
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

15-213 Recitation
Synchronization

Your TAs

Friday, July 25th

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reminders
■ proxylab due July 29th

○ Last Day to Handin: July 31st

■ sfslab due August 1st

○ Last Day to Handin: August 1st

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Agenda
■ Review:

○ Threading

○ Synchronization Errors

○ Locking

■ Activity: Making Grow Only Trees Thread-Safe

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threading

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Proxies and Threads
■ Network connections can be handled concurrently

○ Three approaches were discussed in lecture for doing so

■ Process-based, Event-based, Thread-based

○ Your proxy should (eventually) use threads

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Threads
■ Each thread has its own logical control flow

■ Each thread shares same code, data, and kernel context

■ Each thread also has its own stack for local variables

○ NOT protected from other threads - all memory is shared

■ POSIX Threads

○ pthread_create: starts a new thread

○ pthread_join: waits for specified thread to terminate

○ pthread_detach: marks specified thread as detached,

where detached threads are cleaned-up without needing

to be joined by a peer thread.

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Unsafe threading
#define NUM_THREADS 2; #define BUFFER_SIZE 50

void* print_message(void* arg) {...};

int main() {
pthread_t threads[NUM_THREADS];
char message[BUFFER_SIZE];
for (int i = 0; i < NUM_THREADS; i++) {

pthread_create(&threads[i], NULL, print_message, (void*)message);
}
for (int i = 0; i < NUM_THREADS; i++) {

pthread_join(threads[i], NULL);
}
return 0;

}

We launch 2 threads that
each call

print_message,
passing in a shared

constant length array

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Unsafe threading
#define NUM_THREADS 2; #define BUFFER_SIZE 50

void* print_message(void* arg) {
char* local_message = (char*)arg;
snprintf(local_message, BUFFER_SIZE, "Hello from thread %d",

pthread_self());
printf("%s\n", local_message);
return NULL;

}

int main() {
// ... launch threads that call print_message()

}

Stores string with thread id into
local_message buffer

Now let’s see how our threads interact with
print_message,assuming thread 1 runs first

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Unsafe threading
#define NUM_THREADS 2; #define BUFFER_SIZE 50

void* print_message(void* arg) {
char* local_message = (char*)arg;
snprintf(local_message, BUFFER_SIZE, "Hello from thread %d",

pthread_self());
printf("%s\n", local_message);
return NULL;

}

int main() {
// ... launch threads that call print_message()

}

Thread 1 finishes snprintf

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Unsafe threading
#define NUM_THREADS 2; #define BUFFER_SIZE 50

void* print_message(void* arg) {
char* local_message = (char*)arg;
snprintf(local_message, BUFFER_SIZE, "Hello from thread %d",

pthread_self());
printf("%s\n", local_message);
return NULL;

}

int main() {
// ... launch threads that call print_message()

}

Thread 1 Paused

Thread 2 Starts

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Unsafe threading
#define NUM_THREADS 2; #define BUFFER_SIZE 50

void* print_message(void* arg) {
char* local_message = (char*)arg;
snprintf(local_message, BUFFER_SIZE, "Hello from thread %d",

pthread_self());
printf("%s\n", local_message);
return NULL;

}

int main() {
// ... launch threads that call print_message()

}

Thread 1 PausedThread 2 Overwrites

Note: each local message
points to the same buffer!

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Unsafe threading
#define NUM_THREADS 2; #define BUFFER_SIZE 50

void* print_message(void* arg) {
char* local_message = (char*)arg;
snprintf(local_message, BUFFER_SIZE, "Hello from thread %d",

pthread_self());
printf("%s\n", local_message);
return NULL;

}

int main() {
// ... launch threads that call print_message()

}

Thread 1 prints… Thread 2 Paused

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Unsafe threading
#define NUM_THREADS 2; #define BUFFER_SIZE 50

void* print_message(void* arg) {
char* local_message = (char*)arg;
snprintf(local_message, BUFFER_SIZE, "Hello from thread %d",

pthread_self());
printf("%s\n", local_message);
return NULL;

}

int main() {
// ... launch threads that call print_message()

}

Unexpected Behavior!

