15-213 Gremlin

Intro to Race Conditions
&
The Shell Lab




What is the Gremlin?

e A Rall '06 Exam 2 Problem

® [ests race conditions

e Jests understanding of basic unix system
calls.

e Jests understanding of process groups
receiving signals.

e Turned out to be less straight-foreword
than intended.




Intro Unix System Calls

e System Calls
e pid_t fork();
e Creates child process.
e Parent returns pid_t of child. Child returns O.
e Non-positive on error.
e void kill(pid_t pid, int sig);
e Sends sig to pid if pid > 0.

e Otherwise sends to every process in process
group.




Intro System Calls (Cont)

e sighandler_t signal(int signum, sighandler_t handler);
e typedef void (*sighandler_t)(int);
e Registers function handler to be called when process
receives sighum signal.
e pid_t setpgid(pid_t pid, pid_t pgid);
e Set group id of pid to pgid.
e If pid==pgid==0 then put the current process in a
new group where its gid = its pid.
e void exit(int status)
e Exit from program with exit status as status.




What does this program output?

intval = 3; int main()

{

void Exit(int val) int pid;

{ signal(SIGUSR1, usri_handler);
printf("%d", val); if ((pid = fork()) == 0)
exit(0); {

) setpgid(0, 0);

if (fork())

void usrl_handler(int sig) Exit(val + 1);
{ else

Exit(val); \ Exit(val - 1);
J
Kill(-pid, SIGUSR1);
y




How many outputs did you find?

e Basic Control Flow: Grandehild

e Output is unpredictable Child
Ny
because of two race | SIGUSR1
. Yarent
conditions

e Cannot predict order the child and grandchild will be
scheduled for execution.

e Cannot predict when they can receive the SIGUSR1
signal.

e Side Note: The picture is wrong, the grandchild

exits with status 2, and the child with status 4.




Let’s start with the basics.

Receives Signal Before First Child Forks

Children exit before signal sent.

Children exit before signal sent. (note unpredictability between
the second child and first in scheduling)

One child finishes before the other receives a signal.

One child finishes before the other receives a signal.

Child forks grandchild, but parent sends kill before they exit.

Grandchild

e [s that all? o

N
SIGUSR1
Parent




What about Exit()?

e Can't the children
receive the signal
after the printf but
before the exit?

void Exit(int val)

{
printf("%d", val);
exit(0);

¥

2433

Both child & grandchild
printf before receiving
sigusrl

Same as 2433

One child exits and the
other receives the
sigusrl signal after the
printf.

423

Same as 243

233

One child finishes printf
before receiving sigusrl.

433

Same as 233

Disclaimer: "Same as” implies reversing roles of child and grandchild.




Are we missing any?

e Some highly unlikely results since the unix specification
does not guarantee timely receipt of signals.
e Unix based systems probably update all jobs during the

same loop of the queue.

e Disclaimer: Unless you're on a multi-processor machine! Then it
is more likely to receive the signal at different times.

32 Child receives sigusrl | Here child receives 323
before grandparent sigusrl before printf
which exits normally. |and grandchild.

Same as 32 Same as 323

Grandchild receives Here both receive
signal after printf, but |signals after printf,
child exits cleanly. but child after gchild.

Same as 234. Same as 2343




Whoa... Did we get them all?

Not exactly.
Many system calls can fail.
e Make note we take points off for any system calls in the shell lab if you
ignore failure.
Are you telling me that exit()/kill() can fail?
e Of course not. They don’t even have return values.
e But kill may not do anything without correct permissions or if the
provided process does not exist.
Setpgid()?
e If permission and the process exists, it should run deterministically.
And fork()?

e Absolutley. Eventually there will no longer be enough resource available
to allocate to a new process.

e This yields to two new potential cases one of blank output, and one of
only the child outputting (i.e. *“ or "4”)




The Shell Lab - Tips

® Dog is man’s best friend.
e Man is your best friend.

e In a unix shell try:
e man fork
e man exit (oops that’s not the right one is it?)
® man 2 exit (view the second entry for exit)

e This is a powerful tool that will help
tremendously in the next three labs.

e Use it wisely; Use it all the time.




Provided Framework

e Main() sets up shell by initializing the job queue
and waiting for shell input.
e After a line of text is received it calls eval().

e Provided eval() code calls the line parser and
lets you focus on how to do the fork()ing and
exec()ing.

e Make use of the provided job framework to
make your life easier.

e Keep an eye, ear, and foot out for race
conditions. They're tricky to find.




I'm stuck!?

Read the handout.

Read the provided code.

Print your code and circle things you don’t understand.
Query your best friend. (i.e. man)

Wipe the dust off your Systems Programming book.
Run your shell interactively before running traces.
Seek peers for general unix help.

Test Hypotheses.

Try the autolab message boards (I'd bet someone else
has had the same question!)

In final desperate times, search out yourieast favorite
TA.




Sources

e Shell Lab (did you start?)

® The 213 Gremlin

e Author: Tudor Dumitras

e http://www.ece.cmu.edu/~tdumitra/gremlin/213 gremlin.htm

e Note there are minor errors on the webpage. I hope that all of
them have been fixed in these slides.

® Your Intro to Systems text book.
e | astly, thank Nate for the slides!




