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Unary, Binary, and Beyond




Xn- 1
X -1

1+ X+ X2+ X34+ .+ X2+ Xl =

4

We are going to need
this fundamental sum:

The Geometric Series




A Frequently Arising Calculation

(X-1) (1+ X1+ X2+ X3+ .+ X024+ Xn1)

X1+ X2+ X3+ . + X1+ Xn
S 1-X1-X2-X3- . - X2 - Xn

- 1




The Geometric Series

(X-1) (1+ X1+ X2+ X3+ +Xn1)=Xn-1

1+ X+ X2+ X34+ X024 Xl =

when X#1
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Last time we talked
about unary

hotation.
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n'h Triangular Number

A =1+2+3+. . +nl+n

= n(nh+1)/2




n'h Square Number

1+3+ .. +2n-1

= Sum of first n odd numbers




n'h Square Number







Q// We will define -

sequences of
symbols that give us

a unary
representation of
the Natural number.
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First we define the
general language we
use to talk about
strings.
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Strings Of Symbols.

We take the idea of symbol and sequence of
symbols as primitive.

Let = be any fixed finite set of symbols. ¥ is
called an alphabet, or a set of symbols.

Examples:
>={0,1,2,3,4}

>={ab,c,d, .., z}
2 = all typewriter symbols.




Strings over the alphabet %.

A string is a sequence of symbols from Z. Let
s and t be strings. Let st denote the
concatenation of sand t, i.e., the string
obtained by the string s followed by the
string t.

Define Z* by the following inductive rules:
Xe2 = Xe 2*
ste2*=ste2’




S

Intuitively, Z* is the
set of all finite
strings that we can

make using (at least
one) letters from .

\_
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ZD

Define € be the empty string. L.e.,
XeY= XY for all strings X and Y.
e is also called the string of length O.

Define 39 ={ ¢}

Define ¥™ = =+ U {&}




/ h
Q’ ntuitively, 2" is the

set of all finite
strings that we can
make using letters
from Z, including the
empty string.
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The Natural Numbers

N={0,1,2,3,...}

Notice that

we include O

as a Natural
humber.




"God Made The Natural Numbers.
Everything Else Is The Work Of Man."

Kronecker

N={0,1,2,3,...}




Last Time: Unary Notation




\
Q/ To handle the

notation for zero,

we introduce a small
variation on unary.
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Peano Unary (PU)

0
S0 R
SS0 /

| ﬂ
5550 Giuseppe
55550 Peano

555550 [1889]
5555550




Each number is a
sequence of symbols in {S, O}

0

SO

5SSO
SSS0
55S5S0
555550
5555550




Peano Unary
Representation of Natural Number

N={0, SO, SS0O, S550, .. .}

O is a natural number called zero.
Set notation: O € N

If X is a natural number, then SX is a natural
number called successor of X.

Set notation: X e N = SX &€ N




Inductive Definition of +

N={0, SO, 550, S550, .. .}

Inductive definition of addition (+):

X, YeN=
X"+"0=X
X \\+ll Sy - S(Xll+lly)




SO + SO = SSO (i.e., “1+1=2")

Proof:

SO + S0 =
S5(S0 +0) = S(S0) =
SS0

X,YeN=
X"+"0=X
X \\+ll Sy — S(Xll+lly)




Inductive Definition of *

N ={0, SO, §50, S550, .. .}
Inductive definition of times (*):

X,YeN=
X"*0=0
X W It Sy - (Xu*ny) + X




Inductive Definition of *

N={0, SO, SS0O, S550, .. .}

Inductive definition of raised to the (7):

X,YeN=>
X""0=1 [or X0 =1]
X"y = (X""Y)* X [or X5Y = XY * X]




N={0, SO, SS0, SS50, . . .}

Defining < for N:

V Xy €N
"x>y"is TRUE = "y < x" is FALSE
"x>y"is TRUE = "y>x" is FALSE

"x+1>0" is TRUE
"x+1>y+1" is TRUE = "x >y" is TRUE




N={0,1,2,3,...}

Defining partial minus for N:

VxyeN
x-0 = x
X3y =
(x+1) - (y+1) = x-y




a=[aDIVbJ]*b+[a MOD b]

Defining DIV and MOD for N:

Vab e N The maximum number

of times b goes into a

b : .
L= without going over.

aDIVb=0
a>b>0 =
aDIVb=1+(a-b) DIV b

a MOD b= a-[b*(a DIVDb)]

The remainder when a is divided by b.




