15-251

Great Theoretical Ideas in Computer Science

Fact: $GCD(x,y) \times LCM(x,y) = x \times y$

You can use MAX(a,b) + MIN(a,b) = a+b to prove the above fact...

Number Theory and Modular Arithmetic

Lecture 13 (October 8, 2009)

(a mod n) means the remainder when a is divided by n.

 $a \mod n = r$ \Leftrightarrow a = dn + r for some integer d

Greatest Common Divisor: GCD(x,y) = greatest k ≥ 1 s.t. k|x and k|y.

Least Common Multiple: LCM(x,y) =smallest $k \ge 1$ s.t. x|k and y|k. Definition: Modular equivalence a = b [mod n] $\Leftrightarrow (a \text{ mod n}) = (b \text{ mod n})$ $\Leftrightarrow n \mid (a-b)$ 31 = 81 [mod 2] $31 =_2 81$ $31 =_2 81 \text{ written as } a =_n b, \text{ and spoken}$ "a and b are equivalent or congruent modulo n"

■_n is an <u>equivalence relation</u>

In other words, it is

Reflexive: a ≡_n a

Symmetric: $(a \equiv_n b) \Rightarrow (b \equiv_n a)$

Transitive: $(a \equiv_n b \text{ and } b \equiv_n c) \Rightarrow (a \equiv_n c)$

Why do we care about these residue classes?

Because we can replace any member of a residue class with another member when doing addition or multiplication mod n and the answer will not change

To calculate: 249 * 504 mod 251

just do -2 * 2 = -4 = 247

=_n induces a natural partition of the integers into n "residue" classes.

("residue" = what left over = "remainder")

Define residue class
[k] = the set of all integers that
are congruent to k modulo n.

Fundamental lemma of plus and times mod n:

If $(x \equiv_n y)$ and $(a \equiv_n b)$. Then

1)
$$x + a \equiv_n y + b$$

2) $x * a \equiv_n y * b$

Residue Classes Mod 3:

$$[0] = {..., -6, -3, 0, 3, 6, ..}$$

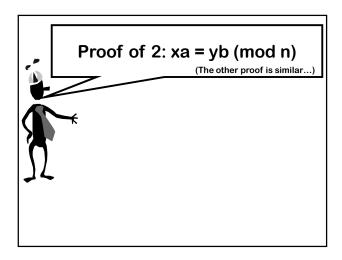
$$[1] = { ..., -5, -2, 1, 4, 7, ..}$$

$$[2] = {..., -4, -1, 2, 5, 8, ..}$$

$$[-6] = \{ ..., -6, -3, 0, 3, 6, .. \} = [0]$$

$$[7] = {..., -5, -2, 1, 4, 7, ..} = [1]$$

$$[-1] = { ..., -4, -1, 2, 5, 8, ..} = [2]$$



Another Simple Fact: If $(x =_n y)$ and (k|n), then: $x =_k y$

Example: $10 =_6 16 \Rightarrow 10 =_3 16$

Proof:

Unique representation system mod 4

Finite set $S = \{0, 1, 2, 3\}$

+ and * defined on S:

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

_				
*	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

A <u>Unique</u> Representation System Modulo n:

We pick one representative from each residue class and do all our calculations using these representatives.

Unsurprisingly, we use 0, 1, 2, ..., n-1

Notation

$$Z_n = \{0, 1, 2, ..., n-1\}$$

Define operations $+_n$ and $*_n$:

$$a +_{n} b = (a + b \mod n)$$

 $a *_{n} b = (a * b \mod n)$

Unique representation system mod 3

Finite set $S = \{0, 1, 2\}$

+ and * defined on S:

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

*	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

Some properties of the operation $\mathbf{+}_{\mathbf{n}}$

["Commutative"]
$$x, y \in Z_n \Rightarrow x +_n y = y +_n x$$

Similar properties also hold for *n

Unique representation system mod 3

Finite set $S = \{0, 1, 2\}$

+ and * defined on S:

_			
+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

*	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

Unique representation system mod 2

Finite set $Z_2 = \{0, 1\}$

two associative, commutative operators on \mathbf{Z}_2

+ ₂ XOR	0	1
0	0	1
1	1	0

* ₂ AND	0	1
0	0	0
1	0	1

Unique representation system mod 3

Finite set $Z_3 = \{0, 1, 2\}$

two associative, commutative operators on \mathbf{Z}_3

$$Z_5 = \{0,1,2,3,4\}$$

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

*	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	
2	0				
3	0	3	1	4	
4	0	4	3	2	

