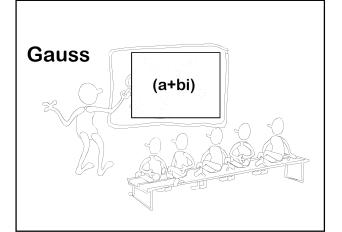
15-251

Great Theoretical Ideas in Computer Science

Grade School Revisited: How To Multiply Two Numbers

Lecture 22 (November 5, 2009)



Gauss' Complex Puzzle

Remember how to multiply two complex numbers a + bi and c + di?

(a+bi)(c+di) = [ac -bd] + [ad + bc] i

Input: a,b,c,d

Output: ac-bd, ad+bc

If multiplying two real numbers costs \$1 and adding them costs a penny, what is the cheapest way to obtain the output from the input?

Can you do better than \$4.02?

Gauss' \$3.05 Method

Input: a,b,c,d
Output: ac-bd, ad+bc

c $X_1 = a + b$

 $c X_2 = c + d$

 $X_3 = X_1 X_2 = ac + ad + bc + bd$

 $X_4 = ac$

 $X_5 = bd$

c $X_6 = X_4 - X_5 = ac - bd$

 $cc X_7 = X_3 - X_4 - X_5 = bc + ad$

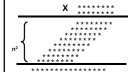
The Gauss optimization saves one multiplication out of four. It requires 25% less work.

Time complexity of grade school addition

T(n) = amount of time grade school addition uses to add two n-bit numbers

We saw that T(n) was linear $T(n) = \Theta(n)$

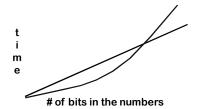
Time complexity of grade school multiplication



T(n) = The amount of time grade school multiplication uses to add two n-bit numbers

We saw that T(n) was quadratic $T(n) = \Theta(n^2)$

Grade School Addition: Linear time Grade School Multiplication: Quadratic time



No matter how dramatic the difference in the constants, the quadratic curve will eventually dominate the linear curve

Is there a sub-linear time method for addition?

Any addition algorithm takes $\Omega(n)$ time

Claim: Any algorithm for addition must read all of the input bits

Proof: Suppose there is a mystery algorithm A that does not examine each bit

Give A a pair of numbers. There must be some unexamined bit position i in one of the numbers

Any addition algorithm takes $\Omega(n)$ time

If A is not correct on the inputs, we found a bug

If A is correct, flip the bit at position i and give A the new pair of numbers. A gives the same answer as before, which is now wrong.

Grade school addition can't be improved upon by more than a constant factor

Grade School Addition: $\Theta(n)$ time. Furthermore, it is optimal

Grade School Multiplication: Θ(n²) time

Is there a clever algorithm to multiply two numbers in linear time?

Despite years of research, no one knows! If you resolve this question, Carnegie Mellon will give you a PhD!

Can we even break the quadratic time barrier?

In other words, can we do something very different than grade school multiplication?

Divide And Conquer

An approach to faster algorithms:

DIVIDE a problem into smaller subproblems CONQUER them recursively

GLUE the answers together so as to obtain the answer to the larger problem

Multiplication of 2 n-bit numbers

$$X = \begin{array}{c} & & & \\ X & & \\ Y & & \\ Y & & \\$$

$$X = a 2^{n/2} + b$$
 $Y = c 2^{n/2} + d$
 $X \times Y = ac 2^n + (ad + bc) 2^{n/2} + bd$

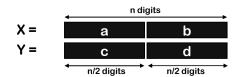
Multiplication of 2 n-bit numbers

 $X \times Y = ac 2^{n} + (ad + bc) 2^{n/2} + bd$

MULT(X,Y):

If |X| = |Y| = 1 then return XY
else break X into a;b and Y into c;d
return MULT(a,c) 2ⁿ + (MULT(a,d)
+ MULT(b,c)) 2^{n/2} + MULT(b,d)

Same thing for numbers in decimal!



$$X = a \cdot 10^{n/2} + b$$
 $Y = c \cdot 10^{n/2} + d$

$$X \times Y = ac 10^n + (ad + bc) 10^{n/2} + bd$$

Multiplying (Divide & Conquer style)

12345678 21394276

1234*2139 1234*4276 5678*2139 5678*4276

12*21 12*39 34*21 34*39

1*2 1*1 2*2 2*1

2 1 4 2

Hence: $12*21 = 2*10^2 + (1+4)10^1 + 2 = 252$

Multiplying (Divide & Conquer style)