45 = [45 DIV 10]*10 + [ 45 MOD 10]
=4*10+5

Defining DIV and MOD for N:

Vab &N
a<b =
aDIVb=0
a>b>0 =
aDIVb=1+(a-b) DIV b

a MOD b= a-[b*(a DIV b)]




/ A
Q’ We have defined

the Peano
representation of

the Naturals, with a
notion of +, *, ”, <, -,
DIV, and MOD.
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Q/ PU takes size n+l to
represent the

number n.

Higher bases are
much more compact.
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1000000 in Peano\
Unary takes one
million one symbols
to write.

1000000 only takes
7/ symbols to write

\ in base 10. /




S

Let's define base 10
representation of

PU numbers.
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Let 2 = \

Q/ {0,12,3,45,6,7,8,9}
be our symbol
alphabet.

Any string in Z* will
be called a decimal

\ number. /




Let X be a decimal \
mber. Let's define the
length of X inductively:

length(e) = O

X=aY,ae 2, Ye I =
length(X) = S(leng’fh(y))/




Let X be decimal.\
Q/ Let n (unary) =
length(X).

For each unary i<n,
we want to be able
to talk about the ith

\ symbol of X. /




The ith symbol of \

Q/ Defining rule:

X = PaS where

P.Sec 3" and aez.
i=length(S).
= a is the ith

\ symbol of X. /




For any string X, we\
can define its length

ne PU. For all ie PU
s.t. ikn, we can define
the ith symbol a..

X=a,10,5 ..04

\ Y




S

Q’ We define a base

conversion function,
Basey 1,1 (X), To

convert any decimal
X to its unary
representation.
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Initial Cases, length(X)=1

Basep1,1(0) =0
Basey 1,1 (1) = SO
Base,y:,;(2) = SSO
Base,p,,1 (3) = SSSO

Base,p:,1 (9) = SSSSSSSSSO




Suppose n=length(X)>S0O

For all i<n, let a;, be the it" symbol of X.
Hence, X = @, 1 Q.5 .47 .

Define Base, 4, 1(X) =
Zi<n BGSZIO To l(ai)*loi

where +, * and " are defined over PU




Example X= 238

Baseyq 1,1 (238) =
2*100 + 3*10 + 8




\

Baseyq 101 (pg Gp2 - Gg) =

a, ;10" +qa , * 1072 + +a, 100
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Q’ Now we want to go

back the other way.

We want to convert
PU to decimal.
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No Leading Zero:\

Let NLZ be the set
of decimal numbers
with no leading O
(leftmost symbol #
0), or the decimal

\ number O. /




~

Q/ We define Base; ;, 1o
from PU to NLZ

It will Turn out to be
the inverse function
to Baseyg 4, 1.

\ Y




One digit cases.

Base, 4, 19(0) = "0"
Base, 1, 19(S0) = 1"

Base, ;, 1,(SSSSSSSSS0) = 9"




Suppose X > 9

Let n be the smallest unary number such that
100> X, 101 < X,

Let d = X DIV 10n!  [Notice that 1< d < 9]
Let Y = X MOD 101!

Define Base, 4, 19(X) € NLZ to be
Base, 4, 10 (d) Basey 4, 10(Y)




For each ne PU
Q’ define its decimal
representation to be
Base, 1, 10 (N).