Various other unsafe scenarios can
occur! This is only one example.

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Classical Problems in Concurrency
■ Deadlock

○ Two or more threads are unable to proceed because each

is waiting for a resource that the other holds.

■ Livelock

○ Two or more threads continuously change their state in

response to each other - but with no further progress.

■ Starvation

○ One of more threads continuously denied access to

resources because other threads holds them.

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronizing With Locks - Deadlock

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Scenario: Hold and wait
Thread T0 needs to acquire both R0 and R2 to proceed.

T0 T1

R0 R2

Dotted lines indicate the
thread is attempting to

acquire the lock
Green lines indicate the
thread has acquired the

lock

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Scenario: Hold and wait
T0 waits on R2 to be released. When can T0 proceed?

T0 T1

R0 R2

Only once T1 releases
lock R2… Will this

always happen?

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Scenario: Circular wait
T0 and T1 try to acquire R0 and R1.

T0 T1

R0 R2

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Scenario: Circular wait
T0 and T1 acquire the respective resources!

T0 T1

R0 R2

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Scenario: Circular wait
But both need the other resource as well before proceeding. How

do we end up here?

T0 T1

R0 R2

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Circular wait

Thread 0

lock(&R1)
lock(&R2)

// critical section

unlock(&R2)
unlock(&R1)

Thread 1

lock(&R2)
lock(&R1)

// critical section

unlock(&R1)
unlock(&R2)

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Circular wait

Thread 0 (running)

lock(&R1)
lock(&R2)

// critical section

unlock(&R2)
unlock(&R1)

Thread 1

lock(&R2)
lock(&R1)

// critical section

unlock(&R1)
unlock(&R2)

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Circular wait

Thread 0

lock(&R1)
lock(&R2)

// critical section

unlock(&R2)
unlock(&R1)

Thread 1 (running)

lock(&R2)
lock(&R1)

// critical section

unlock(&R1)
unlock(&R2)

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Circular wait

Thread 0 (running)

lock(&R1)
lock(&R2)

// critical section

unlock(&R2)
unlock(&R1)

Thread 1

lock(&R2)
lock(&R1)

// critical section

unlock(&R1)
unlock(&R2)

Stalled!

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Circular wait

Thread 0

lock(&R1)
lock(&R2)

// critical section

unlock(&R2)
unlock(&R1)

Thread 1 (running)

lock(&R2)
lock(&R1)

// critical section

unlock(&R1)
unlock(&R2)

Use consistent lock orderings!■ How can we avoid deadlock?

Stalled! Stalled!

■ What situation are we in? Deadlock

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronization

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locking
■ We saw that all memory is shared across threads - how can

we prevent unsafe behavior?

■ There are various locks, including mutexes, semaphores, etc…

■ We’ll focus on using mutexes.

○ Use Locks! (But correctly…)

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Mutexes
■ Opaque object which is either locked or unlocked.

■ unlock(m)
○ Should only be called when m is locked, by the locker

○ Changes m’s state to unlocked

■ lock(m)
○ If m is not locked, lock it and return

○ If locked, wait until m is unlocked, then retry

■ Now we’re prepared for our activity!

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity: Thread-Safe Binary
Grow-Only Trees

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Problem
■ We want to create an implementation of BSTs that supports

concurrent execution across multiple threads.

■ We provide code that works correctly for sequential accesses!

■ The tree structure only supports an insert operation.

■ Note that this BST does not support lookup or removal.

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Starter Code: Thread Safe Trees
■ Standard tree node struct that stores the value as well as it’s left

and right children.

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Trace
■ Suppose we want to do insert(8) and insert(12)

using two different threads on the tree below.

■ Do we observe any racy behavior?

