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15-251
Great Theoretical Ideas 
in Computer Science

Randomness and 
Computation

Lecture 18 (October  25, 2007)

Checking Our Work

Suppose we want to check p(x) q(x) = r(x), 
where p, q and r are three polynomials.

(x-1)(x3+x2+x+1) = x4-1

If  the polynomials are long, this requires 
n2 mults by elementary school algorithms 
-- or can do faster with fancy techniques like the Fast 
Fourier transform.

Can we check if  p(x) q(x) = r(x) more 
efficiently? 

Great Idea: 
Evaluating on Random Inputs

Let f(x) = p(x) q(x) – r(x).  Is f  zero everywhere?

Idea: Evaluate f  on a random input z.

If  we get nonzero f(z), clearly f  is not  zero.

If  we get f(z) = 0, this is (weak) evidence that  f  
is zero everywhere.

In fact: If  f(x) is a degree 2n polynomial, it can 
only have 2n roots.  We’re unlikely to guess one 
of  these by chance!

Equality checking by random 
evaluation

1. Fix a sample space S={z1, z2,…, zm}  

with arbitrary points zi, for m=4n.

2. Select random z uniformly at random from S.

3. Evaluate f(z) = p(z) q(z) – r(z)

4. If  f(z) = 0, output “possibly equal”

otherwise output “not equal”

Equality checking by random 
evaluation

What is the probability the algorithm 

outputs “not equal” when in fact f  = = 0?

Zero!

If  p(x)q(x) = r(x) , always correct!
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Equality checking by random 
evaluation

What is the probability the algorithm 

outputs “maybe equal” when in fact f  ≠≠ 0?

Let A = {z | z is a root of  f}.  

Recall that |A| ≤ degree of  f  ≤ 2n.

Therefore:  P(A) ≤ 2n/m = 2n/4n = 1/2  

Equality checking by random 
evaluation

By repeating this procedure k times, 

we are “fooled” by the event

f(z1) = f(z2) = … = f(zk) = 0

when actually f(x) ≠≠ 0

with probability no bigger than

P(A) ≤ (2n/m)k = 2-k

Wow!  That idea could be 
used for testing equality 
of  lots of  different types 

of  “functions”!

“Random Fingerprinting”

Find a small random “fingerprint” of a large 
object: e.g., the value f(z) of a polynomial 
at a point z.

This fingerprint captures the essential 
information about the larger object: 
if two large objects are different, their 
fingerprints are usually different!

Earth has huge file X that she 
transferred to Moon. Moon gets Y.

Earth: XEarth: X Moon: Y

Did you get that file ok? Did you get that file ok? Was the Was the 
transmission accurate?transmission accurate?

Uh, yeah….

How do we quickly check 
for accuracy? More soon…

I guess….

Gauss

Let π(n) be the 
number of  primes 
between 1 and n.

I wonder how fast 
π(n) grows? 

Conjecture [1790s]: 
( )

lim 1
/ lnn

n

n n

π
→∞

=

Legendre
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Their estimates

x pi(x) Gauss' Li Legendre x/(log x - 1)

1000 168 178 172 169

10000 1229 1246 1231 1218

100000 9592 9630 9588 9512

1000000 78498 78628 78534 78030

10000000 664579 664918 665138 661459

100000000 5761455 5762209 5769341 5740304

1000000000 50847534 50849235 50917519 50701542

10000000000 455052511 455055614 455743004 454011971

J-S Hadamard

Two independent
proofs of  the 
Prime Density 

Theorem [1896]:

( )
lim 1

/lnn

n

n n

π
→∞

=

De la Vallée 
Poussin

The Prime Density Theorem

This theorem remains one of the 
celebrated achievements of 

number theory. 

In fact, an even sharper conjecture
remains one of the great open 

problems of mathematics!

Riemann

The Riemann 
Hypothesis 

[1859]:

still unproven!

( ) / ln
lim 0
n

n n n

n

π
→∞

−
=

Slightly easier to show

π(n)/n ≥ 1/(2 logn).

( )
lim 1

/ lnn

n

n n

π
→∞

=

The Prime Density Theorem

Random log n bit number is 
a random number from 1..n

π(n) / n ≥ 1/2logn

means that a random 
logn-bit number has 

at least a 1/(2logn) chance 
of  being prime.
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Random k bit number is a 

random number from 1..2k

π(2k) / 2k
≥ 1/(2k)

means that a random 
k-bit number has 

at least a 1/(2k) chance 
of  being prime.

Really useful fact

A random k-bit number has at least 
a 1/2k chance of being prime.

So if  we pick So if  we pick 2k random k2k random k--bit numbersbit numbers
the expected number of  primes on the the expected number of  primes on the 

list is list is at least 1at least 1

Picking A Random Prime

Many modern cryptosystems 
(e.g., RSA) include the instructions:

“Pick a random n-bit prime.”

