Complexity Theory: The P vs NP question

Lecture 28 (December 1, 2009)

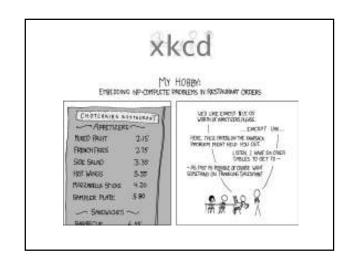
The \$1M question

The Clay Mathematics Institute
Millenium Prize Problems

- 1. Birch and Swinnerton-Dyer Conjecture
- 2. Hodge Conjecture
- 3. Navier-Stokes Equations
- 4. Pvs NP
- 5. Poincaré Conjecture
- 6. Riemann Hypothesis
- 7. Yang-Mills Theory

Princeton CS Building

P	1	0	1	0	0	0	0
=	0	1	1	1	1	0	1
N	1	0	0	1	1	1	0
Р	1	0	1	0	0	0	0
?	0	1	1	1	1	1	1

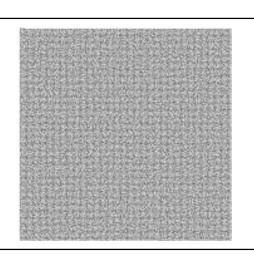


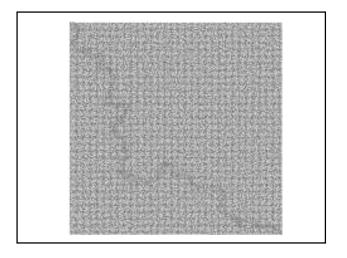
The P versus NP problem

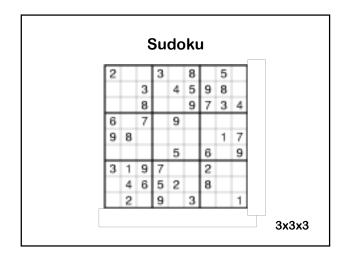
Is perhaps one of the biggest open problems in computer science (and mathematics!) today.

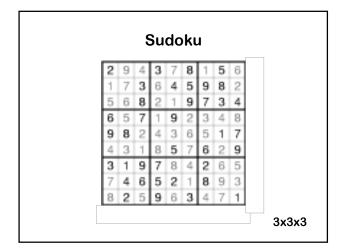
(Even featured in the TV show NUMB3RS)

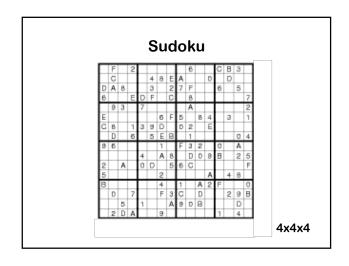
But what is the P-NP problem?

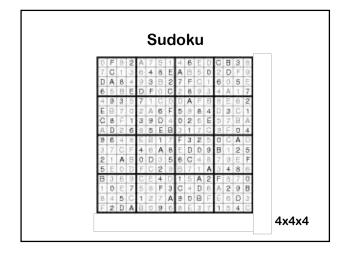


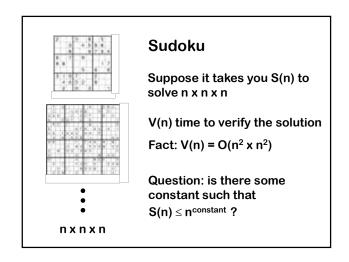


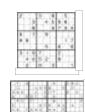












Sudoku

P vs NP problem

Does there exist an algorithm for n x n x n Sudoku that runs in time p(n) for some polynomial p()?

 $n \times n \times n$

The P versus NP problem (informally)

Is proving a theorem much more difficult than checking the proof of a theorem?

Let's start at the beginning...

