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Reminders
m proxylab due July 29th

o Last Day to Handin: July 31st
m sfslab due August 1st

o Last Day to Handin: August 1st
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Agenda

m Review:
o Threading
o Synchronization Errors
o Locking

m Activity: Making Grow Only Trees Thread-Safe
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Threading
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Proxies and Threads
m Network connections can be handled concurrently
o Three approaches were discussed in lecture for doing so
m Process-based, Event-based, Thread-based

o Your proxy should (eventually) use threads
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Review: Threads

m Each thread has its own logical control flow

m Each thread shares same code, data, and kernel context
m Each thread also has its own stack for local variables

o NOT protected from other threads - all memory is shared

m POSIX Threads
o pthread create: starts a new thread
o pthread join: waits for specified thread to terminate
o pthread detach: marks specified thread as detached,
where detached threads are cleaned-up without needing

to be joined by a peer thread.
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Example: Unsafe threading

#define NUM THREADS 2; #define BUFFER SIZE 50

void* print message(void* arg) {...};
We launch 2 threads that
e L _ each call
print message,
pthread t threads[NUM THREADS] ; .=
— - passing in a shared
char message[BUFFER SIZE];

constant length array

for (int i = 0; i < NUM THREADS; i++) ({

pthread create(&threads[i], NULL, print message, (void*)message)

}

for (int i = 0; i < NUM THREADS; i++) {
pthread join(threads[i], NULL);

}

return 0;
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Example: Unsafe threading

#define NUM THREADS 2; #define BUFFER SIZE 50

Stores string with thread id into

void* print message (void* arg) { local message buffer

char* local message = (char¥*)arg;

snprintf (local message, BUFFER SIZE, "Hello from thread %d",
pthread self());

printf ("$s\n", local message);

return NULL;

int main() {
// ... launch threads that call print message()

Now let’s see how our threads interact with
print message,assuming thread 1 runs first
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Example: Unsafe threading

#define NUM THREADS 2; #define BUFFER SIZE 50
void* print message (void* arg) ({

char* local message = (char¥*)arg;
snprintf (local message, BUFFER SIZE, "Hello from thread %d",

pthread self()); — :
printf ("$s\n", local message) ; Thread 1 finishes snprintf

return NULL;

int main() {
// ... launch threads that call print message ()
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Example: Unsafe threading

#define NUM THREADS 2; #define BUFFER SIZE 50

void* print message (void* arg) ({
char* local message = (char¥*)arg;
snprintf (local message, BUFFER SIZE, "Hello from thread %d",

pthread self());
printf ("$s\n", local message) ; Thread 1 Paused

return NULL;

int main() {
// ... launch threads that call print message ()
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Example: Unsafe threading

#define NUM THREADS 2; #define BUFFER SIZE 50

void* print message (void* arg) ({
char* local message = (char¥*)arg;
snprintf (local message, BUFFER SIZE, "Hello from thread %d",

pthread self());
printf ("$s\n", local message) ; Thread 1 Paused

return NULL;

int main() {
// ... launch threads that call print message ()

Note: each local message
points to the same buffer!
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Example: Unsafe threading

#define NUM THREADS 2; #define BUFFER SIZE 50

void* print message (void* arg) ({
char* local message = (char¥*)arg;
snprintf (local message, BUFFER SIZE, "Hello from thread %d",

pthread self());
printf("%s\n", local message); Thread 1 prints... <
return NULL;

int main() {
// ... launch threads that call print message ()
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Example: Unsafe threading

#define NUM THREADS 2; #define BUFFER SIZE 50

void* print message (void* arg) ({
char* local message = (char¥*)arg;
snprintf (local message, BUFFER SIZE, "Hello from thread %d",

pthread self());
printf ("$s\n", local message); Unexpected Behavior!
return NULL;

int main() {
// ... launch threads that call print message ()

Various other unsafe scenarios can
occur! This is only one example.
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Classical Problems in Concurrency
m Deadlock
o Two or more threads are unable to proceed because each

is waiting for a resource that the other holds.

m Livelock
o Two or more threads continuously change their state in
response to each other - but with no further progress.
m Starvation
o One of more threads continuously denied access to

resources because other threads holds them.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14



Carnegie Mellon

Synchronizing With Locks - Deadlock
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Scenario: Hold and wait
Thread TO needs to acquire both RO and R2 to proceed.