Base, ;, 19 goes from
PU to NLZ.
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Let's verify that
Base, 4, 10 and
Basey; +, 1 really are inverse
functions.

We need to show Xe NLZ =
Base, 4, 19 (Baseyg 1,1 (X)) = X.




Clear when X is a single digit.

Base, 1, 10 (Baseyg 1,1 (0)
Base, 4, 10 (Baseg 4,1 (1)
Base, ;, 10 (Baseyg 1,1 (2)
Base, 1,10 (Baseyg 1,1 (3)
Base, 1, 10 (Baseyg 1,1 (4)
Base; 1, 10 (Baseg 1,1 (D)
Base, 4, 10 (Base;g 1,1 (6)
Base, 1, 10 (Baseyg 1,1 (7)
Base, 1,10 (Baseyg 1,1 (8)
Base, 1, 19 (Baseyg 151 (9)

OCoONOOODD,WwNNDTO

~— N N Y N N N N




Q’ Let X be a shortest
counter-example to the
statement:

Xe NLZ =
Base; 1, 10 (Baseyq 1 1(£)) =Z




Q/ For all Y shorter than X:

Ye NLZ =
Base, 1, 10 (Basejg 1, 1(¥)) = Y




Xe NLZ, n=length(Z) > 1

Suppose X=a, 1 q,_, ... Qg
Baseyq 4, 1(X) =Y =
Zin Baseyg +,1(a;)*10!

Base; 1,10 (¥) =7?

n is smallest PU s.t. 10! <Y < 10"

Calculate d = Y DIV 101, Z=Y MOD 1071

d= a,.4, Z= %1 Baseyg 4, 4(a)*10

Output a, ; Base, ;, 19 (£) [Z shorter than X]
=Q, 0,5 .. Q dg

Contradiction of X being a counter-example.




No counter-example means
that

For all Ye NLZ,
Base, 1, 19 (Baseyg 1,1 (Y)) = Y




So we canh move back and
forth between representing
a humber in PU or in NLZ.

Each string in PU
corresponds to one and only
one string in NLZ.




Base X Notation

Let X be an alphabet of size X. A base X
digit is any element of Z.

Let S=aqa, q,.,, .. 0y be a sequence of base
X digits.

Let Basey,,(S) = a,; X"+ .. a,X?+aX+a,

S is called the base X representation of the
number Basey ;. (S).




S=a,4 0,5, .., 0
represents the number:
a, X" +a , X2+ . +ayX°

Base 2 [Binary Notation]
101 represents 1 (2)? + 0 (21) + 1 (29)

Base 7
015 represents 0 (7)2 + 1 (71) + 5 (7°)




S=a,4 0,5, .., 0
represents the number:
a, X"1+a , X%+ +ay; X

Base 2 [Binary Notation]
101 represents 1 (2)? + 0 (21) + 1 (29)

Base 7
015 represents 0 (7)2 + 1 (71) + 5 (7°)




Bases In Different Cultures

Sumerian-Babylonian: 10, 60, 360
Egyptians: 3, 7, 10, 60

Africans: 5, 10

French: 10, 20

English: 10, 12,20




Biggest n “digit” number in base X
would be:
(X-D)X"L + (X-1)X"2 +,. .+ (X-1)X°

Base 2
111 represents 1 (2) + 1 (21) + 1 (29)

Base 7
666 represents 6 (7)2 + 6 (71) + 6 (79)




Biggest n “digit” number in base X
would be:
(X-1)X"L + (X-1)X"2 +.. .+ (X-1)XO

Base 2

111 represents 1 (2) + 1 (21) + 1 (29)
111 +1=1000 represents 23

Thus, 111 represents 23 - 1

Base 7

666 represents 6 (7)> + 6 (7)) + 6 (79)
666 +1=1000 represents 73

Thus, 666 represents 73 - 1




Biggest n “digit” number in base X would
be:
S= (X-1)X™ + (X-1)X"2 +,,.+ (X-1)X°
\Add 1 to get: X+ Q Xn1+  +0 XO

Thus, S=Xn-1

Base 2

111 represents 1 (2) + 1 (21) + 1 (29)
111 +1=1000 represents 23

Thus, 111 represents 23 - 1

Base 7

666 represents 6 (7)> + 6 (7)) + 6 (79)
666 +1=1000 represents 73

Thus, 666 represents 73 - 1




Xn- 1
X -1

1+ X+ X2+ X34+ .+ X2+ Xl =

4

Recall the
GEOMETRIC
SERIES.