Unique representation system mod 3

Finite set $Z_3 = \{0, 1, 2\}$

two associative, commutative operators on \mathbf{Z}_3

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

*	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

 $Z_6 = \{0,1,2,3,4,5\}$

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

*	0	1	2	3	4	5
0	0	0	0	0	0	
1	0	1	2	3	4	
2	0	2	4	0	2	
3	0					
4	0	4	2	0	4	
5	0	5	4	3	2	

For addition tables, rows and columns always are a permutation of Z_n

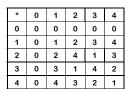
+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

For multiplication, if a row has a permutation you can solve, say,

*	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

For multiplication, some rows and columns are permutation of $\mathbf{Z}_{\mathbf{n}}$, while others aren't...



*	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

what's happening here?

But if the row does not have the permutation property, how do you solve

inverse!

*	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

For addition, the permutation property means you can solve, say,

$$4 + \underline{\hspace{1cm}} = x \pmod{6}$$
 for any x in Z_6

Subtraction mod n is well-defined

Each row has a 0, hence -a is that element such that a + (-a) = 0

$$\Rightarrow$$
 a – b = a + (-b)

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

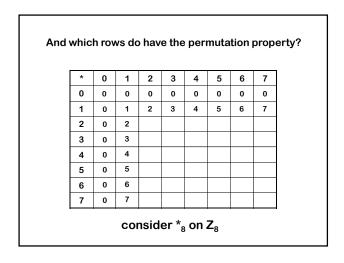
Division

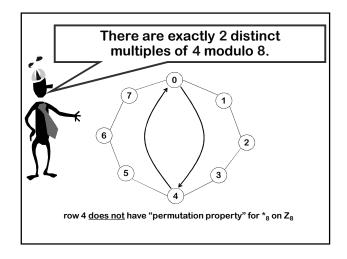
If you define $1/a \pmod{n} = a^{-1} \pmod{n}$ as the element b in Z_n such that $a * b = 1 \pmod{n}$

Then x/y (mod n)

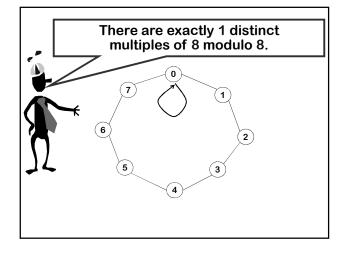
x * 1/y (mod n)

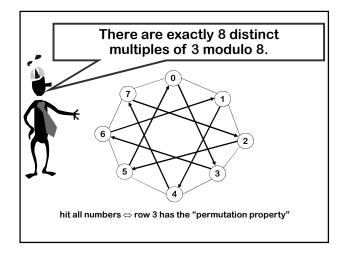
Hence we can divide out by only the y's for which 1/y is defined!

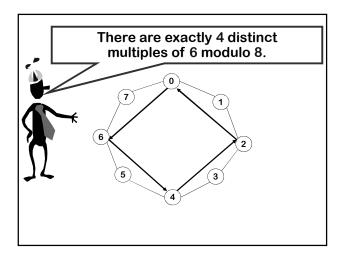




A visual way to understand multiplication and the "permutation property".







What's the pattern?

exactly 8 distinct multiples of 3 modulo 8. exactly 2 distinct multiples of 4 modulo 8 exactly 1 distinct multiple of 8 modulo 8 exactly 4 distinct multiples of 6 modulo 8

exactly _____ distinct multiples of x modulo y

Theorem: There are exactly LCM(n,c)/c = n/GCD(c,n) distinct multiples of c modulo n

Hence, only those values of c with GCD(c,n) = 1 have n distinct multiples (i.e., the permutation property for $*_n$ on Z_n)

And remember, permutation property means you can divide out by c (working mod n)

Theorem: There are exactly LCM(n,c)/c = n/GCD(c,n) distinct multiples of c modulo n

Fundamental lemma of division modulo n:

GCD(c n)=1 then ca = ch → a = b

if GCD(c,n)=1, then $ca \equiv_n cb \Rightarrow a \equiv_n b$

Proof:

Theorem: There are exactly k = n/GCD(c,n) distinct multiples of c modulo n, and these multiples are { $c^*i \mod n \mid 0 \le i < k$ }

Proof:

