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A B

1-1 onto Correspondence
(just “correspondence” for short)



Correspondence Principle

If two finite sets can be placed 
into 1-1 onto correspondence, 
then they have the same size



If a finite set A 
has a k-to-1 

correspondence 
to finite set B, 
then |B| = |A|/k



The number 
of subsets of 
an n-element 

set is 2n.



A choice tree  provides a “choice tree 
representation” of a set S, if

1. Each leaf label is in S, and each element 
of S is some leaf label

2. No two leaf labels are the same



Sometimes it is easiest 
to count the number of 
objects with property Q, 
by counting the number 
of objects that do not 
have property Q.



The number of subsets of 
size r that can be formed 
from an n-element set is:

n!
r!(n-r)!

=
n
r



Product Rule (Rephrased)
Suppose every object of a set S can be 
constructed by a sequence of choices with P1
possibilities for the first choice, P2 for the 
second, and so on. 

IF 1. Each sequence of choices 
constructs an object of type S

2. No two different sequences create the
same object

There are P1P2P3…Pn objects of type S

AND

THEN



How Many Different Orderings 
of Deck With 52 Cards?

What object are we making? Ordering of a deck

Construct an ordering of a deck by a sequence Construct an ordering of a deck by a sequence 
of 52 choices:of 52 choices:
52 possible choices for the first card;
51 possible choices for the second card;

: :
1 possible choice for the 52nd card.

By product rule: 52 × 51 × 50 × … × 2 × 1 = 52!



The Sleuth’s Criterion

There should be a unique way to create
an object in S.

In other words:

For any object in S, it should be possible 
to reconstruct the (unique) sequence of 
choices which lead to it.



The three big mistakes people 
make in associating a choice 
tree with a set S are:

1. Creating objects not in S

2. Missing out some objects 
from the set S

3. Creating the same object two 
different ways



DEFENSIVE THINKING
ask yourself:

Am I creating objects of 
the right type?

Can I reverse engineer 
my choice sequence 

from any given object?



Inclusion-Exclusion

If A and B are two finite sets, 
what is the size of (A ∪ B) ?

|A| + |B| - |A ∩ B|



Inclusion-Exclusion

If A, B, C are three finite sets, 
what is the size of (A ∪ B ∪ C) ?

|A| + |B| + |C| 
- |A ∩ B| - |A ∩ C| - |B ∩ C|

+ |A ∩ B ∩ C|



Inclusion-Exclusion

If A1, A2, …, An are n finite sets, 
what is the size of (A1 ∪ A2 ∪ … ∪ An) ?

∑i |Ai| 
- ∑i < j |Ai ∩ Aj|

+ ∑i < j < k |Ai ∩ Aj ∩ Ak|
…

+ (-1)n-1 |A1 ∩ A2 ∩ … ∩ An|



Let’s use our principles to 
extend our reasoning to 

different types of objects



Counting Poker Hands



52 Card Deck, 5 card hands

4 possible suits:
♥♦♣♠

13 possible ranks:
2,3,4,5,6,7,8,9,10,J,Q,K,A

Pair: set of two cards of the same rank
Straight: 5 cards of consecutive rank
Flush: set of 5 cards with the same suit



Ranked Poker Hands

Straight Flush: a straight and a flush

4 of a kind: 4 cards of the same rank

Full House: 3 of one kind and 2 of another

Flush: a flush, but not a straight

Straight: a straight, but not a flush

3 of a kind: 3 of the same rank, but not 
a full house or 4 of a kind

2 Pair: 2 pairs, but not 4 of a kind or a full house

A Pair



Straight Flush

9 choices for rank of lowest card at 
the start of the straight

4 possible suits for the flush

9 × 4 = 36

52
5

36
=

36

2,598,960
= 1 in 72,193.333…



4 of a Kind

13 choices of rank

48 choices for remaining card

13 × 48 = 624

52
5

624
=

624

2,598,960
= 1 in 4,165



4 × 1287
= 5148

Flush

4 choices of suit

13
5

choices of cards

“but not a straight flush…” - 36 straight
flushes

5112 flushes
5,112

= 1 in 508.4…
52
5



9 × 1024
= 9216

9 choices of lowest card

45 choices of suits for 5 cards

“but not a straight flush…” - 36 straight
flushes

9180 flushes
9,180

= 1 in 283.06…
52
5

Straight



Ranking

Straight Flush 36
4-of-a-kind 624
Full House 3,744
Flush 5,112
Straight 9,180
3-of-a-kind 54,912
2-pairs 123,552
A pair 1,098,240
Nothing 1,302,540



Storing Poker Hands:
How many bits per hand?