12345678 * 21394276

1234*2139 1234*4276 5678*2139 5678*4276

Multiplying (Divide & Conquer style)

12345678 * 21394276

2639526 5276584 12145242 24279128 *10⁸ + *10⁴ + *10⁴ + *1

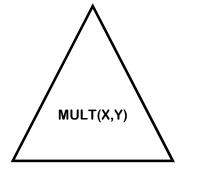
= 264126842539128

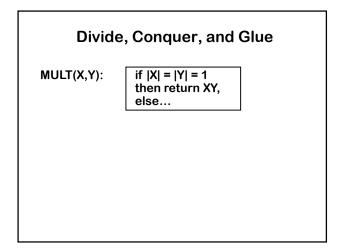
Multiplying (Divide & Conquer style)

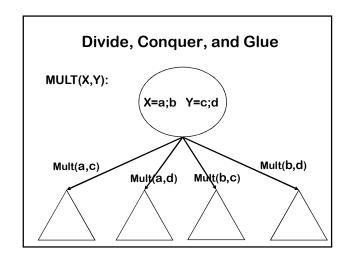
12345678 * 21394276

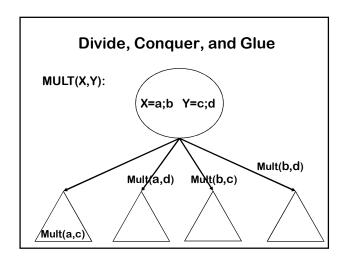
= 264126842539128

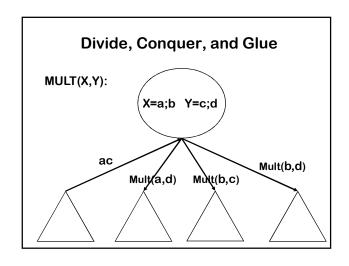
Divide, Conquer, and Glue

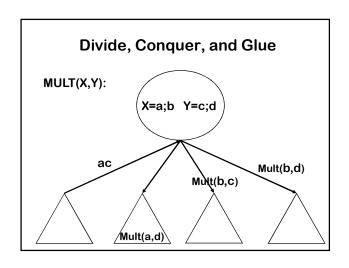


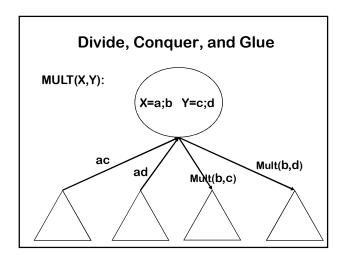


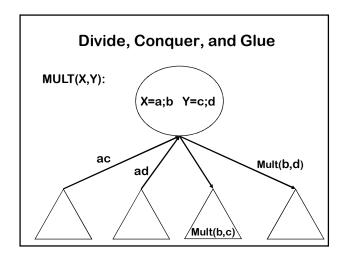


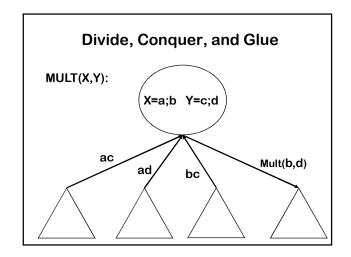


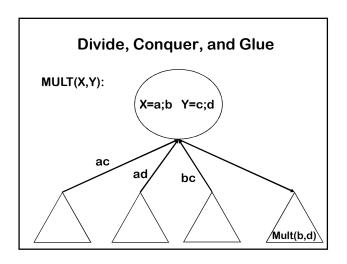


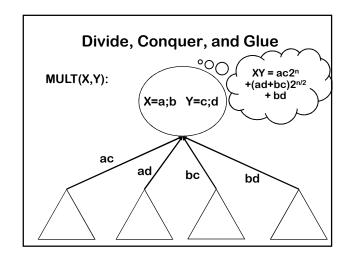




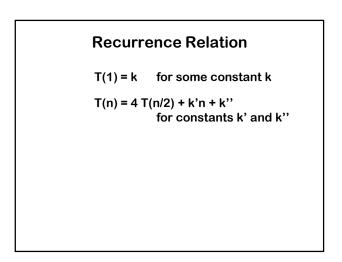


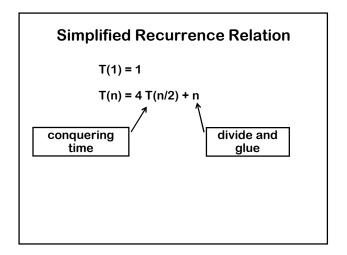


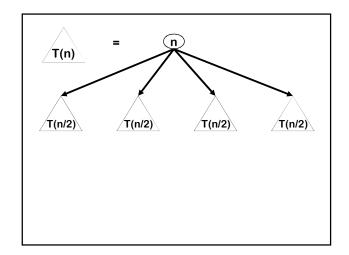


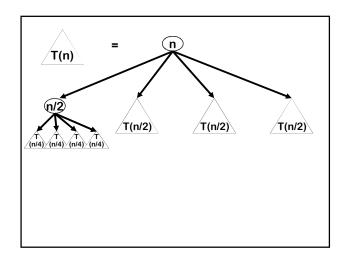


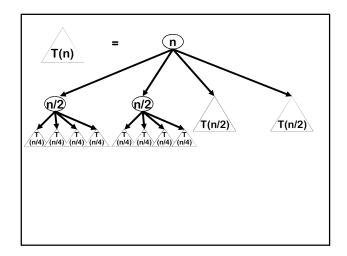
Time required by MULT T(n) = time taken by MULT on two n-bit numbers What is T(n)? What is its growth rate? Big Question: Is it Θ(n²)? T(n) = 4 T(n/2) + (k'n + k'') conquering time divide and glue