Hamilton Cycle

Given a graph G = (V,E), a cycle that visits all the nodes exactly once

The Problem "HAM"

Input: Graph G = (V,E)

Output: YES if G has a Hamilton cycle

NO if G has no Hamilton cycle

The Set "HAM"

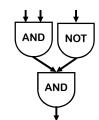
HAM = { graph G | G has a Hamilton cycle }

Circuit-Satisfiability

Input: A circuit C with one output

Output: YES if C is satisfiable

NO if C is not satisfiable



The Set "SAT"

SAT = { all satisfiable circuits C }

Bipartite Matching

Input: A bipartite graph G = (U,V,E)

Output: YES if G has a perfect matching
NO if G does not

The Set "BI-MATCH"

BI-MATCH = { all bipartite graphs that have a perfect matching }

Sudoku

Input: n x n x n sudoku instance

Output: YES if this sudoku has a solution

NO if it does not

The Set "SUDOKU"

SUDOKU = { All solvable sudoku instances }

Decision Versus Search Problems

Decision Problem

Search Problem

YES/NO answers

Find a Hamilton cycle in G if one exists,

Does G have a Hamilton cycle?

else return NO Find a 3-coloring of G if one exists, else

return NO

Can G be 3-colored?

Reducing Search to Decision

Given an algorithm for decision Sudoku, devise an algorithm to find a solution

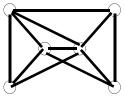
Idea:

Fill in one-by-one and use decision algorithm

Reducing Search to Decision

Given an algorithm for decision HAM, devise an algorithm to find a solution

Idea: Find the edges of the cycle one by one



Decision/Search Problems

We'll study decision problems because they are almost the same (asymptotically) as their search counterparts

Polynomial Time and The Class "P" of Decision Problems

What is an efficient algorithm?

Is an O(n) algorithm efficient?
How about O(n log n)? $O(n^2)$? $O(n^{10})$? $O(n^{10})$? $O(n^{\log n})$? $O(2^n)$? O(n!)?

Does an algorithm running in O(n¹⁰⁰) time count as efficient?

We consider non-polynomial time algorithms to be inefficient.

And hence a necessary condition for an algorithm to be efficient is that it should run in poly-time.

Asking for a poly-time algorithm for a problem sets a (very) low bar when asking for efficient algorithms.

The question is: can we achieve even this for 3-coloring?

SAT?

Sudoku?

The Class P

We say a subset L of Σ^* is in P if there is a program A and a polynomial p()

such that for any x in Σ^* ,

A(x) runs for at most p(|x|) time and answers question "is x in L?" correctly.

The Class P

The class of all sets L that can be recognized in polynomial time.

The class of all decision problems that can be decided in polynomial time.

Why are we looking only at sets $\subseteq \Sigma^*$?

What if we want to work with graphs or boolean formulas?

Languages/Functions in P?

Example 1:

CONN = {graph G: G is a connected graph}

Algorithm A₁:

If G has n nodes, then run depth first search from any node, and count number of distinct node you see. If you see n nodes, $G \in CONN$, else not.

Time: $p_1(|x|) = \Theta(|x|)$.

Languages/Functions in P?

HAM, SUDOKU, SAT are not known to be in P

CO-HAM = { G | G does NOT have a Hamilton cycle}

 $\textbf{CO-HAM} \in \textbf{P} \text{ if and only if } \textbf{HAM} \in \textbf{P}$

Onto the new class, NP

Verifying Membership

Is there a short "proof" I can give you for:

 $G \in HAM$?

 $\textbf{G} \in \textbf{BI-MATCH?}$

 $G \in SAT$?

 $G \in CO\text{-HAM}$?

NP

 $A\;set\;L\in NP$

if there exists an algorithm A and a polynomial p()

For all $x \in L$

there exists y with $|y| \le p(|x|)$

such that A(x,y) = YES

in p(|x|) time

For all x' ∉ L

For all y' with $|y'| \le p(|x'|)$

we have A(x',y') = NO

in p(|x|) time

Recall the Class P

We say a set $L \subseteq \Sigma^*$ is in P if there is a program A and a polynomial p()

such that for any x in Σ^* ,

\[\int A(x) runs for at most p(|x|) time \] and answers question "is x in L?" correctly.

can think of A as "proving" that x is in L

NP

 $\textbf{A set L} \in \textbf{NP}$

if there exists an algorithm A and a polynomial p()

For all $x \in L$

there exists a y with $|y| \le p(|x|)$

such that A(x,y) = YES

in p(|x|) time

For all $x' \notin L$

For all y' with $|y'| \le p(|x'|)$

we have A(x',y') = NO

in p(|x|) time

The Class NP

The class of sets L for which there exist "short" proofs of membership (of polynomial length) that can "quickly" verified (in polynomial time).