I want to store a 5 card poker hand using 
the smallest number of bits (space efficient)



Order the 2,598,560 Poker Hands 
Lexicographically (or in any fixed way)

To store a hand all I need is to store its 
index of size  ⎡ log2(2,598,560) ⎤ = 22 bits

Hand 0000000000000000000000
Hand 0000000000000000000001
Hand 0000000000000000000010

.

.

.



22 Bits is OPTIMAL

221 = 2,097,152 < 2,598,560

Thus there are more poker hands than there 
are 21-bit strings

Hence, you can’t have a 21-bit string 
for each hand



0 1 0 10 1 0 1

0 1 0 1

0 1

Binary (Boolean)  Choice Tree

A binary (Boolean) choice tree is a choice tree 
where each internal node has degree 2

Usually the choices are labeled 0 and 1



22 Bits is OPTIMAL

221 = 2,097,152 < 2,598,560

A binary choice tree of depth 21 can 
have at most 221 leaves. 

Hence, there are not enough leaves for all 
5-card hands.  



An n-element set can be stored so 
that each element uses ⎡log2(n) ⎤
bits

Furthermore, any representation 
of the set will have some string of 
at least that length



Information Counting 
Principle:

If each element of a set 
can be represented using 
k bits, the size of the set is 
bounded by 2k



Information Counting 
Principle:

Let S be a set represented 
by a depth-k binary 
choice tree, the size of the 
set is bounded by 2k



ONGOING MEDITATION:

Let S be any set and T be a binary 
choice tree representation of S 

Think of each element of S being 
encoded by binary sequences of 

choices that lead to its leaf

We can also start with a binary 
encoding of a set and make a 

corresponding binary choice tree



Now, for something Now, for something 
completely differentcompletely different……

How many ways to How many ways to 
rearrange the letters in the rearrange the letters in the 

word word “SYSTEMS”??



SYSTEMS

7 places to put the Y, 
6 places to put the T, 
5 places to put the E, 
4 places to put the M, 

and the S’s are forced

7 X 6 X 5 X 4 = 840



SYSTEMS
Let’s pretend that the S’s are distinct:

S1YS2TEMS3

There are 7! permutations of S1YS2TEMS3

But when we stop pretending we see that 
we have counted each arrangement of 
SYSTEMS 3! times, once for each of 3! 
rearrangements of S1S2S3

7!

3!
= 840



Arrange n symbols: r1 of type 1, 
r2 of type 2, …, rk of type k

n
r1

n-r1

r2
…

n - r1 - r2 - … - rk-1

rk

n!

(n-r1)!r1!

(n-r1)!

(n-r1-r2)!r2!
= …

=
n!

r1!r2! … rk!



14!

2!3!2!
= 3,632,428,800

CARNEGIEMELLON



Remember:
The number of ways to 
arrange n symbols with 
r1 of type 1, r2 of type 2, 
…, rk of type k is:

n!

r1!r2! … rk!



5 distinct pirates want to divide 
20 identical, indivisible bars of 
gold. How many different ways 

can they divide up the loot?



Sequences with 20 G’s and 4 /’s

GG/G//GGGGGGGGGGGGGGGGG/

represents  the following division 
among the pirates: 2, 1, 0, 17, 0

In general, the ith pirate gets the number 
of G’s after the i-1st / and before the ith /

This gives a correspondence between 
divisions of the gold and sequences 
with 20 G’s and 4 /’s



Sequences with 20 G’s and 4 /’s

How many different ways to 
divide up the loot?