(X-1)X™L + (X-1)XM2 +.. .+ (X-1)XO
= Xn - 1

Proof:
Factoring out (X-1), we obtain:

(X-l) [Xn—l + XN2 + =
(X-1) [(X" - 1)/(X-1)]

Xn-1




The highest n digit number in base X.
(X-1) (1+ X1+ X2+ X3+ .+ X01)=Xn-1

Base X. Let S be the sequence of n

digits each of which is X-1. S is the
largest number of length n that can be
represented in base X.

S=X"-1




Each of the numbers from O to
X"-1 is uniquely represented by

an n-digit number in base X.

We could prove this using
our previous method, but
let’'s do It another way.




Our proof introduce an
unfamiliar kind of base
representation.




Plus/Minus Base X

An plus/minus base X digit is any
integer -X<a< X

Let S=a,4, qa,,, .., a; be a sequence of
plus/minus base X digits. S is said o be
the plus/minus base X representation
of the number:

a, X"t1+a , X2+,  +ayX°




Does each n-digit number
IN plus/minus base X

represent a different
Q Integer?




NoO.
Consider plus/minus
binary.

5=0101=10-1-1




Humm..

Q So what is it good for?




Not every number has a
unigue plus/minus binary
representation, but O does.




O has a unique n-digit plus/minus
base X representation as all O's.

Suppose a, 4 X"t +qa,, X2+ . +ay;X%= S =0, where there
is some highest k such that a, # 0. Wl.o.g. assume q, > O.

Because Xk > (X-1)(1 + X1+ X2+ X 3+  + Xk1)

no sequence of digits from a,_; to a; can represent a number
as small as -Xk

Hence S # 0. Contradiction.




Each of the numbers from O to X"-1 is
uniquely represented by an n-digit
humber in base X.

We already know that n-digits will represent something
between O and X" - 1.

Suppose two distinct sequences represent the same
number:

Qg X"t +a,, X2+, +ayXO=

b,y X" +b,, X2+ . +byXO

The difference of the two would be an plus/minus base X
representation of O, but it would have a non-zero digit.
Contradiction.




Each of the numbers from O to X"-1 is
uniquely represented by an n-digit
humber in base X.

n digits represent up to X" -1
n-1 digits represents up to X"1-1

Let k be a number: X"1< k< Xn-1
So k can be represented with n digits.

Forall k: [ log,k | =n-1

So k uses | log.k | + 1 digits.




Fundamental Theorem For Base X:

Each of the numbers from O to X"-1 is
uniquely represented by an n-digit
number in base X.

k uses | log,k |+ 1 digits in base X.




~

Q/ h has length n in
unary, but has length
_ log,n |+ 1in binary.

Unary is exponentially
longer than binary.

\ Y




Egyptian Multiplication

The Egyptians
used decimal
numbers but
multiplied and

divided in binary




Egyptian Multiplication a times b
by repeated doubling

b has some n-bit representation: b,..b,

Starting with g,
repeatedly double largest so far to
obtain: a, 2a, 4q, ..., 2"a

Sum together all 2%a where b, = 1




Egyptian Multiplication 15 times 5
by repeated doubling

5 has some 3-bit representation: 101

Starting with 15,

repeatedly double largest so far to
obtain: 15, 30, 60

Sum together all 2%(15) where b, = 1:
15 + 60 =75




Why does that work?

b= by2° + b,2! + b,22+ .. + b2"
ab = by2% + b;2'a+ b,2%a+ ..+ b,2"a

If b, is 1 then 2ka is in the sum.
Otherwise that term will be O.




