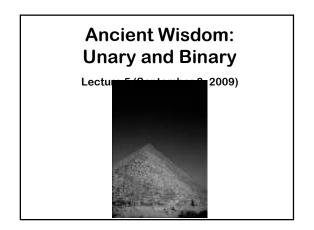
15-251
Great Theoretical Ideas in Computer Science



How to play the 9 stone game?

1 2 3 4 5 6 7 8

9 stones, numbered 1-9
Two players alternate moves.
Each move a player gets to take a new stone

Any subset of 3 stones adding to 15, wins.

Magic Square: Brought to humanity on the back of a tortoise from the river Lo in the days of Emperor Yu in ancient China

horizontal, or diagonal line add up to 15.

4 9 2
3 5 7
8 1 6

Magic Square: Any 3 in a vertical,

any 3 that add to 15 must be on a line.

4 9 2
3 5 7
8 1 6

Conversely,

TIC-TAC-TOE on a Magic Square Represents The Nine Stone Game

Alternate taking squares 1-9.
Get 3 in a row to win.

4 9 2
3 5 7
8 1 6

Basic Idea of this Lecture

Don't stick with the representation in which you encounter problems!

Always seek the more useful one!

This idea requires a lot of practice

Prehistoric Unary

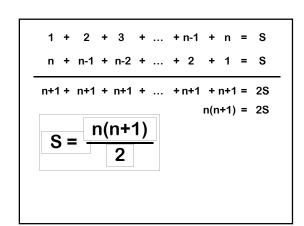
2

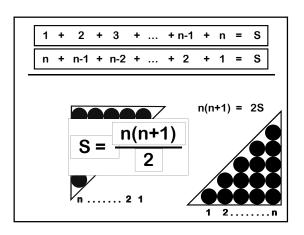
3

4 ()()()

Consider the problem of finding a formula for the sum of the first n numbers

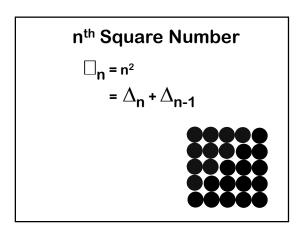
You already used induction to verify that the answer is ½n(n+1)

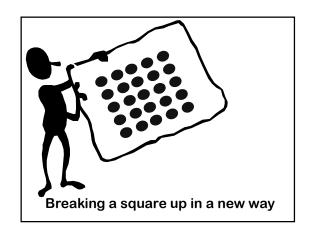


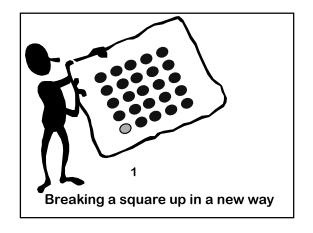


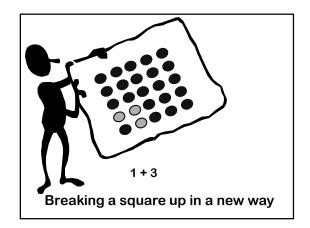
$$n^{th}$$
 Triangular Number
$$\Delta_n = 1 + 2 + 3 + \ldots + n-1 + n$$