Dotted lines indicate the *

thread is attempting to Green lines indicate the
acquire the lock - thread has acquired the
lock

RO R2
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Scenario: Hold and wait

TO waits on R2 to be released. When can TO proceed?

T.. * Only once T1 releases
. lock R2... Will this
. always happen?

2

RO R2
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Scenario: Circular wait
TO and T1 try to acquire RO and R1.

RO
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Scenario: Circular wait

TO and T1 acquire the respective resources!

RO
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Scenario: Circular wait
But both need the other resource as well before proceeding. How

do we end up here?
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Circular wait

Thread O Thread 1

lock (&R1) lock (&R2)

lock (&R2) lock (&R1)

// critical section // critical section
unlock (&R2) unlock (&R1)

unlock (&R1) unlock (&R2)
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Circular wait

Thread 0 (running) Thread 1
m) lock (&R1) lock (&R2)
lock (&R2) lock (&R1)
// critical section // critical section
unlock (&R2) unlock (&R1)

unlock (&R1) unlock (&R2)
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Circular wait

Thread 0 Thread 1 (running)
lock (&R1) m) lock (&R2)

lock (&R2) lock (&R1)

// critical section // critical section
unlock (&R2) unlock (&R1)

unlock (&R1) unlock (&R2)
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Circular wait

Thread 0 (running) Thread 1
lock (&R1) lock (&R2)
» lock (&R2) lock (&R1)
Stalled!
/[ I——xsaxcxcax—section // critical section
unlock (&R2) unlock (&R1)

unlock (&R1) unlock (&R2)
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Circular wait

Thread 0 Thread 1 (running)
lock (&R1) lock (&R2)

lock (&R2) mp lock (&R1)

Stalled! Stalled!

/ ——cxcxcax—section // critical section
unlock (&R2) unlock (&R1)

unlock (&R1) unlock (&R2)

m What situation are we in? Deadlock

m How can we avoid deadlock? Use consistent lock orderings!
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Synchronization
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Locking
m We saw that all memory is shared across threads - how can

we prevent unsafe behavior?

o Use Locks! (But correctly...)

m There are various locks, including mutexes, semaphores, etc...

m We’ll focus on using mutexes.
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Review: Mutexes

m Opaque object which is either locked or unlocked.

m lock (m)
o If mis not locked, lock it and return

o If locked, wait until m is unlocked, then retry

m unlock (m)
o Should only be called when mis locked, by the locker

o Changes m’s state to unlocked

m Now we’re prepared for our activity!
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Activity: Thread-Safe Binary
Grow-Only Trees
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The Problem

m We want to create an implementation of BSTs that supports
concurrent execution across multiple threads.

m We provide code that works correctly for sequential accesses!

m The tree structure only supports an insert operation.

m Note that this BST does not support lookup or removal.
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Starter Code: Thread Safe Trees

m Standard tree node struct that stores the value as well as it’s left

and right children.

int insert(node_t *t, int val){
if (t->val == val)
return -1;
else if(val < t->val){
if(t->left !'= NULL)
return insert(t->left, val);
struct node { t->left = calloc(1l, sizeof(node_t));
int val; t->left->val = val;
node_t *left; }
node_t *right; else if(val > t->val){

) if (t->right != NULL)

x return insert(t->right, val);
t->right = calloc(1l, sizeof(node_t));
t->right->val = val;

}

return 1;
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Example Trace
m Suppose we wanttodo insert (8) and insert (12)

using two different threads on the tree below.

m Do we observe any racy behavior?