Recall: A doesn't have to find these proofs y; it just needs to be able to verify that y is a "correct" proof.

$P \subseteq NP$

For any L in P, we can just take y to be the empty string and satisfy the requirements.

Hence, every language in P is also in NP.

Languages/Functions in NP?

 $G \in HAM$?

 $G \in BI\text{-MATCH?}$

G ∈ SAT?

 $G \in CO\text{-HAM}$?

Summary: P versus NP

Set L is in P if membership in L can be decided in poly-time.

Set L is in NP if each x in L has a short "proof of membership" that can be verified in poly-

Fact: $P \subseteq NP$

Question: Does $NP \subseteq P$?

Why Care?

OK, OK, I care...

But where do I begin if I want to reason about the P=NP problem?

NP Contains Lots of Problems We Don't Know to be in P

Classroom Scheduling
Packing objects into bins
Scheduling jobs on machines
Finding cheap tours visiting a subset of cities
Allocating variables to registers
Finding good packet routings in networks
Decryption

•••

How can we prove that $NP \subseteq P$?

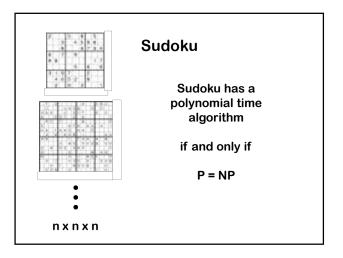
I would have to show that every set in NP has a polynomial time algorithm...

How do I do that?
It may take a long time!
Also, what if I forgot one of
the sets in NP?

We can describe just one problem L in NP, such that if this problem L is in P, then NP ⊆ P.

It is a problem that can capture all other problems in NP.

The "Hardest" Set in NP



The "Hardest" Sets in NP

Sudoku Clique

SAT

Independent-Set

3-Colorability HAM

These problems are all "polynomial-time equivalent".

I.e., each of these can be reduced to any of the others in poly-time

"Poly-time reducible to each other"

Reducing problem Y to problem X in poly-time

F is poly-time computable

Instance I_Y of problem Y

Oracle for problem Y

Oracle for problem X

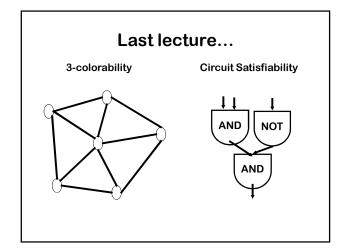
How do you prove these are the hardest?

Theorem [Cook/Levin]:

SAT is one language in NP, such that if we can show SAT is in P, then we have shown NP \subset P.

SAT is a language in NP that can capture all other languages in NP.

We say SAT is NP-complete.

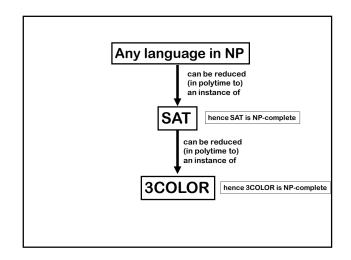


Last lecture...

SAT and 3COLOR: Two problems that seem quite different, but are substantially the same.

Also substantially the same as CLIQUE and INDEPENDENT SET. (Homework)

If you get a polynomial-time algorithm for one, you get a polynomial-time algorithm for ALL.



Here's What You Need to Know... **Definition of P and NP**

Definition of problems SAT, 3-COLOR, HAM, SUDOKU, BI-MATCH

SAT, 3-COLOR, HAM, SUDOKU all essentially equivalent.

Solve any one in poly-time ⇒ solve <u>all</u> of them in poly-time