15-251

Great Theoretical Ideas in Computer Science

Grade School Revisited: How To Multiply Two Numbers

Lecture 23 (November 13, 2007)

Gauss' Complex Puzzle

Remember how to multiply two complex numbers a + bi and c + di?

(a+bi)(c+di) = [ac -bd] + [ad + bc] i

Input: a,b,c,d

Output: ac-bd, ad+bc

If multiplying two real numbers costs \$1 and adding them costs a penny, what is the cheapest way to obtain the output from the input?

Can you do better than \$4.02?

Gauss' \$3.05 Method

Input: a,b,c,d
Output: ac-bd, ad+bc

c $X_1 = a + b$

 $c X_2 = c + d$

 $X_3 = X_1 X_2 = ac + ad + bc + bd$

 $X_4 = ac$

 $X_5 = bd$

 $c X_6 = X_4 - X_5 = ac - bd$

 $x_7 = X_3 - X_4 - X_5 = bc + ad$

The Gauss optimization saves one multiplication out of four. It requires 25% less work.

Time complexity of grade school addition

T(n) = amount of time grade school addition uses to add two n-bit numbers

We saw that T(n) was linear $T(n) = \Theta(n)$

Time complexity of grade school multiplication

T(n) = The amount of time grade school multiplication uses to add two n-bit numbers

We saw that T(n) was quadratic $T(n) = \Theta(n^2)$

Grade School Addition: Linear time Grade School Multiplication: Quadratic time

No matter how dramatic the difference in the constants, the quadratic curve will eventually dominate the linear curve

Is there a sub-linear time method for addition?

Any addition algorithm takes $\Omega(n)$ time

Claim: Any algorithm for addition must read all of the input bits

Proof: Suppose there is a mystery algorithm A that does not examine each bit

Give A a pair of numbers. There must be some unexamined bit position i in one of the numbers

Any addition algorithm takes $\Omega(n)$ time

If A is not correct on the inputs, we found a bug

If A is correct, flip the bit at position i and give A the new pair of numbers. A gives the same answer as before, which is now wrong.

Grade school addition can't be improved upon by more than a constant factor

Grade School Addition: $\Theta(n)$ time. Furthermore, it is optimal

Grade School Multiplication: ⊖(n²) time

Is there a clever algorithm to multiply two numbers in linear time?

Despite years of research, no one knows! If you resolve this question, Carnegie Mellon will give you a PhD!

Can we even break the quadratic time barrier?

In other words, can we do something very different than grade school multiplication?

Divide And Conquer

An approach to faster algorithms:

DIVIDE a problem into smaller subproblems

CONQUER them recursively

GLUE the answers together so as to obtain the answer to the larger problem

Multiplication of 2 n-bit numbers

$$X = \begin{array}{c} & & \text{n bits} \\ \hline X & & & \\ Y = & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ & & & \\ \hline & & & \\ & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & \\ \hline & & & \\ \hline & & & \\ \hline & \\ \hline & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & \\ \hline & \\ \hline$$

$$X = a 2^{n/2} + b$$
 $Y = c 2^{n/2} + d$
 $X \times Y = ac 2^n + (ad + bc) 2^{n/2} + bd$

Multiplication of 2 n-bit numbers

 $X \times Y = ac 2^{n} + (ad + bc) 2^{n/2} + bd$

MULT(X,Y):

If |X| = |Y| = 1 then return XY
else break X into a;b and Y into c;d
return MULT(a,c) 2ⁿ + (MULT(a,d)
+ MULT(b,c)) 2^{n/2} + MULT(b,d)

Same thing for numbers in decimal!

$$X = a 10^{n/2} + b$$
 $Y = c 10^{n/2} + d$

$$X \times Y = ac 10^{n} + (ad + bc) 10^{n/2} + bd$$

Multiplying (Divide & Conquer style)

12345678 * 21394276

1234*2139 1234*4276 5678*2139 5678*4276

12*21 12*39 34*21 34*39

1*2 1*1 2*2 2*1

2 1 4 2

Hence: $12*21 = 2*10^2 + (1+4)10^1 + 2 = 252$

Multiplying (Divide & Conquer style)

12345678 * 21394276

1234*2139 1234*4276 5678*2139 5678*4276

Multiplying (Divide & Conquer style)

12345678 * 21394276

2639526 5276584 12145242 24279128 *108 + *104 + *104 + *1

= 264126842539128

Divide, Conquer, and Glue

Divide, Conquer, and Glue

MULT(X,Y):

if |X| = |Y| = 1then return XY,

else...