Original Tree
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Example Trace

m Thread 1 enters the “left

int insert(node_t *t, int val){

case” and finds that if (t->val == yal)
return -1;
t->left = NULL else if(val < t->val){

if (t->left != NULL)
return insert(t->left, val);

m Thread 2 enters the t->left = calloc(l, sizeof(nods_t));
t->left->val = val;
“right case” and finds 3 .
else if(val > t->val){
if (t->right != NULL)
that t—>r:|.ght = NULL return insert(t->right, val);
t->right = calloc(1l, sizeof(node_t));
t->right->val = val;

m Both proceed to create 5

return 1;

the new nodes. }
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Example Trace

m We only get one resultant tree!

m We observed no race - there is only one possible tree.

m Is this always the case? Does this mean our code is race free?
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Activity 1: Identify the Race

m Suppose we wanttodo insert (8) and insert (7) using

two different threads on the tree below.

m Get into groups of 3-4 and try to identify the various possible

outcomes. Draw out the possible resulting trees!

Original Tree
One Possible (correct) Tree
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Identifying Race Condition
m Thread 1 sees that t->1left == NULL and prepares to

create the node (eg. call calloc)

Thread 1 prepares to

create node

else if(val < t->val){
if(t->left !'= NULL)
return insert(t->left, val);
t->left = calloc(1l, sizeof (node_t));
t->left->val = val;

Relevant Case:

}
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Identifying Race Condition

m We then jump to thread 2, which also sees that

t->left == NULL and prepares to create the node

Thread 1 prepares to

‘ create node

else if(val < t->val){
if(t->left !'= NULL)
return insert(t->left, val);
t->left = calloc(1l, sizeof (node_t));
t->left->val = val;

Relevant Case:

}
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Identifying Race Condition
m Now thread 1 continues to run, creating the left node with

val = 8

Thread 1 creates
node

m However from thread 2’s perspective, t->1eft is NULL!

o The check has already occurred.
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Identifying Race Condition
m Now thread 2 also attempts to create a new left node, losing

the node written by thread 1

0°

m Unsafe behavior!
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Why Did The Race Occur?

m What is the shared resource in this scenario?
o The root of the tree - more specifically the left node field
o Both threads attempt a NULL check on the left child,
which is unsafe (TOCTTOU)

Disclaimer: We want to create a locking design that is thread-safe

in all scenarios!
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Activity 1: Creating a Simple Lock Design
m Good practice for designing + implementing a concurrent
system is to start simple and then add levels of complexity
m What is an example of a simple design?
o Using a single mutex to lock the entire tree!
m Getinto groups of 3-4 and try to implement a coarse grain

locking design that makes our tree structure thread-safe!
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Solution 1: Coarse Grain Locking

m Itis unsafe to have multiple threads accessing the tree at once

o Let’s lock away the entire tree!

static pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

int safe_insert(node_t *t, int val){
lock(&m) ;
insert(t,val);
unlock (&m) ;
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Activity 2: Coarse Grain Analysis

m Now that we have a locking design, let’s revisit the concurrent
insert(7) and insert (8).

m Tryto trace out an execution order of these instructions.

What do you observe?
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Revisiting Example

m Suppose thread 1 runs first.

Thread 1 acquires

the global lock
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Revisiting Example

m Now suppose thread 2 runs.

‘ Thread 1 has the lock

Thread 2 fails to acquire the lock! It must
wait for thread 1 to drop the lock first.
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Revisiting Example
m Now thread 1 continues to run, creating the left node with

val = 8

Thread 1 creates
node

m Note that thread 2 knows nothing about t->1eft; it has not

entered the insert routine.
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Revisiting Example

m Thread 1 completes, and now thread 2 runs!

‘0<

Thread 1 drops the
lock after inserting
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Revisiting Example
m Thread 2 continues inserting and now it sees the changes that

thread 1 has made to root->left

m Now we have a correct tree!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48



Carnegie Mellon

Analysis: Coarse Grain Locking

m Wrapping each function call in locks makes all execution

sequential - as we saw in the previous example.

m Looking at another example, assuming each thread’s call takes 3

iterations through the tree, we can see the following behavior!

Thread 1 [Nodel}{ Nodez][ Node3][ Idle 1[ Idle M Idle ]

Thread 2 [ Idle M Idle ][ Idle ][ Nodel}[ Nodez}[ Node3]
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Activity 3: Tracing for Ideal Behavior

m Our original goal was to design a concurrent program -
however, all of our accesses are sequential.

m Can we use our threads more effectively? Let’s examine
example traces to observe potential parallelism and whether

it is utilized!
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Activity 3: Tracing for Ideal Behavior

m Consider the following tree:

m Try tracing out the behavior of these 2 scenarios:
0 insert(2), insert (3) in parallel

o insert(3), insert (9) in parallel
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Activity 3: Tracing for Ideal Behavior
m Recall the first example, where a lock was not required to

ensure correct behavior. Can we find other similar scenarios?

