15-251

Great Theoretical Ideas in Computer Science

Recurrences, Fibonacci Numbers and Continued Fractions

Lecture 9, September 24, 2009



Leonardo Fibonacci

In 1202, Fibonacci proposed a problem about the growth of rabbit populations

Rabbit Reproduction

A rabbit lives forever

The population starts as single newborn pair

Every month, each productive pair begets a new pair which will become productive after 2 months old

F_n= # of rabbit pairs at the beginning of the nth month

month	1	2	3	4	5	6	7
rabbits	1	1	2	3	5	8	13

Fibonacci Numbers

month	1	2	3	4	5	6	7
rabbits	1	1	2	3	5	8	13

Stage 0, Initial Condition, or Base Case: Fib(1) = 1; Fib (2) = 1

Inductive Rule: For n>3, Fib(n) = Fib(n-1) + Fib(n-2)

Sequences That Sum To n

Let f_{n+1} be the number of different sequences of 1's and 2's that sum to n.

$$f_1 = 1$$
 0 = the empty sum

$$f_2 = 1 1 = 1$$

$$f_3 = 2 2 = 1 + 1$$

2

Sequences That Sum To n

Let f_{n+1} be the number of different sequences of 1's and 2's that sum to n.

Sequences That Sum To n

Let f_{n+1} be the number of different sequences of 1's and 2's that sum to n.

Fibonacci Numbers Again

Let f_{n+1} be the number of different sequences of 1's and 2's that sum to n.

$$f_{n+1} = f_n + f_{n-1}$$

$$f_1 = 1$$
 $f_2 = 1$

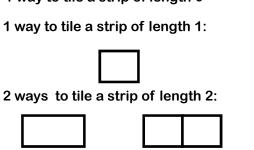
Visual Representation: Tiling

Let f_{n+1} be the number of different ways to tile a 1 × n strip with squares and dominoes.

Visual Representation: Tiling

1 way to tile a strip of length 0

1 way to tile a strip of length 1:



$$f_{n+1} = f_n + f_{n-1}$$

 f_{n+1} is number of ways to tile length n.

f_n tilings that start with a square.

 $\mathbf{f}_{\text{n-1}}$ tilings that start with a domino.

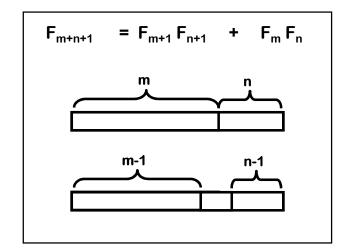
Fibonacci Identities

Some examples:

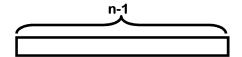
$$F_{2n} = F_1 + F_3 + F_5 + ... + F_{2n-1}$$

$$F_{m+n+1} = F_{m+1} F_{n+1} + F_m F_n$$

$$(F_n)^2 = F_{n-1} F_{n+1} + (-1)^n$$



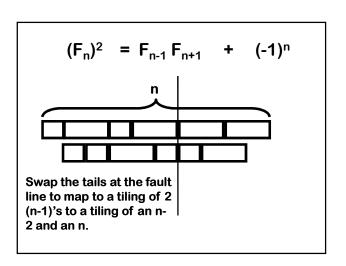
$$(F_n)^2 = F_{n-1} F_{n+1} + (-1)^n$$

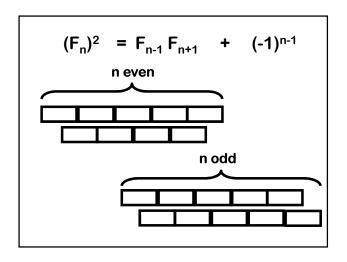


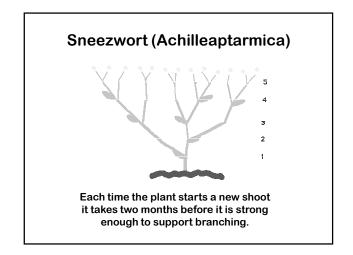
F_n tilings of a strip of length n-1

$$(F_n)^2 = F_{n-1} F_{n+1} + (-1)^n$$

$$(F_n)^2 \text{ tilings of two strips of size n-1}$$







Counting Petals

5 petals: buttercup, wild rose, larkspur, columbine (aquilegia) 8 petals: delphiniums