10

Original Tree

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Trace
■ Thread 1 enters the “left

case” and finds that

t->left = NULL

■ Thread 2 enters the

“right case” and finds

that t->right = NULL

■ Both proceed to create

the new nodes.

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Trace
■ We only get one resultant tree!

10

128

■ We observed no race - there is only one possible tree.

■ Is this always the case? Does this mean our code is race free?

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity 1: Identify the Race
■ Suppose we want to do insert(8) and insert(7) using

two different threads on the tree below.

■ Get into groups of 3-4 and try to identify the various possible

outcomes. Draw out the possible resulting trees!

10

Original Tree

10

8

7

One Possible (correct) Tree

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Identifying Race Condition
■ Thread 1 sees that t->left == NULL and prepares to

create the node (eg. call calloc)

10 Thread 1 prepares to
create node

Relevant Case:

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Identifying Race Condition
■ We then jump to thread 2, which also sees that

t->left == NULL and prepares to create the node

10

Thread 1 prepares to
create node

Thread 2 prepares to
create node

Relevant Case:

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Identifying Race Condition
■ Now thread 1 continues to run, creating the left node with

val = 8

10

Thread 1 creates
node

Thread 2 prepares to
create node

8

■ However from thread 2’s perspective, t->left is NULL!

○ The check has already occurred.

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Identifying Race Condition
■ Now thread 2 also attempts to create a new left node, losing

the node written by thread 1

10

Thread 2 overwrites 7

■ Unsafe behavior!

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Did The Race Occur?
■ What is the shared resource in this scenario?

○ The root of the tree - more specifically the left node field

○ Both threads attempt a NULL check on the left child,

which is unsafe (TOCTTOU)

Disclaimer: We want to create a locking design that is thread-safe

in all scenarios!

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity 1: Creating a Simple Lock Design
■ Good practice for designing + implementing a concurrent

system is to start simple and then add levels of complexity

■ What is an example of a simple design?

○ Using a single mutex to lock the entire tree!

■ Get into groups of 3-4 and try to implement a coarse grain

locking design that makes our tree structure thread-safe!

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solution 1: Coarse Grain Locking
■ It is unsafe to have multiple threads accessing the tree at once

○ Let’s lock away the entire tree!

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity 2: Coarse Grain Analysis
■ Now that we have a locking design, let’s revisit the concurrent

insert(7) and insert(8).

■ Try to trace out an execution order of these instructions.

What do you observe?

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Revisiting Example
■ Suppose thread 1 runs first.

10 Thread 1 acquires
the global lock

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Revisiting Example
■ Now suppose thread 2 runs.

10

Thread 1 has the lock

Thread 2 attempts to
acquire the lock

Thread 2 fails to acquire the lock! It must
wait for thread 1 to drop the lock first.

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Revisiting Example
■ Now thread 1 continues to run, creating the left node with

val = 8

10

Thread 1 creates
node

Thread 2 waits for the lock to
be dropped

8

■ Note that thread 2 knows nothing about t->left; it has not

entered the insert routine.

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Revisiting Example
■ Thread 1 completes, and now thread 2 runs!

10

Thread 1 drops the
lock after inserting

Thread 2 acquires the lock
and starts inserting

8

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Revisiting Example
■ Thread 2 continues inserting and now it sees the changes that

thread 1 has made to root->left

Thread 2 completes
insert and drops lock

10

8

7

■ Now we have a correct tree!

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Analysis: Coarse Grain Locking

Node 1 Node 2 Node 3Thread 1 Idle Idle Idle

Idle Idle IdleThread 2 Node 1 Node 2 Node 3

■ Looking at another example, assuming each thread’s call takes 3

iterations through the tree, we can see the following behavior!

■ Wrapping each function call in locks makes all execution

sequential - as we saw in the previous example.

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity 3: Tracing for Ideal Behavior
■ Our original goal was to design a concurrent program -

however, all of our accesses are sequential.

■ Can we use our threads more effectively? Let’s examine

example traces to observe potential parallelism and whether

it is utilized!

