Grade School Revisited:
How To Multiply Two Numbers

1 5- 2 5 1 Lecture 23 (November 13, 2007)

Great Theoretical Ideas
in Computer Science

Gauss’ Complex Puzzle

Remember how to multiply two
complex numbers a + bi and ¢ + di?
(a+bi)(c+di) = [ac —bd] + [ad + bc] i
Input: a,b,c,d

Output: ac-bd, ad+bc

If multiplying two real numbers costs $1
and adding them costs a penny, what is
the cheapest way to obtain the output
from the input?

Can you do better than $4.02?

Gauss’ $3.05 Method

Input: a,b,c,d

Output:  ac-bd, ad+bc The Gauss optimization saves

X,=a+b one multiplication out of four.
X,=c+d It requires 25% less work.
X3 =X, X, =ac+ ad + bc + bd
X,=ac

X5 = bd

Xs=X4— X5 =ac-bd

cc X;=X;-X,—-X; =bc+ad

O ALAHLAHO O




Time complexity of
grade school addition

Xk kkk*k*%x
kkkkkk*k*x
*- *kkkkkkx

¥
%ok ok ko ok ok ok ok kK

T(n) = amount of time
grade school
addition uses to add
two n-bit numbers

We saw that T(n) was linear
T(n)=06(n)

Time complexity of
grade school multiplication

X FExx kR
Sk o

T(n) = The amount of
Rt time grade school
L STt multiplication uses to
add two n-bit numbers

KKK KKK Kk kkkkkk

We saw that T(n) was quadratic
T(n) = O(n?)

Grade School Addition: Linear time
Grade School Multiplication: Quadratic time

® 3 -~

# of bits in the numbers

No matter how dramatic the difference in the
constants, the quadratic curve will eventually
dominate the linear curve

Is there a sub-linear time
method for addition?

Any addition algorithm takes Q(n) time

Claim: Any algorithm for addition must
read all of the input bits

Proof: Suppose there is a mystery
algorithm A that does not examine
each bit

Give A a pair of numbers. There must be
some unexamined bit position i in one of
the numbers

Any addition algorithm takes Q(n) time

*kkkhkkkkKhkx

A did not
* % K ok x|k [k kK
read this bit
Xk k ok ok kok Kk kK at position i

If A is not correct on the inputs, we
found a bug

If Ais correct, flip the bit at position i and
give A the new pair of numbers. A gives
the same answer as before, which is now
wrong.




Grade school addition can’t
be improved upon by more
than a constant factor

Grade School Addition: ©(n) time.
Furthermore, it is optimal

Grade School Multiplication: ©(n?) time

Is there a clever algorithm to multiply two
numbers in linear time?

Despite years of research, no one
knows! If you resolve this question,
Carnegie Mellon will give you a PhD!

Can we even break the quadratic time barrier?

In other words, can we do something very
different than grade school multiplication?

Divide And Conquer

An approach to faster algorithms:
DIVIDE a problem into smaller subproblems
CONQUER them recursively

GLUE the answers together so as to
obtain the answer to the larger problem

Multiplication of 2 n-bit numbers

n bits
X= | X |
Y= | Y |
n/2 bits n/2 bits

X=a2"2+p Y=c2"+d
XxY=ac 2"+ (ad + bc) 272 + bd

Multiplication of 2 n-bit numbers

x=IENE
v= I

n/2 bits n/2 bits

XxY=ac 2"+ (ad + bc) 272 + bd

MULT(X,Y):
If |X| =|Y| =1 then return XY
else break X into a;b and Y into c;d
return MULT(a,c) 2" + (MULT(a,d)
+ MULT(b,c)) 22+ MULT (b,d)




Same thing for numbers in decimal!
n digits
x= T
v= IR

n/2 digits n/2 digits

X=a10"2+b Y=c10"2+d

XxY =ac 10" + (ad + bc) 1072 + bd

Multiplying (Divide & Conquer style)
12345678 * 21394276

1234*2139 1234*4276 5678*2139 5678*4276
12*21 12*39 34*21 34*39
1%2 11 2*2 2*1

2 1 4 2

Hence: 12*21= 2*102+ (1 +4)10" + 2 =252
a1 b
L c | _d |

Multiplying (Divide & Conquer style)
12345678 * 21394276
1234*2139 1234*4276 5678*2139 5678*4276

252 | 468 714 | 1326
=2639526

[ c | _d |

Multiplying (Divide & Conquer style)
12345678 * 21394276

| 2639526 | 5276584 | 12145242 | 24279128 |
08 + *10% + *107

+

=264126842539128

[ c | _d |

Divide, Conquer, and Glue

MULT(X,Y)

Divide, Conquer, and Glue

MULT(X,Y): if IX|=]Y|=1
then return XY,
else...