13 petals: ragwort, corn marigold, cineraria,

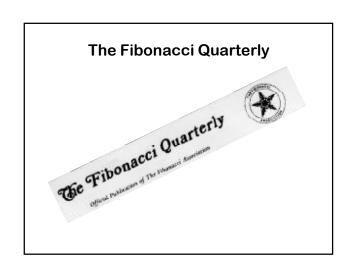
some daisies

21 petals: aster, black-eyed susan, chicory

34 petals: plantain, pyrethrum

55,89 petals: michaelmas daisies, the

asteraceae family.



Definition of φ (Euclid)

Ratio obtained when you divide a line segment into two unequal parts such that the ratio of the whole to the larger part is the same as the ratio of the larger to the smaller.

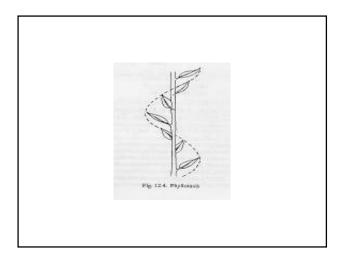
$$\varphi = \frac{AC}{AB} = \frac{AB}{BC}$$

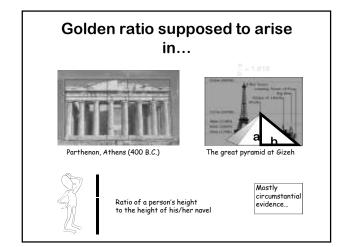
$$\varphi^{2} = \frac{AC}{BC}$$

$$\varphi^{2} - \varphi = \frac{AC}{BC} - \frac{AB}{BC} = \frac{BC}{BC} = 1$$

$$\varphi^2 - \varphi - 1 = 0$$

$$\varphi = \frac{1 + \sqrt{5}}{2}$$

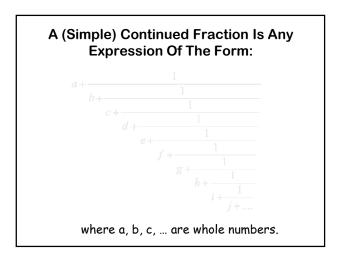




Expanding Recursively

Expanding Recursively

Continued Fraction Representation



A Continued Fraction can have a finite or infinite number of terms.

We also denote this fraction by [a,b,c,d,e,f,...]

A Finite Continued Fraction

$$2 + \frac{1}{3 + \frac{1}{4 + \frac{1}{2}}}$$

Denoted by [2,3,4,2,0,0,0,...]

An Infinite Continued Fraction

Denoted by [1,2,2,2,...]

Recursively Defined Form For CF

CF = whole number, or
$$= \text{whole number} + \frac{1}{\text{CF}}$$

Continued fraction representation of a standard fraction

$$\frac{67}{29} = 2 + \frac{1}{3 + \frac{1}{4 + \frac{1}{2}}}$$

$$\frac{67}{29} = 2 + \frac{1}{\frac{29}{9}} = 2 + \frac{1}{3 + \frac{2}{9}} 2 + \frac{1}{3 + \frac{1}{4 + \frac{1}{2}}}$$

e.g., 67/29 = 2 with remainder 9/29 = 2 + 1/ (29/9)

Ancient Greek Representation: Continued Fraction Representation

$$\frac{5}{3} = 1 + \frac{1}{1 + \frac{1}{2}}$$

Ancient Greek Representation: Continued Fraction Representation

$$\frac{5}{3} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}$$

$$= [1,1,1,1,0,0,0,...]$$

Ancient Greek Representation: Continued Fraction Representation

$$? = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}$$

Ancient Greek Representation: Continued Fraction Representation

$$\frac{8}{5} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}}$$

$$= [1,1,1,1,0,0,0,...]$$

Ancient Greek Representation: Continued Fraction Representation

$$\frac{13}{8} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}}$$

$$= [1,1,1,1,1,0,0,0,...]$$

A Pattern?