Clearly, $c/GCD(c,n) \ge 1$ is a whole number

 $\begin{array}{l} c\mathsf{k} = \ c\mathsf{n}/\mathsf{GCD}(c,\mathsf{n}) = \mathsf{n}(c/\mathsf{GCD}(c,\mathsf{n})) \equiv_{\mathsf{n}} 0 \\ \Rightarrow \mathsf{There} \ \mathsf{are} \leq \mathsf{k} \ \mathsf{distinct} \ \mathsf{multiples} \ \mathsf{of} \ \mathsf{c} \ \mathsf{mod} \ \mathsf{n} \colon \\ c^*\mathsf{0}, \ c^*\mathsf{1}, \ c^*\mathsf{2}, \dots, \ c^*(\mathsf{k}\!\!-\!\!1) \end{array}$

Also, k = factors of n missing from c

- \Rightarrow cx \equiv_n cy \Leftrightarrow n|c(x-y) \Rightarrow k|(x-y) \Rightarrow x-y \ge k
- \Rightarrow There are \ge k multiples of c.

Hence exactly k.

If you want to extend to general c and n

 $ca \equiv_{\mathsf{n}} cb \Rightarrow a \equiv_{\mathsf{n/gcd}(c,\mathsf{n})} b$

Fundamental lemmas mod n:

If
$$(x \equiv_n y)$$
 and $(a \equiv_n b)$. Then

1)
$$x + a \equiv_n y + b$$

2) $x * a \equiv_n y * b$

2)
$$x * a = v * b$$

3) x - a
$$\equiv_{n}^{n} y - b$$

4)
$$cx \equiv_n cy \Rightarrow a \equiv_n b$$
 if $gcd(c,n)=1$

We've got closure

Recall we proved that Z_n was "closed" under addition and multiplication?

What about Z_n* under multiplication?

Fact: if a,b \in Z_n^* , then ab (mod n) in Z_n^*

Proof: if gcd(a,n) = gcd(b,n) = 1, then gcd(ab, n) = 1then $gcd(ab \mod n, n) = 1$

New definition:

$$Z_n^* = \{x \in Z_n \mid GCD(x,n) = 1\}$$

Multiplication over this set Z_n* has the cancellation property.

$$Z_{12}^* = \{0 \le x < 12 \mid gcd(x,12) = 1\}$$

= \{1,5,7,11\}

*12	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$

 ${Z_6}^* = \{1, 5\}$

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

*	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

Z₁₅*

*	1	2	4	7	8	11	13	14
1	1	2	4	7	8	11	13	14
2	2	4	8	14	1	7	11	13
4	4	8	1	13	2	14	7	11
7	7	14	13	4	11	2	1	8
8	8	1	2	11	4	13	14	7
11	11	7	14	2	13	1	8	4
13	13	11	7	1	14	8	4	2
14	14	13	11	8	7	4	2	1

$$Z_5^* = \{1,2,3,4\}$$
 = $Z_5 \setminus \{0\}$

$$= Z_5 \setminus \{0\}$$

*5	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

$$Z_{12}^* = \{0 \le x < 12 \mid gcd(x,12) = 1\}$$

= \{1,5,7,11\}

 ϕ (12) = 4

* 12	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

Fact:

For prime p, the set $Z_p^* = Z_p \setminus \{0\}$

Proof:

It just follows from the definition!

For prim p, all 0 < x < p satisfy gcd(x,p) = 1

Theorem: if p,q distinct primes then $\phi(pq) = (p-1)(q-1)$

How about p = 3, q = 5?

Euler Phi Function $\phi(n)$

 ϕ (n) = size of Z_n^* = number of $1 \le k < n$ that are relatively prime to n.

$$p prime$$

$$\Rightarrow Z_p^* = \{1,2,3,...,p-1\}$$

$$\Rightarrow \phi(p) = p-1$$

Theorem: if p,q distinct primes then $\phi(pq) = (p-1)(q-1)$

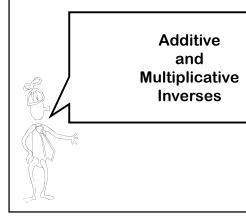
pq = # of numbers from 1 to pq

p = # of multiples of q up to pq

q = # of multiples of p up to pq

1 = # of multiple of both p and q up to pq

$$\phi(pq) = pq - p - q + 1 = (p-1)(q-1)$$



Multiplicative inverse of a mod n = number b such that a*b=1 (mod n)

What is the multiplicative inverse of a = 342952340 in $Z_{4230493243} = Z_n$?

Answer: $a^{-1} = 583739113$

Additive inverse of a mod n = number b such that a+b=0 (mod n)

What is the additive inverse of a = 342952340 in $Z_{4230493243} = Z_n$?

