n:
F. = F.

Fi=F,=F;= .
F, = All Dominoes Fall

n dominoes numbered O to n-1

F. = The k™ domino will fall
For all 0O< k < n-1:
F. = Fi.q

Fo=F, =F,= ..
Fo = All Dominoes Fall

The Natural Numbers

N={0,1,2,3,...}

Plato: The Domino Principle
works for an infinite row of
dominoes

Aristotle: Never seen an

infinite number of anything,
much less dominoes.

Plato's Dominoes
One for each natural number

An infinite row, 0, 1, 2, ... of dominoes, one
domino for each natural number. Knock the
first domino over and they all will fall.

Proof: Suppose they don't all fall. Let k>O be
the lowest numbered domino that remains
standing. Domino k-1>0 did fall, but k-1 will
knock over domino k. Thus, domino k must fall
and remain standing. Contradiction.

The Infinite Domino Principle

F. = The k™ domino will fall

Assume we know that

for every natural number k,
F. = Fra

Fo=F/ =F,= ..
Fo = All Dominoes Fall

Mathematical Induction:
statements proved instead of
dominoes fallen

nfinite sequence of Infinite sequence of
dominoes. statements: So, 51,

F. = domino k fell Fx = Sk proved

Establish 1) F,
2) For all k, Fy, = F,.;

Conclude that F, is true for all k

Inductive Proof / Reasoning

To

ish "Base

Prove [k, S,

Case":. S,

iIsh that

K, Sk = Sy <

K, S, = S;.q

" Assume hypothetically that
S, for any particular k;

Conclude that S,
-

Inductive Proof / Reasoning
To Prove [k, S,

ish "Base Case": S,
ish that LIk, S, = S, .4

—
"Induction Hypothesis" S,

k, S, = S,,
K ke =< Use I.H. to show S,,;

N

Inductive Proof / Reasoning
To Prove Ok>b, S,

Estab
Estab

ish "Base Case": S,

iIsh that

k>b, S, = S,.4

Assume k> b
Assume "Inductive Hypothesis": S,
Prove that S,,; follows

We already know ’rha’r\

n,

An=1+2+3+...+n—1+n

= n(n+1)/2.

Let's prove it by induction:

Let S, =

"N, =n(n+1)/2"
fes

S, = "N, =n(n+1)/2"
Use induction to prove k>0, S,

Establish "Base Case": S, Ap=The sum of the
first O numbers = 0. Setting n=0 the formula
gives 0(0+1)/2 = 0.

Establish that [Ik>0, S, = S,
“Inductive Hypothesis" S,: A, =k(k+1)/2
Dy = By + (k+1)

= k(k+1)/2 + (k+1) [Using I.H.]

= (k+1)(k+2)/2 [which proves S,,;]

«

Induction is also how we
can define and

conhstruct our world.

%

[s
Q’ So many things, from

buildings to computers,
are built up stage by

stage, module by
module, each depending
on the previous stages.

%

Inductive Definition Of Functions

Stage O, Initial Condition, or Base Case:

Declare the value of the function on some
subset of the domain.

Inductive Rules

Define new values of the function in terms of
previously defined values of the function

F(x) is defined if and only if it is implied by
finite iteration of the rules.

Inductive Definition
Recurrence Relation for F(X)

Initial Condition, or Base Case:
F(O)=1

Inductive Rule
For n>0, F(n) = F(n-1) + F(n-1)

q O|1 |2 3
F(n) |

Inductive Definition
Recurrence Relation for F(X)

Initial Condition, or Base Case:
F(O)=1

Inductive Rule
For n>0, F(n) = F(n-1) + F(n-1)

h 0) 2 | 3
F(n) |

Inductive Definition
Recurrence Relation for F(X)

Initial Condition, or Base Case:
F(O)=1

Inductive Rule
For n>0, F(n) = F(n-1) + F(n-1)

n 0 3
F(n) |

Inductive Definition
Recurrence Relation for F(X)

