15-251

Great Theoretical Ideas in Computer Science

Ancient Wisdom: Unary and Binary

Lecture 5 (September 11, 2007)

Prehistoric Unary

- 1 ()
- 2
- 3
- 4

Consider the problem of finding a formula for the sum of the first n numbers

You already used induction to verify that the answer is ½n(n+1)

$$1 + 2 + 3 + ... + n-1 + n = S$$

$$n + n-1 + n-2 + ... + 2 + 1 = S$$

$$n+1 + n+1 + n+1 + ... + n+1 + n+1 = 2S$$

$$n(n+1) = 2S$$

$$S = \frac{n(n+1)}{2}$$

Here is an alternative dot proof of the same sum....

Area of square =
$$(\Delta_n)^2$$

$$\Delta_{n-1}$$

$$\Delta_{n-1}$$

$$\Delta_n$$

$$\Delta_n$$

$$(\Delta_{\mathbf{n}})^2 = \mathbf{n}^3 + (\Delta_{\mathbf{n-1}})^2$$

$$= \mathbf{n}^3 + (\mathbf{n-1})^3 + (\Delta_{\mathbf{n-2}})^2$$

$$= \mathbf{n}^3 + (\mathbf{n-1})^3 + (\mathbf{n-2})^3 + (\Delta_{\mathbf{n-3}})^2$$

$$= \mathbf{n}^3 + (\mathbf{n-1})^3 + (\mathbf{n-2})^3 + \dots + 1^3$$

Rhind Papyrus
Scribe Ahmes was Martin Gardener of his day!

A man has 7 houses, Each house contains 7 cats, Each cat has killed 7 mice, Each mouse had eaten 7 ears of spelt, Each ear had 7 grains on it. What is the total of all of these?

Sum of powers of 7

A Frequently Arising Calculation

$$(X-1) (1 + X^{1} + X^{2} + X^{3} + ... + X^{n-2} + X^{n-1})$$

$$= X^{1} + X^{2} + X^{3} + ... + X^{n-1} + X^{n}$$

$$- 1 - X^{1} - X^{2} - X^{3} - ... - X^{n-2} - X^{n-1}$$

$$= X^{n} - 1$$

$$1 + X^{1} + X^{2} + X^{3} + ... + X^{n-2} + X^{n-1} = \frac{X^{n} - 1}{X - 1}$$
(when $x \neq 1$)

Geometric Series for X=2

$$1 + 2^1 + 2^2 + 2^3 + ... + 2^{n-1} = 2^n - 1$$

$$1 + X^{1} + X^{2} + X^{3} + ... + X^{n-2} + X^{n-1} = \frac{X^{n} - 1}{X - 1}$$
(when $x \neq 1$)

BASE X Representation

S =
$$a_{n-1}$$
 a_{n-2} ... a_1 a_0 represents the number:
 a_{n-1} X^{n-1} + a_{n-2} X^{n-2} + ... + a_0 X^0

Base 2 [Binary Notation]

101 represents: $1(2)^2 + 0(2^1) + 1(2^0)$

= 00000

Base 7

015 represents: $0(7)^2 + 1(7^1) + 5(7^0)$

Bases In Different Cultures

Sumerian-Babylonian: 10, 60, 360

Egyptians: 3, 7, 10, 60

Maya: 20 Africans: 5, 10 French: 10, 20 English: 10, 12, 20

BASE X Representation

S = ($a_{n-1} a_{n-2} ... a_1 a_0$)_X represents the number:

$$a_{n-1} X^{n-1} + a_{n-2} X^{n-2} + \ldots + a_0 X^0$$

Largest number representable in base-X with n "digits"

$$= (X-1 X-1 X-1 X-1 X-1 ... X-1)_X$$

=
$$(X-1)(X^{n-1} + X^{n-2} + ... + X^0)$$

$$= (X^n - 1)$$

Fundamental Theorem For Binary

Each of the numbers from 0 to 2ⁿ⁻¹ is uniquely represented by an n-bit number in binary

k uses $\lfloor \log_2 k \rfloor + 1$ digits in base 2

Fundamental Theorem For Base-X

Each of the numbers from 0 to Xⁿ⁻¹ is uniquely represented by an n-"digit" number in base X

k uses L log_xk J + 1 digits in base X

Other Representations: Egyptian Base 3

Conventional Base 3: Each digit can be 0, 1, or 2 Here is a strange new one: Egyptian Base 3 uses -1, 0, 1

Example: 1 - 1 - 1 = 9 - 3 - 1 = 5

We can prove a unique representation theorem

Here's What You Need to Know...

Unary and Binary Triangular Numbers Dot proofs

$$(1+x+x^2+...+x^{n-1})=(x^n-1)/(x-1)$$

Base-X representations k uses $\lfloor \log_2 k \rfloor + 1 = \lceil \log_2 (k+1) \rceil$ digits in base 2