Divide, Conquer, and Glue

MULT(X,Y):

Mult(a,c)

Divide, Conquer, and Glue

MULT(X,Y):

Divide, Conquer, and Glue

MULT(X,Y):
X=a;b Y=c;d

Divide, Conquer, and Glue

MULT(X,Y):
X=a;b Y=c;d

Divide, Conquer, and Glue

MULT(X,Y):

Divide, Conquer, and Glue

MULT(X,Y):




Divide, Conquer, and Glue

MULT(X,Y):

Divide, Conquer, and Glue

MULT(X,Y):

Divide, Conquer, and Glue

XY =ac2"
+(ad+bc)2n2
+bd

MULT(X,Y):

X=a;b Y=c;d

Recurrence Relation

T(1)=k for some constant k

T(n) =4 T(n/2) + k’n + k*’ for constants k’ and k”’

MULT(X,Y):
If |X] =|Y| =1 then return XY
else break X into a;b and Y into c;d
return MULT(a,c) 2" + (MULT(a,d)
+ MULT(b,c)) 2"2+ MULT(b,d)

Time required by MULT

T(n) = time taken by MULT on two n-bit
numbers

What is T(n)? What is its growth rate?
Big Question: Is it ©(n?)?
T(n)=4T(n/2) + (k'n + k)

conquering

1 divide and
time

glue

Recurrence Relation
T(1)=1
T(n)=4T(n/2) +n

MULT(X,Y):
If |X] =|Y| =1 then return XY
else break X into a;b and Y into c;d
return MULT(a,c) 2" + (MULT(a,d)
+ MULT(b,c)) 272+ MULT(b,d)




Technique: Labeled Tree Representation T(")=/4;r("/2) + (K'n+Kk”)

conquering
[T(n) = n+4T(n/2) | time o Yoo divide and
=a;b Y=c;d glue
XY =ac2"+
(ad+bc)2"2+ bd

S~

T(nI2\ /T(n2)\ /T(nI2)\ /T(n/2)

[T(1) 1 |

o - @

0 n
1 ni2 +  n2 o+ ni2 + ni2
2

i Leveliis the sum of 4' copies of n/2!

log,(n) P T 1 1T -+ 41T 4T 41414141




in= n

2n= ni2 + ni2  + n/2 + n/2
4n=
2in= Level i is the sum of 4 copies of n/2

(n)n= I T R P P P I P P P P P P P P P P PP b

n(142+4+8+ . . . +n) = n(2n-1) = 2n2-n

Divide and Conquer MULT: O(n?) time
Grade School Multiplication: ©(n2) time

MULT revisited

MULT(X,Y):
If |X| =|Y| =1 then return XY
else break X into a;b and Y into c;d
return MULT(a,c) 2" + (MULT(a,d)

+ MULT(b,c)) 22+ MULT (b,d)

MULT calls itself 4 times. Can you see a way
to reduce the number of calls?

Gauss’ optimization

Input: a,b,c,d
Output: ac-bd, ad+bc

X,=a+b

X,=c+d

X3 =X, X, =ac+ad+ bc + bd
X,=ac

X5 =bd

Xe=X4—Xs =ac-bd

cc X,=X;-X,—-X; =bc+ad

O LAHHAHO 0

Karatsuba, Anatolii Alexeevich (1937-)

Sometime in the late 1950’s
Karatsuba had formulated
the first algorithm to break
the n2 barrier!

Gaussified MULT
(Karatsuba 1962)

MULT(X,Y):
If |X| =|Y| =1 then return XY
else break X into a;b and Y into c;d
e:=MULT(a,c)
f := MULT(b,d)
return
e 2"+ (MULT(a+b,c+d) —e -f) 272 + f

T(n)=3T(n/2) +n

Actually: T(n) =2 T(n/2) + T(n/2 + 1) + kn




0 n
1 ni2 +  n2 o+ ni2
2

i Level i is the sum of 3 copies of n/2i

--------------------------

log,(n) VAT 1 TR T 1141 1 41414141

3/2n=
9/4n =

(3/2)in=

(3/2)°sn =

n/2 + n/2 + n/2

Level i is the sum of 3i copies of n/2

--------------------------

1+1+14+ 1414+ 14+ 1+ 1 +H1+H1H 1+ 1+ 14141 H 1+ 1+ 111 H 1 H 11+ 11+ 1+

N(1+3/2+(3/2)2+ . . . + (3/2)l°92") = 3n1-58-- _2n

Dramatic Improvement for Large n

T(n) =3n'0923-2n
= @(n|°92 3)
= @(n1.58...)

A huge savings over ©(n2?) when n gets
large.




Multiplication Algorithms

Kindergarten n2"

Grade School n?
Karatsuba n?.58...

Fastest Known n logn loglogn

n2 n 1584

nlog(n) loglog(n)
n 1.584

A short digression on
parallel algorithms

Adding n numbers

For the next two slides, assume that the CPU
can access any number, and add/mult/subtract
any two numbers in unit time.

Given n numbers a, a,, ..., a,
How much time to add them all up using 1 CPU?

Q(n)
The CPU must at least look at all the numbers.

Adding n numbers (in parallel)

Given n numbers a, a,, ..., a,

How much time to add them all up
using as many CPUs as you want?

Think of this as getting a group of people together
to add the n numbers.

Not clear if any one CPU must look at all numbers
so Q(n) lower does not hold any more.

In fact, we can do it in O(log n) time.

Addition in the old model?

*[*k k k k k Kk xKk
k| |k *k kkkkk k%)
[k [* K, * *x %k x % %

How do CPUs add
n-bit numbers?

The k-th carry bit depends * a!* Kk Kk Kk KhkkkKk
on the partial sum to the right of it

If we had all the carry bits, we could compute the
sum fast.

How do we compute all the carry bits?

10



Here’s What
You Need to
Know...

* Gauss’s Multiplication Trick

* Proof of Lower bound for addition
« Divide and Conquer

* Solving Recurrences

* Karatsuba Multiplication

11