Initial Condition, or Base Case:
F(O)=1

Inductive Rule
For n>0, F(n) = F(n-1) + F(n-1)

h 0)
F(n) |

Inductive Definition
Recurrence Relation for F(X) = 2%

Initial Condition, or Base Case:
F(O)=1

Inductive Rule
For n>0, F(n) = F(n-1) + F(n-1)

h 0)
F(n) |

Inductive Definition
Recurrence Relation

Initial Condition, or Base Case:
F(1)=1

Inductive Rule
For n>1, F(n) = F(n/2) + F(n/2)

q 0 2 | 3
F(n)

Inductive Definition
Recurrence Relation

Initial Condition, or Base Case:
F(1)=1

Inductive Rule
For n>1, F(n) = F(n/2) + F(n/2)

q 0 3
F(n)

Inductive Definition
Recurrence Relation

Initial Condition, or Base Case:
F(1)=1

Inductive Rule
For n>1, F(n) = F(n/2) + F(n/2)

q 0 3
F(n)

Inductive Definition
Recurrence Relation

Initial Condition, or Base Case:
F(1)=1

Inductive Rule
For n>1, F(n) = F(n/2) + F(n/2)

n 0 3
F(n) yA YA

Inductive Definition

Recurrence Relation
F(X) = X for X a whole power of 2.

Initial Condition, or Base Case:
F(1)=1

Inductive Rule
For n>1, F(n) = F(n/2) + F(n/2)

n 0 3

F(n) o o

Base Case: VxeN P(X,0) = X
Inductive Rule:
Vx,yeN, y>0, P(x,y) = P(x,y-1) + 1

P(x.y)
0

1
2
3

Base Case: VxeN P(X,0) = X
Inductive Rule:
Vx,yeN, y>0, P(x,y) = P(x,y-1) + 1

P(x.y)
0

1
2
3

Base Case: VxeN P(X,0) = X
Inductive Rule:
Vx,yeN, y>0, P(x,y) = P(x,y-1) + 1

P(x.y)
0

1
2
3

Base Case: VxeN P(X,0) = X
Inductive Rule:
Vx,yeN, y>0, P(x,y) = P(x,y-1) + 1

P(x.y)
0

1
2
3

Base Case: VxeN P(X,0) = X
Inductive Rule:
Vx,yeN, y>0, P(x,y) = P(x,y-1) + 1

P(x.y)
0

1
2
3

Base Case: VxeN P(X,0) = X
Inductive Rule:
Vx,yeN, y>0, P(x,y) = P(x,y-1) + 1

/ Definition of P:
Q, vxeN P(X,0) = X

\

vx yeN, y>0, P(x,y) = P(x,y-1) + 1

Peano's Definition of "+":

Xx+0=x
X+ Sy =5(x+y)
//,/

/ Definition of P: \
Q/ vxeN P(X,0) = X

vx yeN, y>0, P(x,y) = P(x,y-1) + 1

Any inductive definition can be

translated into a program. The

program simply calculates from
the base cases on up.

/ /,/

/

Q/ Definition of P:

vxeN P(X,0) = X
vx yeN, y>0, P(x,y) = P(x,y-1) + 1

What would be the bottom up
implementation of P?

/ /,/

/

For k=0 to 3
P(k,0)=k BOTTom"UP

For j=1t07 Program for P

For k=010 3
P(k.j) = P(k,j-1) + 1

P(x.y)
0

O 1
O |1
1|2
2 | 3
3| 4

1
2
3

4 I

Q/ Suppose we wanted to
know P(2,3) in
particular, but we had

not yet done any
calculation.