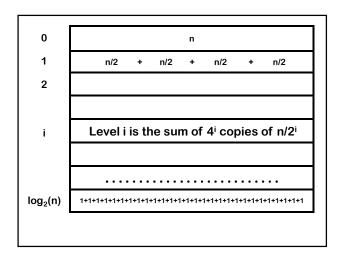


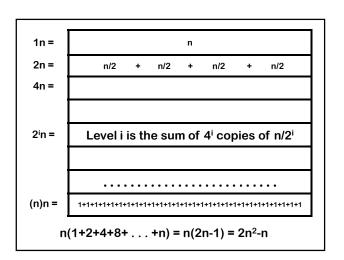












Divide and Conquer MULT: ⊖(n²) time Grade School Multiplication: ⊖(n²) time

Bummer!

MULT revisited

MULT(X,Y):

If |X| = |Y| = 1 then return XY else break X into a;b and Y into c;d return $MULT(a,c) 2^n + (MULT(a,d))$ + MULT(b,c)) 2^{n/2} + MULT(b,d)

MULT calls itself 4 times. Can you see a way to reduce the number of calls?

Gauss' optimization

Input: a,b,c,d Output: ac-bd, ad+bc

- $X_1 = a + b$
- $X_2 = c + d$
- $X_3 = X_1 X_2$ = ac + ad + bc + bd
- $X_4 = ac$
- \$ $X_5 = bd$
- $X_6 = X_4 X_5$ = ac - bd
- cc $X_7 = X_3 X_4 X_5 = bc + ad$

Karatsuba, Anatolii Alexeevich (1937-)

Sometime in the late 1950's Karatsuba had formulated the first algorithm to break the n² barrier!

Gaussified MULT (Karatsuba 1962)

MULT(X,Y):

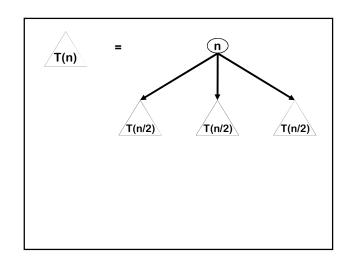
If |X| = |Y| = 1 then return XY else break X into a;b and Y into c;d e : = MULT(a,c)

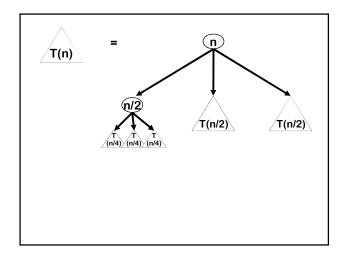
f := MULT(b,d)

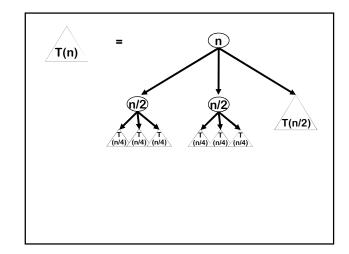
 $e 2^{n} + (MULT(a+b,c+d) - e - f) 2^{n/2} + f$