24
4



How many different ways can n 
distinct pirates divide k identical, 

indivisible bars of gold?

n + k - 1
n - 1

n + k - 1
k

=



How many integer solutions 
to the following equations?

x1 + x2 + x3 + x4 + x5 = 20

x1, x2, x3, x4, x5 ≥ 0

Think of xk are being the number of 
gold bars that are allotted to pirate k

24
4



How many integer solutions 
to the following equations?

x1 + x2 + x3 + … + xn = k

x1, x2, x3, …, xn ≥ 0

n + k - 1
n - 1

n + k - 1
k

=



Identical/Distinct Dice

Suppose that we roll seven dice

How many different outcomes are 
there, if order matters? 67

What if order doesn’t matter?
(E.g., Yahtzee)

12
7



Back to the Pirates

How many ways are there of 
choosing 20 pirates from a set of 

5 distinct pirates, 
with repetitions allowed?

=
5 + 20 - 1

20
24
20

24
4

=



Multisets

A multiset is a set of elements, each of 
which has a multiplicity

The size of the multiset is the sum of the 
multiplicities of all the elements

Example: 
{X, Y, Z}  with  m(X)=0  m(Y)=3,  m(Z)=2

Unary visualization:  {Y, Y, Y, Z, Z}



Counting Multisets

=n + k - 1
n - 1

n + k - 1
k

There number of ways 
to choose a multiset of 

size k from n types of elements is:



+ +( ) +( ) =
++ + + +

Polynomials Express
Choices and Outcomes

Products of Sum = Sums of Products



b2 b3b1

t1 t2 t1 t2 t1 t2

b1t1 b1t2 b2t1 b2t2 b3t1 b3t2

(b1+b2+b3)(t1+t2) = b1t1 b1t2 b2t1 b2t2 b3t1 b3t2+ + + + +



There is a 
correspondence between 
paths in a choice tree and 

the cross terms of the 
product of polynomials!



1 X 1 X1 X 1 X

1 X 1 X

1 X

1 X X X2 X X2 X2 X3

Choice Tree for Terms of (1+X)3

Combine like terms to get 1 + 3X + 3X2 + X3



What is a Closed Form 
Expression For ck?

(1+X)n = c0 + c1X + c2X2 + … + cnXn

(1+X)(1+X)(1+X)(1+X)…(1+X)

After multiplying things out, but before 
combining like terms, we get 2n cross terms, 
each corresponding to a path in the choice tree

ck, the coefficient of Xk, is the number of 
paths with exactly k X’s n

k
ck = 



binomial 
expression

Binomial Coefficients

The Binomial Formula

n
1

(1+X)n =
n
0

X0 + X1 +…+
n
n

Xn



The Binomial Formula

(1+X)0 =

(1+X)1 =

(1+X)2 =

(1+X)3 =

(1+X)4 =

1

1 + 1X

1 + 2X + 1X2

1 + 3X + 3X2 + 1X3

1 + 4X + 6X2 + 4X3 + 1X4



n
1

(X+Y)n =
n
0

XnY0 + Xn-1Y1

+…+
n
n

X0Yn

The Binomial Formula

+…+
n
k

Xn-kYk



The Binomial Formula

(X+Y)n =
n
k

Xn-kYk∑
k = 0

n



5!

What is the 
coefficient of EMSTY 
in the expansion of

(E + M + S + T + Y)5?



What is the 
coefficient of EMS3TY 

in the expansion of
(E + M + S + T + Y)7?

The number of ways 
to rearrange the 

letters in the word 
SYSTEMS



What is the 
coefficient of BA3N2

in the expansion of
(B + A + N)6?

The number of ways 
to rearrange the 

letters in the word 
BANANA



What is the coefficient 
of (X1

r1X2
r2…Xk

rk)
in the expansion of
(X1+X2+X3+…+Xk)n?

n!

r1!r2!...rk!



There is much, much 
more to be said 

about how 
polynomials encode 
counting questions!



Inclusion-Exclusion

Counting Poker Hands

Number of rearrangements

Pirates and Gold
Counting Multisets

Binomial Formula

Here’s What 
You Need to 

Know…