Answer: n – a = 4230493243-342952340 =3887540903 How do you find multiplicative inverses <u>fast</u>?

Multiplicative inverse of a mod n = number b such that a*b=1 (mod n)

Remember, only defined for numbers a in \mathbf{Z}_{n}^{\star}

Theorem: given positive integers X, Y, there exist integers r, s such that r X + s Y = gcd(X, Y)

and we can find these integers fast!

Now take n, and $a \in Z_n^*$ $gcd(a, n) ? \qquad a \text{ in } Z_n^* \Rightarrow gcd(a, n) = 1$ suppose ra + sn = 1 $then \text{ ra} \equiv_n 1$ $so, r = a^{-1} \text{ mod } n$

Theorem: given positive integers X, Y, there exist integers r, s such that r X + s Y = gcd(X, Y)

and we can find these integers fast!

How?

Extended Euclid Algorithm

Finally, a puzzle...

You have a 5 gallon bottle, a 3 gallon bottle, and lots of water.

How can you measure out exactly 4 gallons?

Euclid's Algorithm for GCD

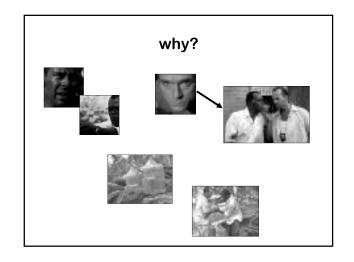
Euclid(A,B)

If B=0 then return A

else return Euclid(B, A mod B)

Euclid(67,29) $67 - 2*29 = 67 \mod 29 = 9$ Euclid(29,9) $29 - 3*9 = 29 \mod 9 = 2$ Euclid(9,2) $9 - 4*2 = 9 \mod 2 = 1$ Euclid(2,1) $2 - 2*1 = 2 \mod 1 = 0$

Euclid(1,0) outputs 1



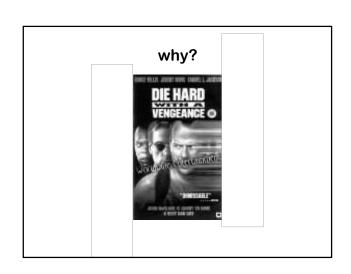
Extended Euclid Algorithm

Let <r,s> denote the number r*67 + s*29. Calculate all intermediate values in this representation.

67=<1,0> 29=<0,1>

 $\begin{array}{lll} \text{Euclid}(67,29) & 9 \! = \! < \! 1,0 \! > \! -2^* \! < \! 0,1 \! > & 9 \! = \! < \! 1,-2 \! > \\ \text{Euclid}(29,9) & 2 \! = \! < \! 0,1 \! > \! -3^* \! < \! 1,-2 \! > & 2 \! = \! < \! -3,7 \! > \\ \text{Euclid}(9,2) & 1 \! = \! < \! 1,-2 \! > \! -4^* \! < \! -3,7 \! > & 1 \! = \! < \! 13,-30 \! > \\ \text{Euclid}(2,1) & 0 \! = \! < \! -3,7 \! > \! -2^* \! < \! 13,-30 \! > & 0 \! = \! < \! -29,67 \! > & 1 \! > \! < \! > \end{matrix}$

Euclid(1,0) outputs 1 = 13*67 - 30*29



Invariant

Suppose stage of system is given by (L,S) (L gallons in larger one, S in smaller)

Set of valid moves

- 1. empty out either bottle
- 2. fill up bottle (completely) from water source
- 3. pour bottle into other until first one empty
- 4. pour bottle into other until second one full

Invariant: L,S are both multiples of 3.

Diophantine equations

Does the equality 3x + 5y = 4 have a solution where x,y are integers?

Generalized bottles of water

You have a P gallon bottle, a Q gallon bottle, and lots of water.

When can you measure out exactly 1 gallon?

New bottles of water puzzle

You have a 6 gallon bottle, a 3 gallon bottle, and lots of water.

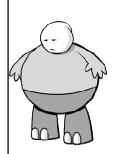
How can you measure out exactly 4 gallons?

Recall that

if P and Q have gcd(P, Q) = 1 then you can find integers a and b so that a*P + b*Q = 1

Suppose a is positive, then fill out P a times and empty out Q b times

(and move water from P to Q as needed...)



Here's What You Need to Know... Working modulo integer n

Definitions of Z_n , Z_n^* and their properties

Fundamental lemmas of +,-,*,/
When can you divide out

Extended Euclid Algorithm How to calculate c⁻¹ mod n.

Euler phi function $\phi(n) = |Z_n^*|$