15-251

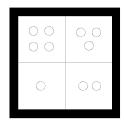
Great Theoretical Ideas in Computer Science

Algebraic Structures: Group Theory

Lecture 16, October 14, 2009

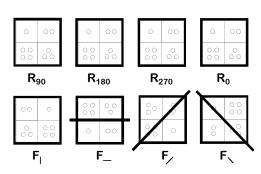
Today we are going to study the abstract properties of binary operations

Rotating a Square in Space



Imagine we can pick up the square, rotate it in any way we want, and then put it back on the white frame

We how in morn is tall of by the as every social on use, example to the symplectic research of the second continue.



Symmetries of the Square

 Y_{SQ} = { R_0 , R_{90} , R_{180} , R_{270} , $F_{|}$, F_{-} , $F_{/}$, F_{\setminus} }

Composition

Define the operation "•" to mean "first do one symmetry, and then do the next"

For example,

R₉₀ • R₁₈₀ means "first rotate 90° clockwise and then 180°"

 $= R_{270}$

F_I • R₉₀ means "first flip horizontally

and then rotate 90°"

= F_

Question: if $a,b \in Y_{SQ}$, does $a \bullet b \in Y_{SQ}$?

	R_0	R ₉₀	R ₁₈₀	R ₂₇₀	F	F_	F _/	F _\
R_0	R_0	R ₉₀	R ₁₈₀	R ₂₇₀	F	F_	F _/	F _\
R_{90}	R ₉₀	R ₁₈₀	R ₂₇₀	R_0	F、	F>	F	F_
R ₁₈₀	R ₁₈₀	R ₂₇₀	R_0	R ₉₀	F_	F_	F	F/
R ₂₇₀	R ₂₇₀	R_0	R ₉₀	R ₁₈₀	F>	F	F	F
F	F	F>	F_	F′	R_0	R ₁₈₀	R ₉₀	R ₂₇₀
F_	F_	F\	F	F>	R ₁₈₀	R_0	R ₂₇₀	R ₉₀
F,	F/	F_	F _\	F	R ₂₇₀	R ₉₀	R_0	R ₁₈₀
F _\	F _\	F	F _/	F_	R ₉₀	R ₂₇₀	R ₁₈₀	R_0

Some Formalism

If S is a set, $S \times S$ is:

the set of all (ordered) pairs of elements of S

 $S \times S = \{ (a,b) \mid a \in S \text{ and } b \in S \}$

If S has n elements, how many elements does $S \times S$ have? n^2

Formally, \bullet is a function from $Y_{SQ} \times Y_{SQ}$ to Y_{SQ}

$$\bullet: Y_{SO} \times Y_{SO} \rightarrow Y_{SO}$$

As shorthand, we write •(a,b) as "a • b"

Binary Operations

"•" is called a binary operation on Yso

Definition: A binary operation on a set S is a function $lack : S \times S \to S$

Example:

The function $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by

f(x,y) = xy + y

is a binary operation on $\ensuremath{\mathbb{N}}$

Associativity

A binary operation ♦ on a set S is associative if:

for all $a,b,c \in S$, (a + b) + c = a + (b + c)

Examples:

Is f: $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by f(x,y) = xy + y associative?

(ab + b)c + c = a(bc + c) + (bc + c)? NO!

Is the operation • on the set of symmetries of the square associative? YES!

Commutativity

A binary operation ♦ on a set S is commutative if

For all $a,b \in S$, a + b = b + a

Is the operation • on the set of symmetries of the square commutative? NO!

$$R_{90} \bullet F_{|} \neq F_{|} \bullet R_{90}$$

Identities

R₀ is like a null motion

Is this true: $\forall a \in Y_{SQ}$, $a \cdot R_0 = R_0 \cdot a = a$? YES!

R₀ is called the identity of • on Y_{SQ}

In general, for any binary operation \bullet on a set S, an element $e \in S$ such that for all $a \in S$, $e \bullet a = a \bullet e = a$

is called an identity of ♦ on S

Inverses

Definition: The inverse of an element $a \in Y_{SQ}$ is an element b such that:

$$a \cdot b = b \cdot a = R_0$$

Examples:

R₉₀ inverse: R₂₇₀

R₁₈₀ inverse: R₁₈₀

F_I inverse: F_I

Every element in Y_{SQ} has a unique inverse

_	R_0	R ₉₀	R ₁₈₀	R ₂₇₀	F	F_	F _/	F、
R_0	R_0	R ₉₀	R ₁₈₀	R ₂₇₀	F	F_	F _/	F _\
R_{90}	R ₉₀	R ₁₈₀	R ₂₇₀	R_0	F	F>	F	F_
							F	
R ₂₇₀	R ₂₇₀	R_0	R ₉₀	R ₁₈₀	F>	F _\	F_	F
F	F_	F>	F_	F⁄	R_0	R ₁₈₀	R ₉₀	R ₂₇₀
F_	F_	F _\	F	F/	R ₁₈₀	R_0	R ₂₇₀	R ₉₀
F _/	F _/	F_	F _\	F	R ₂₇₀	R ₉₀	R_0	R ₁₈₀
F _\	F _\	F	F _/	F_	R ₉₀	R ₂₇₀	R ₁₈₀	R_0

Groups

A group G is a pair (S, •), where S is a set and • is a binary operation on S such that:

1. ♦ is associative

2. (Identity) There exists an element $e \in S \ \text{such that:} \\$

e + a = a + e = a, for all $a \in S$

3. (Inverses) For every $a \in S$ there is $b \in S$ such that: $a \cdot b = b \cdot a = e$

Commutative or "Abelian" Groups

If G = (S,♦) and ♦ is commutative, then G is called a commutative group

remember,
"commutative" means
a ♦ b = b ♦ a for all a, b in S

To check "group-ness"

Given (S, ♦)

- Check "closure" for (S, ♦)
 (i.e, for any a, b in S, check a ♦ b also in S).
- 2. Check that associativity holds.
- 3. Check there is a identity
- 4. Check every element has an inverse

Some examples...

Examples

Is $(\mathbb{N},+)$ a group?

Is + associative on \mathbb{N} ? YES!

Is there an identity? YES: 0

Does every element have an inverse? NO!

 $(\mathbb{N},+)$ is **NOT** a group

Examples

Is (Z,+) a group?

Is + associative on Z? YES!

Is there an identity? YES: 0

Does every element have an inverse? YES!

(Z,+) is a group

Examples

Is (Odds,+) a group?

Is + associative on Odds? YES!

Is there an identity? YES: 0

Does every element have an inverse? YES!

Are the Odds closed under addition NO!

(Odds,+) is NOT a group

Examples

Is (Y_{SQ}, •) a group?

Is • associative on Y_{SQ}? YES!

Is there an identity? YES: R₀

Does every element have an inverse? YES!

(Y_{SQ}, •) is a group

Examples

Is $(Z_n,+)$ a group?

 $(Z_n is the set of integers modulo n)$

Is + associative on Z_n ? YES!

Is there an identity? YES: 0

Does every element have an inverse? YES!

 $(Z_n, +)$ is a group

Examples

Is (Z_n,*) a group?

(Z_n is the set of integers modulo n)

Is * associative on Z_n? YES!

Is there an identity? YES: 1

Does every element have an inverse? NO!

 $(Z_n, *)$ is NOT a group

Examples

Is $(Z_n^*, *)$ a group?

(Z_n* is the set of integers modulo n that are relatively prime to n)

Is * associative on Z_n^* ? YES!

Is there an identity? YES: 1

Does every element have an inverse? YES!

 $(Z_n^*, *)$ is a group

And some properties...

Identity Is Unique

Theorem: A group has at most one identity element

Proof:

Suppose e and f are both identities of G=(S, *)

Then f = e + f = e

We denote this identity by "e"

Inverses Are Unique

Theorem: Every element in a group has a unique inverse

Proof:

Suppose b and c are both inverses of a

Then b = b + e = b + (a + c) = (b + a) + c = c

Orders and generators

Order of a group

A group G=(S, ♦) is finite if S is a finite set

Define |G| = |S| to be the order of the group (i.e. the number of elements in the group)

What is the group with the least number of elements? $G = (\{e\}, *)$ where e * e = e

How many groups of order 2 are there?

Generators

A set $T \subseteq S$ is said to generate the group $G = (S, \bullet)$ if every element of S can be expressed as a finite product of elements in T

Question: Does $\{R_{90}\}$ generate Y_{SQ} ? NO!

Question: Does $\{F_i, R_{90}\}$ generate Y_{SO} ? YES!

An element $g \in S$ is called a generator of G=(S, •) if $\{g\}$ generates G

Does Y_{so} have a generator? NO!

Generators For $(Z_n,+)$

Any $a \in Z_n$ such that GCD(a,n)=1 generates $(Z_n,+)$

Claim: If GCD(a,n) = 1, then the numbers a, 2a, ..., (n-1)a, na are all distinct modulo n

Proof (by contradiction):

Suppose $xa = ya \pmod{n}$ for $x,y \in \{1,...,n\}$ and $x \neq y$

Then n | a(x-y)

Since GCD(a,n) = 1, then $n \mid (x-y)$, which cannot happen

Order of an element

If G = (S, *), we use a^n denote (a * a * ... * a)

Definition: The order of an element a of G is the smallest positive integer n such that $a^n = e$

The order of an element can be infinite!