Base Case: VxeN P(X,0) = X
Inductive Rule:
Vx,yeN, y>0, P(x,y) = P(x,y-1) + 1

P(x.y)
0

1
2
3

Base Case: VxeN P(X,0) = X
Inductive Rule:
Vx,yeN, y>0, P(x,y) = P(x,y-1) + 1

P(x.y)
0

1
2
3

Base Case: VxeN P(X,0) = X
Inductive Rule:
Vx,yeN, y>0, P(x,y) = P(x,y-1) + 1

P(x.y)
0

1
2
3

Base Case: VxeN P(X,0) = X
Inductive Rule:
Vx,yeN, y>0, P(x,y) = P(x,y-1) + 1

P(x.y)
0

1
2
3

Base Case: VxeN P(X,0) = X
Inductive Rule:
Vx,yeN, y>0, P(x,y) = P(x,y-1) + 1

P(x.y)
0

1
2
3

Base Case: VxeN P(X,0) = X
Inductive Rule:
Vx,yeN, y>0, P(x,y) = P(x,y-1) + 1

P(x.y)
0

1
2
3

Base Case: VxeN P(X,0) = X
Inductive Rule:
Vx,yeN, y>0, P(x,y) = P(x,y-1) + 1

P(x.y)
0

1
2
3

Base Case: VxeN P(X,0) = X
Inductive Rule:
Vx,yeN, y>0, P(x,y) = P(x,y-1) + 1

P(x.y)
0

1
2
3

Procedure P(x,y): Top Down
If y=0 return x
Otherwise return P(x,y-1)+1;

Recursive
Programming

Procedure P(x.y):
If y=0 return x
Otherwise return P(x,y-1)+1;

Inductive Definition:
vxeN P(X,0) = X
vx yeN, y>0, P(xy) = P(x,y-1) + 1

Bottom-Up, Iterative Program:
For k=010 3
P(k,0)=k
Forj=1to7
For k=0 to 3
P(k.j) = P(k,j-1) + 1

Top-Down, Recursive Program:
Procedure P(x,y):
If y=0 return x
Otherwise return P(x,y-1)+1;

"God Made The Naturals.
Everything Else Is The Work Of Man."

Kronecker

"God Made Induction On The Naturals.
Everything Else Is The Work Of Man."

Peano

Giuseppe Peano [1889]
Axiom's For N

Al. Sx 20
A2.[Sx = Sy] = [x=y]

A3. For any proposition P(x) where x& N.
Mathematical Induction Applies To P:

[P(O) and V xe N, P(x)= P(Sx)]

= VYV x P(x)

Giuseppe Peano [1889]
Axiom's For N

Al. Sx 20
A2.[Sx = Sy] = [x=y] Let's prove

A3. For any proposition P(x) where xe N. the
Mathematical Induction Applies To P:

[P(O) and V x& N, P(x)= P(5x)] CommUTGﬂViTY
=V x P(x) of addition:
Inductive Definition of +: Xty =y+ X
x+0=x
X+ Sy=5(x+y)

Lemma: O + X = X

Let P(x) be the proposition that

\\O+ x - xll

P(0)is "0+ 0 =0"

Assume P(x): "0 + x = x"
Show P(5x):

0+Sx = S(0+x) = S(x) = Sx

Lemma: Sx +y = S(x+y)

Let P(y) be the proposition that
W X, SX +y = S(x+y)"

P(0) is "V x, Sx + O = S(x+0) = Sx"
Assume P(y): "V x, Sx+y = S(x+y)"

Show P(Sy):

Sx+Sy = S(Sx+y) = S(S(x+y)) = S(x+Sy)

('l Theorem: Commutative Property

® 2 Of Addition: x +y = y + x
él

Let P(y) be the proposition that

WX, X+ty=y+Xx"

P(O)is"Vx,x+0=0+ x"
Assume P(y): "V X, x +y =y + X"
Show P(Sy):

x+Sy = S(x+y) = S(y+x) = Sy + x

4

_

Let's return our
attention to the
technique of
inductive proofs.

Aristotle's
Contrapositive

Let S be a sentence of the form "A = B”.

The Contrapositive of S is
the sentence "-B = - A",

A = B: When A is true, B is true.
-B = - A: When B is false, A is false.

Aristotle's
Contrapositive

Logically equivalent:
A "A= B" =B =-A"

False False True True
False True True True
True False False False
True True True True

Advice

from the master.