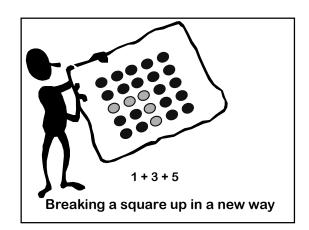
$$= n(n+1)/2$$

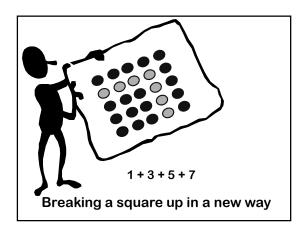


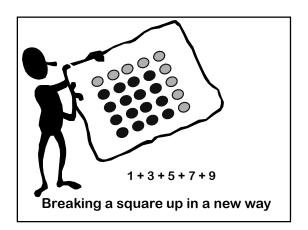


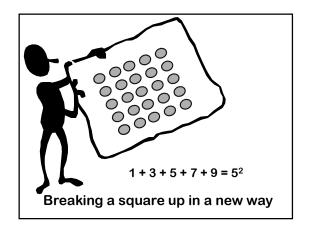


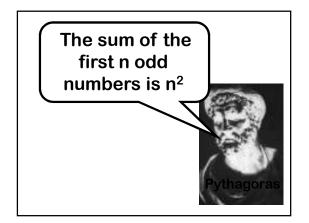




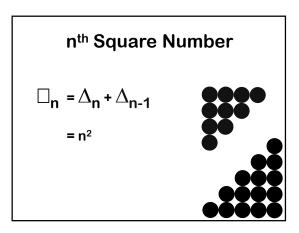


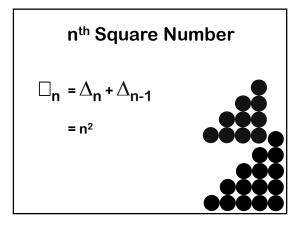


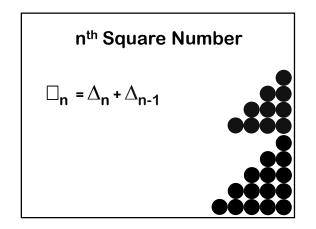


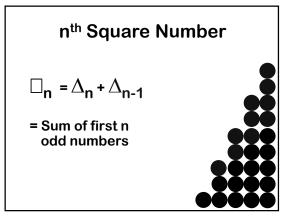


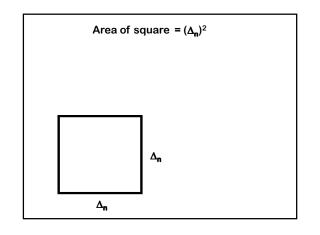
Here is an alternative dot proof of the same sum....

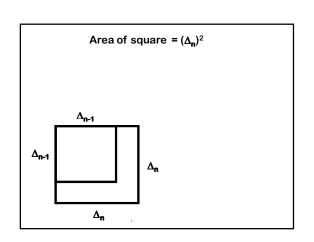


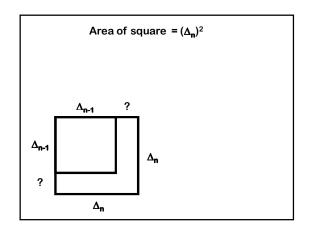


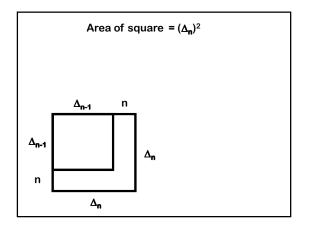


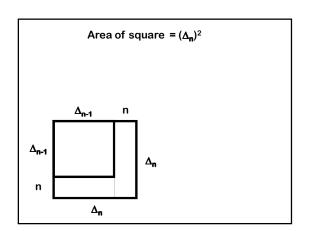


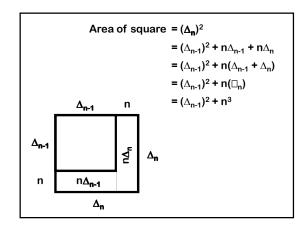










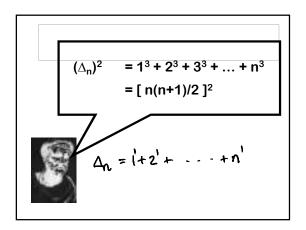


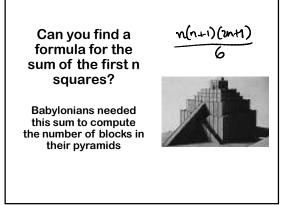
$$(\Delta_{n})^{2} = n^{3} + (\Delta_{n-1})^{2}$$

$$= n^{3} + (n-1)^{3} + (\Delta_{n-2})^{2}$$

$$= n^{3} + (n-1)^{3} + (n-2)^{3} + (\Delta_{n-3})^{2}$$

$$= n^{3} + (n-1)^{3} + (n-2)^{3} + \dots + 1^{3}$$

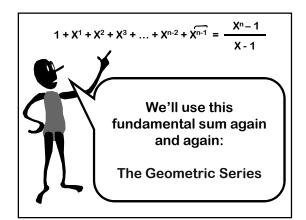


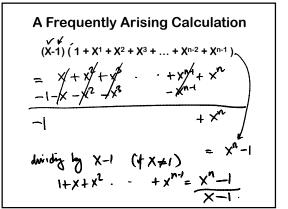


Rhind Papyrus
Scribe Ahmes was Martin Gardener of his day!

A man has 7 houses, Each house contains 7 cats, Each cat has killed 7 mice, Each mouse had eaten 7 ears of spelt, Each ear had 7 grains on it. What is the total of all of these?

Sum of powers of 7





A Frequently Arising Calculation

$$(X-1) (1 + X^{1} + X^{2} + X^{3} + ... + X^{n-2} + X^{n-1})$$

$$= X^{1} + X^{2} + X^{3} + ... + X^{n-1} + X^{n}$$

$$- 1 - X^{1} - X^{2} - X^{3} - ... - X^{n-2} - X^{n-1}$$

$$= X^{n} - 1$$

$$1 + X^{1} + X^{2} + X^{3} + \dots + X^{n-2} + X^{n-1} = \frac{X^{n} - 1}{X - 1}$$
(when x \neq 1)

Geometric Series for X=2

$$1 + 2^1 + 2^2 + 2^3 + ... + 2^{n-1} = 2^n - 1$$

$$1 + X^{1} + X^{2} + X^{3} + \dots + X^{n-2} + X^{n-1} = \frac{X^{n} - 1}{X - 1}$$
(when $x \neq 1$)