Let
$$r_1 = [1,0,0,0,...] = 1$$

 $r_2 = [1,1,0,0,0,...] = 2/1$
 $r_3 = [1,1,1,0,0,0...] = 3/2$
 $r_4 = [1,1,1,1,0,0,0...] = 5/3$
and so on.

Theorem:

 $r_n = Fib(n+1)/Fib(n)$

1,1,2,3,5,8,13,21,34,55,....

2/1 = 2 3/2 = 1.5 5/3 = 1.666... 8/5 = 1.6 13/8 = 1.625 21/13 = 1.615384

21/13 = 1.6153846... 34/21 = 1.61904...

 φ = 1.6180339887498948482045

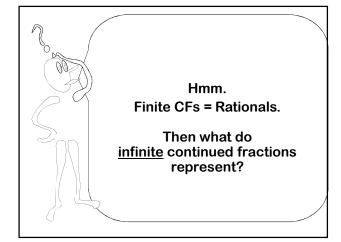
Pineapple whorls

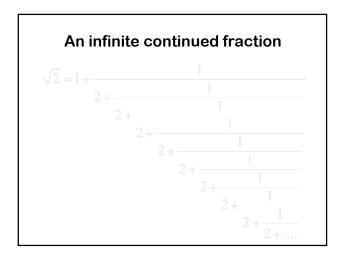
Church and Turing were both interested in the number of whorls in each ring of the spiral.

The ratio of consecutive ring lengths approaches the Golden Ratio.

Proposition:
Any finite continued fraction evaluates to a rational.

Theorem
Any rational has a finite
continued fraction
representation.



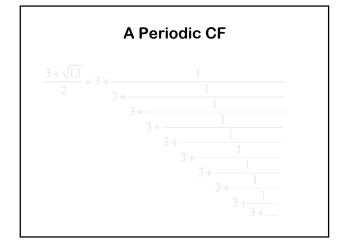


Quadratic Equations

•
$$X^2 - 3x - 1 = 0$$

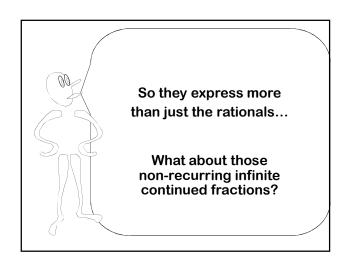
$$X = \frac{3 + \sqrt{13}}{2}$$

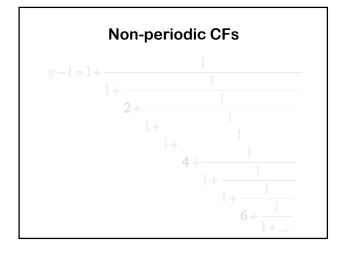
- $X^2 = 3X + 1$
- X = 3 + 1/X
- X = 3 + 1/X = 3 + 1/[3 + 1/X] = ...

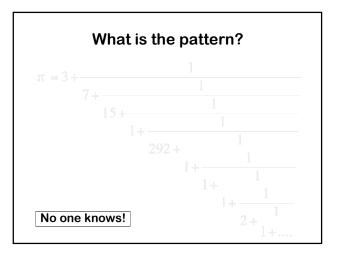


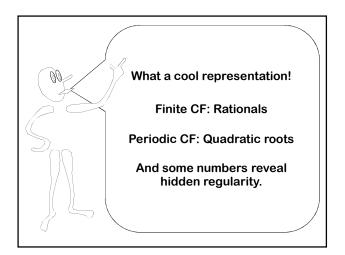
Theorem:
Any solution to a quadratic equation has a periodic continued fraction.