How can this be done efficiently?

Picking A Random Prime

“Pick a random n-bit prime.”

Strategy:

1) Generate random n-bit numbers

2) Test each one for primality 
[more on this later in the lecture]

3) Repeat until you find a prime.

Picking A Random Prime

“Pick a random n-bit prime.”

1) Generate kn random n-bit numbers

Each trial has a ≥ 1/2n chance of  being prime.

Pr[ all kn trials yield composites ]

≤ (1-1/2n)kn = (1-1/2n)2n * k/2
≤ 1/ek/2

Picking A Random Prime

“Pick a random n-bit prime.”

Strategy:

1) Generate random n-bit numbers

2) Test each one for primality 

If  we try out 10000 random 1000-bit numbers, 
chance of  not getting any 1000-bit  primes ≤ e-5
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Moral of the story

Picking a random prime is 
“almost as easy as”

picking a random number.

(Provided we can check for primality.
More on this later.)

Earth has huge file X that she 
transferred to Moon. Moon gets Y.

Earth: XEarth: X Moon: Y

Did you get that file ok? Was the Did you get that file ok? Was the 
transmission accurate?transmission accurate?

Uh, yeah.

Are X and Y the same n-bit 
numbers?

p = random 2logn-bit prime
Send (p, X mod p)

Answer to “X Answer to “X ≡≡ Y mod p ?”Y mod p ?”

Earth: XEarth: X Moon: Y

Why is this any good?

Easy case:

If X = Y, then X ≡ Y (mod p)

Why is this any good?

Harder case:

What if X ≠ Y? We mess up if p | (X-Y).

Define Z = (X-Y). To mess up, p must divide Z.

Z is an n-bit number.

⇒ Z is at most 2n.

But each prime ≥ 2.

Hence Z has at most n prime divisors.

Almost there…

Z has at most n prime divisors.

How many 2logn-bit primes?

at least 22logn/(2*2logn) = n2/(4logn) >> 2n primes.

Only (at most) half of them divide Z.

A random k-bit number has at least a 
1/2k chance of  being prime.
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Theorem:
Let X and Y be distinct n-bit 
numbers. Let p be a random 

2logn-bit prime.

Then

Prob [X = Y mod p] < 1/2

Earth-Moon protocol makes mistake
with probability at most 1/2!

Boosting the success probability

EARTH: XEARTH: X MOON: YMOON: Y

Pick k random 
2logn-bit primes: P1, P2, .., Pk

Send (X mod Pi) for 1 ≤ i ≤ k

k answers to “X = Y mod Pi ?”

Exponentially smaller error probability

If X=Y, always accept.

If X ≠ Y,

Prob [X = Y mod Pi for all i] ≤ (1/2)k

Picking A Random Prime

“Pick a random n-bit prime.”

Strategy:

1) Generate random n-bit numbers

2) Test each one for primality 

How do we test for primality?

Primality Testing: 
Trial Division On Input n

Trial division up to √n

for k = 2 to √n do
if k |n then
return “n is not prime”
otherwise return “n is prime”

about √n divisions

Trial division performs Trial division performs √n divisions 
on input n.

Is that efficient?

For a 1000-bit number, this will take 
about 2500 operations.

That’s not very efficient at all!!!

More on efficiency and run-times
in a future lecture…
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But so many cryptosystems, But so many cryptosystems, 
like RSA and PGP, use like RSA and PGP, use fast fast 
primality testingprimality testing as part of  as part of  
their subroutine to generate their subroutine to generate 
a random na random n--bit prime! bit prime! 

What is the fast primality What is the fast primality 
testing algorithm that they testing algorithm that they 
use?use?

There are fast randomized
algorithms to do primality 

testing. 

Miller-Rabin test Solovay-Strassen test

If  n is composite, how would 
you show it? 

Give a nonGive a non--trivial factor of  n.trivial factor of  n.

But, we don’t know how to But, we don’t know how to 
factor numbers fast.factor numbers fast.

We will use a We will use a differentdifferent
certificate of  compositeness certificate of  compositeness 

that does not require that does not require 
factoring.factoring.

Recall that for prime p, a ≠ 0 mod p:Recall that for prime p, a ≠ 0 mod p:

Fermat Little Thm: ap-1 = 1 mod p.

Hence, aHence, a(p(p--1)/21)/2 = = ±±1.1.

So if  we could find some a ≠ 0 mod pSo if  we could find some a ≠ 0 mod p

such that asuch that a(p(p--1)/21)/2 ≠ ≠ ±±11

⇒⇒ p must not be prime.p must not be prime.