B insert(2), insert (3) access the left field of node 4,

meaning the accesses must be protected (TOCTTOU issue)
o This is similar to our first racy trace!

m insert(3), insert (9) access different branches, which

means consequent checks are independent - no race will occur
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Activity 3: Tracing for Ideal Behavior
m insert (2), insert (3) must be protected, so they must

run sequentially with respect to each other
o Hint: How can we use locks to enforce this ordering?

m What about insert (3), insert (9) ? Do these

operations also require sequential ordering?
o No! (Hint: How might this be reflected in our lock design?)

m Can we put this all together to create a non-sequentially

ordered locking mechanism?
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Discussion: Reducing Shared Resource Size
m The previous examples showed us there is parallelism in the
branches. What is a simple design that reveals branch
independence?
o Use two global locks to protect each branch!
m Does this design always perform better than the coarse grain
locking design? Think about varying tree structures.
o Balanced trees result in good concurrency

o If all nodes are in one branch, we still run serially...
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Discussion: Reducing Shared Resource Size

m We've successfully reduced the size of our shared resources,
consequently reducing our critical section.

m However, we also found some cases don’t perform well... Can

we do better?

o In other words, can we further reduce the size of our

shared resource?
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Activity 4: Fine Grain Locking
m As groups, brainstorm a locking design that is thread-safe, but is
not always sequentially ordered.

o Use mutexes [you may modify the struct :) ]

int insert(node_t *t, int val){
if (t->val == val)
return -1;
else if(val < t->val){

struct node { if(t->left != NULL)
return insert(t->left, val);

int val;
t->left = calloc(1l, sizeof(node_t));
node_t *left; t->left->val = val;
node_t *right; }
}; else if(val > t->val){

if (t->right != NULL)
return insert(t->right, val);
t->right = calloc(1l, sizeof(node_t));
t->right->val = val;
}

return 1;

}
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Solution 4: Fine Grain locking
m We can implement per-node locking. This ensures no two

threads will try to simultaneously update the same node.

m We can adjust the node struct to include a lock (shown below)

struct node {
int val;
node_t *left;
node_t *right;
pthread mutex_t m;
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Example: Fine Grain locking

m Let’s consider the insert (3), insert (9) in parallel case.

Original Tree
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Example: Fine Grain locking

m Suppose thread 1 runs first (insert (3)):

Thread 1 acquires
the node 6 lock
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Example: Fine Grain locking

m Now suppose thread 2 runs (insert (9)):

Thread 1 has the

node 6 lock

G ° Thread 2 must wait!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 61



Carnegie Mellon

Example: Fine Grain locking

m Now thread 1 continues:

Thread 1 acquires node
4 lock and drops node 6
lock
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Example: Fine Grain locking

m But wait, thread 2 can now make progress!

Thread 1 has node 4
lock and can continue

m Note: Since there is no need for thread 2 to wait for thread 1, it

is possible for the threads to run concurrently
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Example: Fine Grain locking

m Both threads can concurrently run to completion!

Thread 1 has node 4
lock and inserts
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Analysis: Solution 4
m How does fine-grain locking help? Let’s return to the figure
from before!

o Again, we assume each thread makes 3 iterations

Thread 1 { Node 1 H Node 2 }[ Node 3 M Idle ]

Thread 2 [ Idle M Nodel H Node2 H Node 3 }

m Nice! We managed to expose the potential concurrency in these

iterations

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 65



Carnegie Mellon

Analysis: Solution 4
m In our first coarse-grain solution, any lock protected the entire

tree - creating a large critical section. What about this solution?

m Drastic Reduction!

o We now only block off one node access at a time (as
pointed to by the previous diagram)
m A more detailed analysis of parallelism and locking is beyond

the scope of 15-213 - look into 15-346 / 15-410 / 15-418!
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The End
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