Example: The order of 1 in the group (Z,+) is infinite

What is the order of F_1 in Y_{SQ} ?

What is the order of R_{90} in Y_{SQ} ?

Orders

Theorem: If G is a finite group, then for g in G, order(g) is finite.

For $(Z_n, +)$, recall that order(g) = n/GCD(n,g)

Orders

What about $(Z_n^*, *)$?

 $order(\mathbf{Z_{n}^{*},\,^{*}}) = \phi(\mathbf{n})$

What about the order of its elements?

Orders

What about $(Z_n^*, *)$?

 $\operatorname{order}(\mathbf{Z_n}^*,\,^*) = \phi(\mathbf{n})$

What about the order of its elements?

Non-trivial theorem:

There are ϕ (n-1) generators of (Z_n^* , *)

Orders

Theorem: Let x be an element of G. The order of x divides the order of G

Corollary: If p is prime, a^{p-1} = 1 (mod p) (remember, this is Fermat's Little Theorem)

BTW, what group did we apply the theorem to?

 $G = (Z_p^*, *), order(G) = p-1$

Groups and Subgroups

Subgroups

Suppose G = (S, *) is a group.

If $T \subseteq S$, and if H = (T, •) is also a group, then H is called a subgroup of G.

Examples

(Z, +) is a group and (Evens, +) is a subgroup.

Also, (Z, +) is a subgroup of (Z, +). (Duh!)

What about (Odds, +)?

Examples

 $(Z_n, +_n)$ is a group and if $k \mid n$, what about $(\{0, k, 2k, 3k, ..., (n/k-1)k\}, +_n)$?

Is $(Z_k, +_k)$ a subgroup of $(Z_n, +_n)$?

Is $(Z_k, +_n)$ a subgroup of $(Z_n, +_n)$?

Quick facts (identity)

If e is the identity in G = (S, •), what is the identity in H = (T, •)?

Quick facts (inverse)

If b is a's inverse in G = (S, *), what is a's inverse in H = (T, *)?

Lagrange's Theorem

Theorem: If G is a finite group, and H is a subgroup then the order of H divides the order of G.
In symbols, |H| divides |G|.

Corollary: If x in G, then order(x) divides |G|. Proof of Corollary: Consider the set $T_x = (x, x^2 = x + x, x^3, ...)$ H = $(T_x, *)$ is a group. (check!)

Hence it is a subgroup of G = (S, *).

Order(H) = order(x). (check!)

On to other algebraic definitions

Lord Of The Rings

We often define more than one operation on a set

For example, in \mathbf{Z}_{n} we can do both addition and multiplication modulo \mathbf{n}

A ring is a set together with two operations

Definition:

A ring R is a set together with two binary operations + and ×, satisfying the following properties:

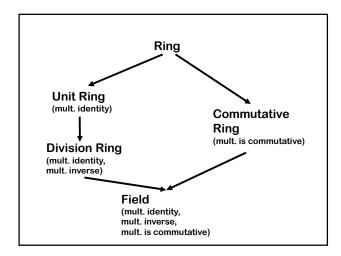
- 1. (R,+) is a commutative group
- 2. x is associative
- 3. The distributive laws hold in R:

$$(a + b) \times c = (a \times c) + (b \times c)$$

 $c \times (a + b) = (c \times a) + (c \times b)$

Examples: Is (Z, +, *) a ring?

How about (Z, +, min)?



Fields

Definition:

A field F is a set together with two binary operations + and ×, satisfying the following properties:

- 1. (F,+) is a commutative group
- 2. (F-{0},×) is a commutative group
- 3. The distributive law holds in F: $(a + b) \times c = (a \times c) + (b \times c)$

Examples:

Is (Z, +, *) a field?

How about (R, +, *)?

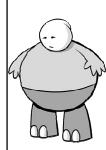
How about $(Z_n, +_n, *_n)$?

In The End...

Why should I care about any of this?

Groups, Rings and Fields are examples of the principle of abstraction: the particulars of the objects are abstracted into a few simple properties

If you prove results from some group, check if the results carry over to *any* group



Symmetries of the Square Compositions

₩Groups

Binary Operation Identity and Inverses Basic Facts: Inverses Are Unique Generators

Here's What You Need to Know...

Rings and Fields
Definition