Recurrence Relation

T(1) = k for some constant k

T(n) = 4 T(n/2) + k'n + k'' for constants k' and k''

MULT(X,Y):

If |X| = |Y| = 1 then return XY
else break X into a;b and Y into c;d
return MULT(a,c) 2ⁿ + (MULT(a,d)
+ MULT(b,c)) 2^{n/2} + MULT(b,d)

Recurrence Relation

T(1) = 1

T(n) = 4 T(n/2) + n

MULT(X,Y):

If |X| = |Y| = 1 then return XY
else break X into a;b and Y into c;d
return MULT(a,c) 2ⁿ + (MULT(a,d)
+ MULT(b,c)) 2^{n/2} + MULT(b,d)

Divide and Conquer MULT: $\Theta(n^2)$ time Grade School Multiplication: $\Theta(n^2)$ time

MULT revisited

MULT(X,Y):

If |X| = |Y| = 1 then return XY
else break X into a;b and Y into c;d
 return MULT(a,c) 2ⁿ + (MULT(a,d)
 + MULT(b,c)) 2^{n/2} + MULT(b,d)

MULT calls itself 4 times. Can you see a way to reduce the number of calls?

Gauss' optimization

Input: a,b,c,d
Output: ac-bd, ad+bc

 $c X_1 = a + b$

 $c X_2 = c + d$

 $X_3 = X_1 X_2 = ac + ad + bc + bd$

 $X_4 = ac$

 $X_5 = bd$

 $c X_6 = X_4 - X_5 = ac - bd$

cc $X_7 = X_3 - X_4 - X_5 = bc + ad$

Karatsuba, Anatolii Alexeevich (1937-)

Sometime in the late 1950's Karatsuba had formulated the first algorithm to break the n² barrier!

Gaussified MULT (Karatsuba 1962)

MULT(X,Y):

If |X| = |Y| = 1 then return XY else break X into a;b and Y into c;d

e : = MULT(a,c)

f := MULT(b,d)

return

 $e 2^{n} + (MULT(a+b,c+d) - e - f) 2^{n/2} + f$

T(n) = 3 T(n/2) + n

Actually: T(n) = 2 T(n/2) + T(n/2 + 1) + kn

Dramatic Improvement for Large n

T(n) =
$$3n^{\log_2 3} - 2n$$

= $\Theta(n^{\log_2 3})$
= $\Theta(n^{1.58...})$

A huge savings over $\Theta(n^2)$ when n gets large.

Multiplication Algorithms

Kindergarten	n2 ⁿ
Grade School	n²
Karatsuba	n ^{1.58}
Fastest Known	n logn loglogn

A short digression on parallel algorithms

Adding n numbers

For the next two slides, assume that the CPU can access any number, and add/mult/subtract any two numbers in unit time.

Given n numbers $a_1, a_2, ..., a_n$ How much time to add them all up using 1 CPU?

 $\Omega(\mathbf{n})$

The CPU must at least look at all the numbers.

Adding n numbers (in parallel)

Given n numbers a₁, a₂, ..., a_n
How much time to add them all up
using as many CPUs as you want?

Think of this as getting a group of people together to add the n numbers.

Not clear if any one CPU must look at all numbers so $\Omega(n)$ lower does not hold any more. In fact, we can do it in $O(\log n)$ time.

Addition in the old model?

How do CPUs add n-bit numbers?

The k-th carry bit depends * * on the partial sum to the right of it

If we had all the carry bits, we could compute the

How do we compute all the carry bits?

- Here's What You Need to Know...
- Gauss's Multiplication Trick
 - Proof of Lower bound for addition
 - Divide and Conquer
 - Solving Recurrences
 - Karatsuba Multiplication