Geometric Series for X=1/2

$$1 + \frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \dots + \frac{1}{2^{n-1}} = \frac{\left(\frac{1}{2}\right)^{n} - 1}{\frac{1}{2} - 1}$$
$$= 2\left(1 - \left(\frac{1}{2}\right)^{n}\right)$$

$$1 + X^{1} + X^{2} + X^{3} + \dots + X^{n-2} + X^{n-1} = \frac{X^{n} - 1}{X - 1}$$
(when $x \neq 1$)

A Similar Sum
$$a^{n} + a^{n-1}b^{1} + a^{n-2}b^{2} + + \dots + a^{1}b^{n-1} + b^{n}$$

$$a^{n} + a^{n-1}b^{1} + a^{n-2}b^{2} + + \dots + a^{1}b^{n-1} + b^{n}$$

$$a^{n} + a^{n-1}b^{1} + a^{n-2}b^{2} + \dots + a^{1}b^{n-1} + b^{n}$$

$$a^{n} + a^{n-1}b^{1} + a^{n-2}b^{2} + \dots + b^{n}$$

$$a^{n} + a^{n-1}b^{1} + a^{n-2}b^{2} + \dots + b^{n}$$

$$a^{n} + a^{n-1}b^{1} + a^{n-2}b^{2} + \dots + b^{n}$$

$$a^{n} + a^{n-1}b^{1} + a^{n-2}b^{2} + \dots + b^{n}$$

$$a^{n} + a^{n-1}b^{1} + a^{n-2}b^{2} + \dots + b^{n}$$

$$a^{n} + a^{n-1}b^{1} + a^{n-2}b^{2} + \dots + b^{n}$$

$$a^{n} + a^{n-1}b^{1} + a^{n-2}b^{2} + \dots + b^{n}$$

$$a^{n} + a^{n-1}b^{1} + a^{n-2}b^{2} + \dots + b^{n}$$

$$a^{n} + a^{n-1}b^{1} + a^{n-2}b^{2} + \dots + b^{n}$$

$$a^{n} + a^{n-1}b^{1} + a^{n-2}b^{2} + \dots + b^{n}$$

$$a^{n} + a^{n-1}b^{1} + a^{n-2}b^{2} + \dots + b^{n}$$

$$a^{n} + a^{n-1}b^{1} + a^{n-2}b^{2} + \dots + b^{n}$$

$$a^{n} + a^{n-1}b^{1} + a^{n-2}b^{2} + \dots + b^{n}$$

$$a^{n} + a^{n-1}b^{1} + a^{n-2}b^{2} + \dots + b^{n}$$

$$a^{n} + a^{n-1}b^{1} + a^{n-2}b^{2} + \dots + b^{n}$$

$$a^{n} + a^{n-1}b^{1} + a^{n-2}b^{2} + \dots + b^{n}$$

$$a^{n} + a^{n-1}b^{1} + a^{n-2}b^{2} + \dots + b^{n}$$

$$a^{n} + a^{n-1}b^{1} + a^{n-1}b^{1} + \dots + a^{n-1}b^{n-1} + b^{n}$$

$$a^{n} + a^{n-1}b^{1} + a^{n-1}b^{1} + \dots + a^{n-1}b^{n-1} + \dots + b^{n}$$

$$a^{n} + a^{n-1}b^{1} + a^{n-1}b^{1} + \dots + a^{n-1}b^{n-1}b^{n-1} + \dots + a^{n-1}b^{n-1}b^{n-1}$$

$$a^{n} + a^{n-1}b^{1} + a^{n-1}b^{1} + \dots + a^{n-1}b^{n-1}$$

A slightly different one
$$S = 0_0 2^0 + 1.2^1 + 2.2^2 + 3.2^3 + ... + n2^n = ?$$

$$-(S = 0.2^0 + 1.2^1 + 2.2^2 + ... + n2^n)$$

$$2S = 0.2^1 + 1.2^2 + ... + (n-1)2^n + n2^{n+1}$$

$$= 0.2^1 + 1.2^2 + ... + (n-1)2^n + n2^{n+1}$$

$$= -(2^1 + 2^2 + ... + 2^n) + n2^{n+1}$$

$$= -(2^{n+1} - 1 - 1) + n2^{n+1}$$

$$= n.2^{n+1} - 2^{n+1} + 2 = (n-1)2^{n+1} + 2.$$

$$-(6 = 0^{2}2^{0} + 1^{2}2^{1} + 2^{2}2^{1} + 1^{2}2^{1}$$

BASE X Representation

S = $a_{n-1} a_{n-2} \dots a_1 a_0$ represents the number: $a_{n-1} X^{n-1} + a_{n-2} X^{n-2} + \dots + a_0 X^0$