Wait! How did the
Egyptians do the part

Q where they converted b to

binary?




They used repeated
halving to do base
conversion. Consider ...




Egyptian Base Conversion

Output stream will print right to left.
Input X.
Repeat until X=0

{
If X is even then Output O;

Otherwise {X:=X-1; Output 1}

X:=X/2




Egyptian Base Conversion

Output stream will print right to left.
Input X.
Repeat until X=0

{
If X is even then Output O;

Otherwise Output 1

X:= | X/2]




Start the algorithm

010101

Repeat until X=0

{ If Xiseven then Output O;
Otherwise Output 1;

X:= | X/2]




Start the algorithm

01010

Repeat until X=0

{ If Xiseven then Output O;
Otherwise Output 1;

X:= | X/2.




Start the algorithm

01010 01

Repeat until X=0

{ If Xiseven then Output O;
Otherwise Output 1;

X:= | X/2]




Start the algorithm

0101 01

Repeat until X=0

{ If Xiseven then Output O;
Otherwise Output 1;

X:= | X/2.




Start the algorithm

0101 101

Repeat until X=0

{ If Xiseven then Output O;
Otherwise Output 1;

X:= | X/2]




Start the algorithm

010 101

Repeat until X=0

{ If Xiseven then Output O;
Otherwise Output 1;

X:= | X/2.




And Keep Going until O

010101

Repeat until X=0

{ If Xiseven then Output O;
Otherwise Output 1;

X:= | X/2]




Sometimes the Egyptian
combined the base
conversion by halving and
the multiplication by

doubling into one algorithm




Rhind Papyrus (1650 BC)
70*13




Rhind Papyrus (1650 BC)
70*13

70

140
280
560

Binary for 13 is 1101 = 23 + 22 + 20
70*13 = 70*23 + 70*22 + 70*2°




Rhind Papyrus (1650 BC)

17
34
68
136

184 48 14




Rhind Papyrus (1650 BC)

17
34
68
136

184 48 14

184 = 17*8 + 17*2 + 14
184/17 = 10 with remainder 14




This method is called “Egyptian
Multiplication/Division” or
“Russian Peasant

Multiplication/Division”.




Wow. Those Russian
peasants were pretty

Q smart.




Standard Binary Multiplication
= Egyptian Multiplication

* kkkk k% %k
X 101

Xk kkk Kk k%

*kkkk k% %k

XiAX %k *k k) kkk k%




Egyptian Base 3

We have defined
Base 3: Each digit canbe 0, 1, or 2
Plus/Minus Base 3 uses -2,-1,0,1, 2

Here is a hew one:
Egyptian Base 3 uses -1, O, 1

Example:1-1-1=9-3-1=5




Unique Representation Theorem for
Egyptian Base 3

No integer has 2 distinct, n-digit,
Egyptian base-3 representations. We
can represent all integers from

~(3r-1)/2 to (37-1)/2

Proof; If so, their difference would be
a hon-trivial plus/minus base 3
representation of 0. Contradiction.

Highest number = 1111..1 = (3n-1)/2
Lowest number = -1-1-1-1..-1 = -(3n-1)/2




Unique Representation Theorem for
Egyptian Base 3

No integer has 2 distinct, n-digit,
Egyptian base-3 representations. We
can represent all integers from

~(3r-1)/2 to (37-1)/2

3", n-digit, base 3 representations of the numbers
from O to 3n-1

Subtract 111111..111 = (37 - 1)/2 from each to get an
Egyptian base 3 representation of all the numbers
from -(3"-1)/2 to (3n-1)/2.




How could this be
Egyptian? Historically,
negative numbers first

appear in the writings of

the HIndu mathematician
Brahmagupta (628 AD).







One weight for each power of 3.
Left = "negative”. Right = "positive’
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