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity 3: Tracing for Ideal Behavior
■ Consider the following tree:

6

4 8

■ Try tracing out the behavior of these 2 scenarios:

○ insert(2), insert(3) in parallel

○ insert(3), insert(9) in parallel

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity 3: Tracing for Ideal Behavior
■ Recall the first example, where a lock was not required to

ensure correct behavior. Can we find other similar scenarios?

■ insert(2), insert(3)access the left field of node 4,

meaning the accesses must be protected (TOCTTOU issue)

○ This is similar to our first racy trace!

■ insert(3), insert(9)access different branches, which

means consequent checks are independent - no race will occur

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity 3: Tracing for Ideal Behavior
■ insert(2), insert(3)must be protected, so they must

run sequentially with respect to each other

○ Hint: How can we use locks to enforce this ordering?

■ What about insert(3), insert(9)? Do these

operations also require sequential ordering?

○ No! (Hint: How might this be reflected in our lock design?)

■ Can we put this all together to create a non-sequentially

ordered locking mechanism?

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Discussion: Reducing Shared Resource Size
■ The previous examples showed us there is parallelism in the

branches. What is a simple design that reveals branch

independence?

○ Use two global locks to protect each branch!

■ Does this design always perform better than the coarse grain

locking design? Think about varying tree structures.

○ Balanced trees result in good concurrency

○ If all nodes are in one branch, we still run serially…

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Discussion: Reducing Shared Resource Size
■ We’ve successfully reduced the size of our shared resources,

consequently reducing our critical section.

■ However, we also found some cases don’t perform well… Can

we do better?

○ In other words, can we further reduce the size of our

shared resource?

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity 4: Fine Grain Locking
■ As groups, brainstorm a locking design that is thread-safe, but is

not always sequentially ordered.

○ Use mutexes [you may modify the struct :)]

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solution 4: Fine Grain locking
■ We can implement per-node locking. This ensures no two

threads will try to simultaneously update the same node.

■ We can adjust the node struct to include a lock (shown below)

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Fine Grain locking
■ Let’s consider the insert(3), insert(9) in parallel case.

6

4 8

Original Tree

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Fine Grain locking
■ Suppose thread 1 runs first (insert(3)):

6

4 8

Thread 1 acquires
the node 6 lock

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Fine Grain locking
■ Now suppose thread 2 runs (insert(9)):

6

4 8

Thread 1 has the
node 6 lock

Thread 2 attempts to
acquire the lock

Thread 2 must wait!

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Fine Grain locking
■ Now thread 1 continues:

6

4 8Thread 1 acquires node
4 lock and drops node 6

lock

Thread 2 attempts to
acquire the lock

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Fine Grain locking
■ But wait, thread 2 can now make progress!

6

4 8Thread 1 has node 4
lock and can continue

Thread 2 acquires node
6 lock

■ Note: Since there is no need for thread 2 to wait for thread 1, it

is possible for the threads to run concurrently

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Fine Grain locking
■ Both threads can concurrently run to completion!

6

4 8

Thread 1 has node 4
lock and inserts

Thread 2 acquires node
8 lock and inserts

3 9

Carnegie Mellon

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Analysis: Solution 4
■ How does fine-grain locking help? Let’s return to the figure

from before!

○ Again, we assume each thread makes 3 iterations

Node 1 Node 2 Node 3Thread 1 Idle

Idle Node1 Node2Thread 2 Node 3

■ Nice! We managed to expose the potential concurrency in these

iterations

Carnegie Mellon

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Analysis: Solution 4
■ In our first coarse-grain solution, any lock protected the entire

tree - creating a large critical section. What about this solution?

■ Drastic Reduction!

○ We now only block off one node access at a time (as

pointed to by the previous diagram)

■ A more detailed analysis of parallelism and locking is beyond

the scope of 15-213 - look into 15-346 / 15-410 / 15-418!

Carnegie Mellon

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The End