938456 2 (Rinary Notedien) 2.10 + 7.10 101 represents: 1(2)2+0(21)+1(20)

= 00000

Base 7

015 represents: $0(7)^2 + 1(7^1) + 5(7^0)$

Bases In Different Cultures

Sumerian-Babylonian: 10, 60, 360

Egyptians: 3, 7, 10, 60

Maya: 20 Africans: 5, 10 French: 10, 20 English: 10, 12, 20

BASE X Representation

S = ($a_{n-1} a_{n-2} ... a_1 a_0$)_X represents the number:

$$a_{n-1} X^{n-1} + a_{n-2} X^{n-2} + \ldots + a_0 X^0$$

Largest number representable in base-X with n "digits"

=
$$(X-1 X-1 X-1 X-1 X-1 ... X-1)_X$$

= $(X-1)(X^{n-1} + X^{n-2} + ... + X^0)$
= $(X^n - 1)$

Fundamental Theorem For Binary

Each of the numbers from 0 to 2ⁿ-1is uniquely represented by an n-bit number in binary

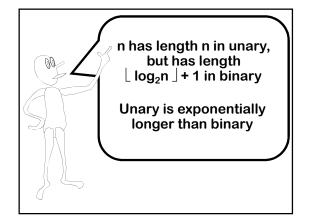
k uses $\lfloor \log_2 k \rfloor$ + 1 digits in base 2

= [log_(KH)]

Fundamental Theorem For Base-X

Each of the numbers from 0 to Xⁿ-1 is uniquely represented by an n-"digit" number in base X

k uses L log_xk J + 1 digits in base X



Other Representations: Egyptian Base 3

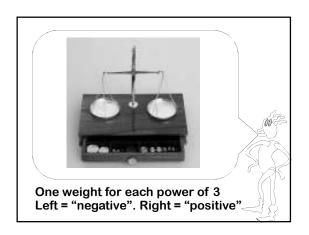
Conventional Base 3: Each digit can be 0, 1, or 2 Here is a strange new one:

Egyptian Base 3 uses -1, 0, 1

Example: $(1 - 1 - 1)_{EB3} = 9 - 3 - 1 = 5$

We can prove a unique representation theorem

How could this be Egyptian?
Historically, negative
numbers first appear in the
writings of the Hindu
mathematician
Brahmagupta (628 AD)



Two Case Studies

Bases and Representation

Solving Recurrences using a good representation

Example

$$T(1) = 1$$

 $T(n) = 4T(n/2) + n$

Notice that T(n) is inductively defined only for positive powers of 2, and undefined on other values

$$T(1) = 1$$
 $T(2) = 6$ $T(4) = 28$ $T(8) = 120$

Give a closed-form formula for T(n)

Technique 1

Guess Answer, Verify by Induction

$$T(1) = 1$$
, $T(n) = 4 T(n/2) + n$

Base Case: G(1) = 1 and T(1) = 1

Induction Hypothesis: T(x) = G(x) for x < n

Hence: $T(n/2) = G(n/2) = 2(n/2)^2 - n/2$

$$T(n) = 4 T(n/2) + n$$

$$= 4 G(n/2) + n$$

$$= 4 [2(n/2)^2 - n/2] + n$$

$$= 2n^2 - 2n + n$$

$$= 2n^2 - n = G(n)$$

Guess:
$$G(n) = 2n^2 - n$$

Technique 2

Guess Form, Calculate Coefficients

$$T(1) = 1$$
, $T(n) = 4 T(n/2) + n$

Guess: $T(n) = an^2 + bn + c$ for some a,b,c

Calculate: T(1) = 1, so a + b + c = 1

T(n) = 4 T(n/2) + n

 $an^2 + bn + c = 4 [a(n/2)^2 + b(n/2) + c] + n$

 $= an^2 + 2bn + 4c + n$

(b+1)n + 3c = 0

Therefore: b = -1 c = 0 a = 2

Technique 3

The Recursion Tree Approach

$$T(1) = 1$$
, $T(n) = 4 T(n/2) + n$

A slight variation

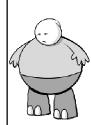
$$T(1) = 1$$
, $T(n) = 4 T(n/2) + n^2$

How about this one?

T(1) = 1, T(n) = 3 T(n/2) + n

... and this one?

T(1) = 1, T(n) = T(n/4) + T(n/2) + n



Here's What You Need to Know... Unary and Binary Triangular Numbers Dot proofs

 $(1+x+x^2+...+x^{n-1})=(x^n-1)/(x-1)$

Base-X representations k uses $\lfloor \log_2 k \rfloor + 1 = \lceil \log_2 (k+1) \rceil$ digits in base 2

Solving Simple Recurrences

Bhaskara's "proof" of Pythagoras' theorem