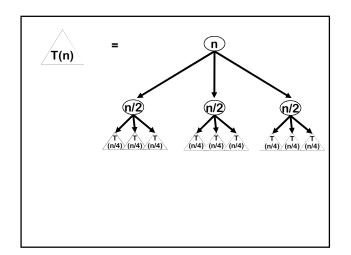
T(n) = 3 T(n/2) + n

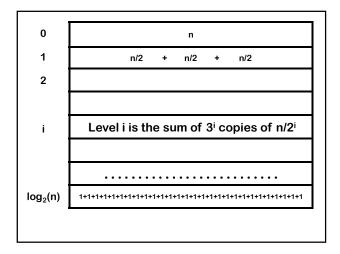
Actually: T(n) = 2 T(n/2) + T(n/2 + 1) + kn

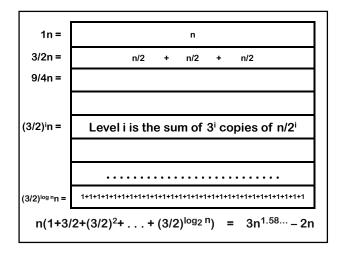










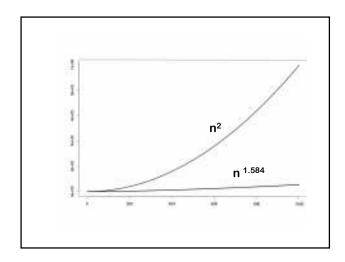


Dramatic Improvement for Large n

$$T(n) = 3n^{\log_2 3} - 2n$$

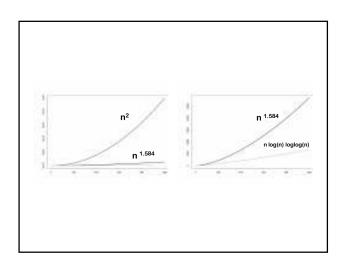
= $\Theta(n^{\log_2 3})$
= $\Theta(n^{1.58...})$

A huge savings over $\Theta(n^2)$ when n gets large.



Multiplication Algorithms

Kindergarten	n2 ⁿ
Grade School	n²
Karatsuba	n ^{1.58}
Fastest Known	n logn loglogn



A case study

Anagram Programming Task.

You are given a 70,000 word dictionary. Write an anagram utility that given a word as input returns all anagrams of that word appearing in the dictionary.

Examples

Input: CAT

Output: ACT, CAT, TAC

Input: SUBESSENTIAL Output: SUITABLENESS

(Novice Level Solution)

Loop through all possible ways of rearranging the input word

Use binary search to look up resulting word in dictionary.

If found, output it

Performance Analysis Counting without executing

On the word "microphotographic", we loop $17! \approx 3 * 10^{14}$ times.

Even at 1 microsecond per iteration, this will take 3 *108 seconds.

Almost a decade!

(There are about π seconds in a nanocentury.)

"Expert" Level Solution

Module ANAGRAM(X,Y) returns TRUE exactly when X and Y are anagrams.
(Works by sorting the letters in X and Y)

Input: X
Loop through <u>all dictionary words</u> Y
If ANAGRAM(X,Y) output Y

The hacker is satisfied and reflects no further

Comparing an input word with each of 70,000 dictionary entries takes about 15 seconds

The master keeps trying to <u>refine</u> the solution

The master's program runs in less than 1/1000 seconds.

Master Solution

Don't just keep the dictionary in sorted order!

Rearranging the dictionary into "anagram classes" makes the original problem simpler.

Suppose the dictionary was the list below.

ASP DOG LURE GOD NICE RULE SPA

After each word, write its "signature" (sort its letters)

ASP APS
DOG DGO
LURE ELRU
GOD DGO
NICE CEIN
RULE ELRU
SPA APS

Sort by the signatures

ASP APS
SPA APS
NICE CEIN
DOG DGO
GOD DGO
LURE ELRU
RULE ELRU

The Master's Program

Input word W

X := signature of W (sort the letters)

Use binary search to find the anagram class of W and output it.

A useful tool: preprocessing...

Of course, it takes about 30 seconds to create the dictionary, but it is perfectly fair to think of this as programming time. The building of the dictionary is a one-time cost that is part of writing the program.

Here's What You Need to Know...

- Gauss's Multiplication Trick
- Proof of Lower bound for addition
- Divide and Conquer
- Solving Recurrences
- Karatsuba Multiplication
- Preprocessing