Converse:
Any periodic continued fraction is the solution of a quadratic equation. (try to prove this!)









More good news: Convergents

Let $\alpha = [a_1, a_2, a_3, ...]$ be a CF.

Define: $C_1 = [a_1, 0, 0, 0, 0, 0..]$

 $C_2 = [a_1, a_2, 0, 0, 0, ...]$

 $C_3 = [a_1, a_2, a_3, 0, 0, ...]$ and so on.

 $\boldsymbol{C}_{\boldsymbol{k}}$ is called the k-th convergent of α

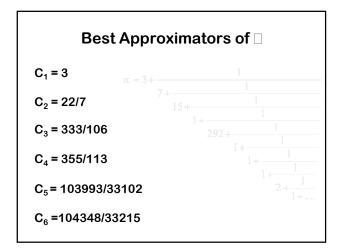
 α is the limit of the sequence $\textbf{C}_{1},\,\textbf{C}_{2},\,\textbf{C}_{3},...$

Best Approximator Theorem

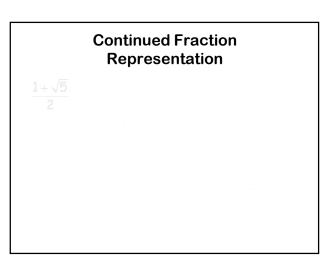
 A rational p/q is the <u>best approximator</u> to a real α if no rational number of denominator smaller than q comes closer to α.

BEST APPROXIMATOR THEOREM:

Given any CF representation of α , each convergent of the CF is a best approximator for α !



Continued Fraction Representation



Remember?

We already saw the convergents of this CF $[1,1,1,1,1,1,1,1,1,1,1,\dots]$ are of the form Fib(n+1)/Fib(n)

Hence:

 $\frac{1+\sqrt{5}}{2}$

1,1,2,3,5,8,13,21,34,55,....

2/1 = 2
3/2 = 1.5
5/3 = 1.666...

• 8/5 = 1.6 • 13/8 = 1.625

• 21/13 = 1.6153846... • 34/21 = 1.61904...

• φ = 1.6180339887498948482045...

As we've seen...

$$\frac{z}{1-z-z^2} = 0 \times 1 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + \cdots$$

= $F_0 + F_1z + F_2z^2 + F_3z^3 + F_4z^4 + F_5z^5 + \cdots$

Going the Other Way

$$(1-z-z^2)(F_0+F_1z+F_2z^2+F_3z^3+\cdots)$$

$$= F_0+F_1z+F_2z^2+F_3z^3+\cdots$$

$$-F_0z-F_1z^2-F_2z^3-\cdots$$

$$-F_0z^2-F_1z^3-\cdots$$

$$= F_0+(F_1-F_0)z$$

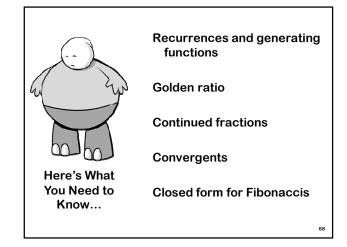
$$= z$$

$$F(z) = F_0 + F_1 z + F_2 z^2 + \dots = \frac{z}{1 - z - z^2}$$

$$\frac{z}{1 - z - z^2} = \sum_{n \ge 0} \frac{1}{\sqrt{5}} \left(\phi^n - \widehat{\phi}^n \right) z^n.$$

$$F_n = \frac{\phi^n - \left(\frac{-1}{\phi}\right)^n}{\sqrt{5}} \approx \frac{\phi^n}{\sqrt{5}}$$

$$\frac{F_n}{F_{n-1}} = \frac{\phi^n - \left(\frac{-1}{\phi}\right)^n}{\phi^{n-1} - \left(\frac{-1}{\phi}\right)^{n-1}} \longrightarrow \phi$$



12