Goodn = { a ∈ Z*
n | a(n-1)/2 ≠ ±1 }

(these prove that n is not prime)

Uselessn = { a ∈ Z*
n | a(n-1)/2 = ±1 }

(these don’t prove anything)

Theorem:
if  Goodn is not empty, then
Goodn contains at least half of  Zn

*.

Proof

Goodn = { a ∈ Z*
n | a(n-1)/2 ≠ ±1 }

Uselessn = { a ∈ Z*
n | a(n-1)/2 = ±1 }

Fact 1: Uselessn is a subgroup of Zn
*

Fact 2: If H is a subgroup of G then |H| divides |G|.

⇒ If  Good  is not empty, then |Useless| ≤ |Zn
*| / 2

⇒ |Good| ≥ |Zn
*| / 2
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Randomized Primality Test

Let’s suppose that Let’s suppose that Goodn = { a ∈ Z*
n | a(n-1)/2 ≠ ±1 }

contains contains at least half at least half the the elements of Z*elements of Z*nn..

Randomized Test:

For For ii = 1 to k:= 1 to k:

Pick random Pick random aaii ∈∈ [2 .. n[2 .. n--1];1];

If GCD(If GCD(aaii, n) , n) ≠≠ 1, Halt with “Composite”;1, Halt with “Composite”;

If If aaii
(n(n--1)/21)/2

≠≠ ±±11 , Halt with “Composite, Halt with “Composite”;”;

Halt Halt with “I think n is prime. I am only wrong (½)with “I think n is prime. I am only wrong (½)kk fraction fraction 
of times I think that n is prime.” of times I think that n is prime.” 

Is Goodn non-empty for all primes n?

Good_n may be empty even if  n is not a prime.

A Carmichael number is a number n such that 

a(n-1)/2 = 1 (mod n) for all numbers a with gcd(a,n)=1. 

Example:  n = 561 =3*11*17 (the smallest Carmichael 
number) 

1105 = 5*13*17  

1729 = 7*13*19

And there are many of  them. For sufficiently large m, there 
are at least m2/7 Carmichael numbers between 1 and m.

Recall: Goodn = { a ∈ Z*
n | a(n-1)/2 ≠ ±1 }

The saving grace

The randomized test fails only for 
Carmichael numbers.

But, there is an efficient way to test for 
Carmichael numbers.

Which gives an efficient algorithm for 
primality.

Randomized Primality Test

Let’s suppose that Let’s suppose that GoodGoodnn contains at least contains at least 
half half the elements of Z*the elements of Z*nn..

Randomized Test:

For For ii = 1 to k:= 1 to k:

Pick random Pick random aaii ∈∈ [2 .. n[2 .. n--1];1];

If GCD(If GCD(aaii, n) , n) ≠≠ 1, Halt with “Composite”;1, Halt with “Composite”;

If If aaii
(n(n--1)/21)/2

≠≠ ±±11 , Halt with “Composite”;, Halt with “Composite”;

If n is Carmichael, Halt with “Composite”If n is Carmichael, Halt with “Composite”

Halt with “I think n is prime. I am only wrong (½)Halt with “I think n is prime. I am only wrong (½)kk fraction fraction 
of times I think that n is prime.” of times I think that n is prime.” 

Primality Versus Factoring

Primality has a fast randomized 
algorithm. 

Factoring is not known to have a 
fast algorithm.  The fastest  

randomized algorithm 
currently known takes 

exp( O(n log n log n)1/3 )
operations on n-bit numbers. 

number digits prize factored

RSA-100 100 Apr. 1991

RSA-110 110 Apr. 1992

RSA-120 120 Jun. 1993

RSA-129 129 $100 Apr. 1994

RSA-130 130 Apr. 10, 1996

RSA-140 140 Feb. 2, 1999

RSA-150 150 Apr. 16, 2004

RSA-155 155 Aug. 22, 1999

RSA-160 160 Apr. 1, 2003

RSA-200 200 May 9, 2005

RSA-576 174 $10,000 Dec. 3, 2003

RSA-640 193 $20,000 Nov 2, 2005

RSA-704 212 $30,000 open

RSA-768 232 $50,000 open

RSA-896 270 $75,000 open

RSA-1024 309 $100,000 open

RSA-1536 463 $150,000 open

RSA-2048 617 $200,000 open

Google:  RSA Challenge Numbers
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The techniques we’ve been 
discussing today are sometimes 

called “fingerprinting.”

The idea is that a large object such as 
a string (or document, or function, or 
data structure…) is represented by a 

much smaller  “fingerprint”
using randomness.

If  two objects have identical sets of  
fingerprints, they’re likely the same 

object.
Here’s What 
You Need to 

Know…

Primes
Prime number theorem

How to pick random primes

Fingerprinting
How to check if  a polynomial

of  degree d is zero

How to check if  two n-bit strings 

are identical

Primality
Fermat’s Little Theorem

Algorithm for testing primality