/

Illl

To prove S, it is
often easier to
prove the

\

kon’rmposi’rive of S.

Contrapositive Dominos

Suppose there is a least domino k that
does not fall.

If k did not fall, then k-1 did not fall.
k-1 would be a smaller, standing domino,
contradicting our assumption.

Contrapositive or
Least Counter-Example
Induction to Prove [k, S,

Establish "Base Case": S,

Establish that Ok, S, = S,.,
Let k>0 be the least number such that S,

1S false.

Prove that | =S, = -5,
[Contradiction of k being

the least counter-example]

"Strong” Induction
k, S,

To Prove

Establish "Base Case": S,

Establish that Uk, S, = S,
Let k be any natural number.

Assume [j<k, S;
Prove Sk

All Previous Induction
K, S

To Prove

Establish "Base Case": S,

Establish that Uk, S, = S,
Let k be any natural number.

Assume [j<k, S;
Prove Sk

All Previous, \

Contrapositive
Induction:

Assume there is a least
counter-example. Derive the
existence of a smaller
counter-example. Conclude

there is no coun’rer—example/

\

This is why we tend to call
All Previous, Contrapositive
Induction the Method of
Least-Counter Example.

N _/

g Rene Descartes [1596-1650]
“"Method Of Infinite Decent”

Show that for any counter-example you
find a smaller one. If a counter-
example exists there would be an
infinite sequence of smaller and smaller
counter examples.

Euclid’'s theorem on TQ
unique factorization of

a humber into primes.

Assume there is a least
counter-example. Derive the
existence of a smaller
counter-example.

S %

Theorem: Each natural has a unique
factorization into primes written in
non-decreasing order.

Definition: A number > 1 is prime if it has no
other factors, besides 1 and itself.

Primes: 2,3,5,7,11,13,17, ...

Factorizations:
42 =2*3*7
84=2*2*3*7
13 =13

Theorem: Each natural has a unique
factorization into primes written in
non-decreasing order.

Let n be the least counter-example. n has at
least two ways of being written as a product
of primes:

N=P1P2.-Pk=9192 - G+

The p's must be totally different primes than
the g's or else we could divide both sides by
one of a common prime and get a smaller
counter-example. Without loss of generality,
assume p; > q .

Theorem: Each natural has a unique
factorization into primes written in
non-decreasing order.

Let n be the least counter-example.
N=p; P2 Pk=9192 -9+ [P1>9;]

n>pp;>p;qr+1 [Since p; > q4]

Theorem: Each natural has a unique
factorization into primes written in
non-decreasing order.

Let n be the least counter-example.
N=piPz--Pk=G192 -G [P1>G:]

n>pp;>p;qr+1 [Since p; > q;]

m = n - p,q, [Thus 1< m < n]

Notice: m = py(p; .. P = 91) = 91(q2 - G+ - P1)

Thus, p;Im and q;|m

By unique factorization of m, p,q;|m, thus m = p,q,z

Theorem: Each natural has a unique
factorization into primes written in
non-decreasing order.

Let n be the least counter-example.
N=piPz--Pk=G192 -G [P1>G:]

n=>pip;>p;qr+1 [Since p; > q4]

m = n - p,q, [Thus 1< m < n]

Notice: m = py(p2 .. Pk = 91) = 91(q2 - 4 - P1)

Thus, p;|m and q;|m

By unique factorization of m, p,q;|m, thus m = p,q;z

We have: m = n - p,q; = py(p .- Px - 91) = P1912

Dividing by p; we obtain: (p, .. px - 91) = 942

P2 - Pk = Q12 * q1 = q1(z*1) S0 Gy[p,...py

And hence, by unique factorization of p,...py,

q; must be one of the primes p,,...,p,. Contradiction of q<p;.

Inductive reasoning is\
the high level idea:

"Standard” Induction

"Contrapositive” Induction
"Strong” Induction are just

dif ferent packaging.

%

"Strong” Induction
Can Be Repackaged As
Standard Induction

/'
Define T, = Lj< i, S;

Establish "Base Case™ S Establish "Base Case™: T,

Establish that L1k, S, = Sk+1< Establish that Lk, T, = T,
Let k be any natural nhumber. | Let k be any natural humber.

Assume []j<k, S, Assume T,
Prove S, Prove T

-

Yet another way of packaging
inductive reasoning is to
define an “invariant”.

Invariant:
1. Not varying; constant.

2. Mathematics. Unaffected by a
designated operation, as
a transformation of

coordinates.

Yet another way of packagD

inductive reasoning is Yo
define an “invariant”.

Invariant:

3. programming A rule, such as the
ordering an ordered
list or heap, that applies
throughout the life of a data
structure or procedure. Each
change to the data structure

must maintain the correctness of
the invariant.

Invariant Induction
Suppose we have a time varying world
state: Wy, W, W, ...
Each state change is assumed to come
from a list of permissible operations.
We seek to prove that statement S is

true of all future worlds.

Argue that S is true of the initial world.

Show that if S is true of some world - then S
remains true after one permissible operation is
performed.

Invariant Induction
Suppose we have a time varying world
state: W,, W, W,, ...
Each state change is assumed to come
from a list of permissible operations.

Let S be a statement true of W,,.

Let W be any possible future world state.
Assume S is true of W.

Show that S is true of any world W' obtained
by applying a permissible operation to W.

Odd/Even Handshaking Theorem: At any
party at any point in time define a person's
parity as ODD/EVEN according to the
number of hands they have shaken.
Statement: The number of people of odd
parity must be even.

Initial case: Zero hands have been shaken at the
start of a party, so zero people have odd parity. If 2
people of different parities shake, then they both
swap parities and the odd parity count is unchanged.
If 2 people of the same parity shake, they both
change and hence the odd parity count changes by 2
- and remains even.

Inductive reasoning is
the high level ideg:\

"Standard” Induction
"Contrapositive"” Induction
"Strong” Induction

and Invariants
are just different packaging.

%

«

Inductive proofs and
inductive definitions

often go hand in hand.

%

Inductive Definition of T(n)

T(1) =1
T(n) =4 T(n/2) + n

Notice that T(n) is inductively defined
for positive powers of 2, and undefined
oh other values.

Inductive Definition of T(n)

T(1) =1
T(n) =4 T(n/2) + n

Notice that T(n) is inductively defined
for positive powers of 2, and undefined
onh other values.

T(1)=1 T(2)=6 T(4)=28 T(8)=120

Closed Form
Definition of G(n)

G(n) = 2n? - n

Domain of G are the powers of two.

Two equivalent functions?

G(n) = 2n? - n
Domain of G are the powers of two.

T(1) =1
T(n) =4 T(n/2) + n
Domain of T are the powers of two.

Prove equivalence by induction on n:
Assume T(x) = 6(x) for x <n

G(n) = 2n2-n T(1)=1& T(T(nN) =4 T(n/2) +n

Base: 6(1)=1and T(1) =1
Assuming T(n/2) = 6(n/2) = 2(n/2)?>- n/2

T(n) =4T(n/2)+n
=4[G(n/2) + n]

4 [2(n/2)2-n/2]+n
2n?-2n +n
2n2-n

G(n)

We inductively proved\
Q/ the assertion that

G(n) =T(n).

Giving a formula for T
with no sums or
recurrences is called
solving the recurrence

T. /

Solving Recurrences
" Guess and Verify

Guess: G(n) = 2n°-n
Verify: G(1) =1and 6(n) = 4 6(n/2) + n

Similarly:T(1) = 1 and T(n) =4 T(n/2) + n

So T(n) = 6(n)

Inductive Proof
Standard Form
All Previous Form
Least-Counter Example Form
Invariant Form

Inductive Definition

Recurrence Relations
Solving a Recurrence

Bottom-Up Programming
\\ Top-Down Programming

Study Bee
Logic
Contrapositive Form of S

