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Reminders
■ proxylab due July 29th

○ Last Day to Handin: July 31st

■ sfslab due August 1st

○ Last Day to Handin: August 1st
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Agenda
■ Review: 

○ Threading

○ Synchronization Errors

○ Locking

■ Activity: Making Grow Only Trees Thread-Safe
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Threading
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Proxies and Threads
■ Network connections can be handled concurrently

○ Three approaches were discussed in lecture for doing so

■ Process-based, Event-based, Thread-based

○ Your proxy should (eventually) use threads
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Review: Threads
■ Each thread has its own logical control flow

■ Each thread shares same code, data, and kernel context

■ Each thread also has its own stack for local variables

○ NOT protected from other threads - all memory is shared

■ POSIX Threads

○ pthread_create: starts a new thread

○ pthread_join: waits for specified thread to terminate

○ pthread_detach: marks specified thread as detached, 

where detached threads are cleaned-up without needing 

to be joined by a peer thread.
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Example: Unsafe threading
#define NUM_THREADS 2; #define BUFFER_SIZE 50

void* print_message(void* arg) {...};

int main() { 
pthread_t threads[NUM_THREADS]; 
char message[BUFFER_SIZE];
for (int i = 0; i < NUM_THREADS; i++) { 

pthread_create(&threads[i], NULL, print_message, (void*)message); 
} 
for (int i = 0; i < NUM_THREADS; i++) { 

pthread_join(threads[i], NULL); 
} 
return 0; 

}

We launch 2 threads that 
each call 

print_message, 
passing in a shared 

constant length array
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Example: Unsafe threading
#define NUM_THREADS 2; #define BUFFER_SIZE 50

void* print_message(void* arg) { 
char* local_message = (char*)arg;
snprintf(local_message, BUFFER_SIZE, "Hello from thread %d", 

pthread_self()); 
printf("%s\n", local_message); 
return NULL; 

} 

int main() { 
// ... launch threads that call print_message()

}

Stores string with thread id into 
local_message buffer

Now let’s see how our threads interact with 
print_message,assuming thread 1 runs first
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Example: Unsafe threading
#define NUM_THREADS 2; #define BUFFER_SIZE 50

void* print_message(void* arg) { 
char* local_message = (char*)arg;
snprintf(local_message, BUFFER_SIZE, "Hello from thread %d", 

pthread_self()); 
printf("%s\n", local_message); 
return NULL; 

} 

int main() { 
// ... launch threads that call print_message()

}

Thread 1 finishes snprintf
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Example: Unsafe threading
#define NUM_THREADS 2; #define BUFFER_SIZE 50

void* print_message(void* arg) { 
char* local_message = (char*)arg;
snprintf(local_message, BUFFER_SIZE, "Hello from thread %d", 

pthread_self()); 
printf("%s\n", local_message); 
return NULL; 

} 

int main() { 
// ... launch threads that call print_message()

}

Thread 1 Paused

Thread 2 Starts
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Example: Unsafe threading
#define NUM_THREADS 2; #define BUFFER_SIZE 50

void* print_message(void* arg) { 
char* local_message = (char*)arg;
snprintf(local_message, BUFFER_SIZE, "Hello from thread %d", 

pthread_self()); 
printf("%s\n", local_message); 
return NULL; 

} 

int main() { 
// ... launch threads that call print_message()

}

Thread 1 PausedThread 2 Overwrites

Note: each local message 
points to the same buffer!
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Example: Unsafe threading
#define NUM_THREADS 2; #define BUFFER_SIZE 50

void* print_message(void* arg) { 
char* local_message = (char*)arg;
snprintf(local_message, BUFFER_SIZE, "Hello from thread %d", 

pthread_self()); 
printf("%s\n", local_message); 
return NULL; 

} 

int main() { 
// ... launch threads that call print_message()

}

Thread 1 prints… Thread 2 Paused
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Example: Unsafe threading
#define NUM_THREADS 2; #define BUFFER_SIZE 50

void* print_message(void* arg) { 
char* local_message = (char*)arg;
snprintf(local_message, BUFFER_SIZE, "Hello from thread %d", 

pthread_self()); 
printf("%s\n", local_message); 
return NULL; 

} 

int main() { 
// ... launch threads that call print_message()

}

Unexpected Behavior!

Various other unsafe scenarios can 
occur! This is only one example.
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Classical Problems in Concurrency
■ Deadlock 

○ Two or more threads are unable to proceed because each 

is waiting for a resource that the other holds.

■ Livelock

○ Two or more threads continuously change their state in 

response to each other - but with no further progress.

■ Starvation

○ One of more threads continuously denied access to 

resources because other threads holds them. 
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Synchronizing With Locks - Deadlock
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Scenario: Hold and wait
Thread T0 needs to acquire both R0 and R2 to proceed.

T0 T1

R0 R2

Dotted lines indicate the 
thread is attempting to 

acquire the lock
Green lines indicate the 
thread has acquired the 

lock
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Scenario: Hold and wait
T0 waits on R2 to be released. When can T0 proceed?

T0 T1

R0 R2

Only once T1 releases 
lock R2… Will this 

always happen?
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Scenario: Circular wait
T0 and T1 try to acquire R0 and R1.

T0 T1

R0 R2
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Scenario: Circular wait
T0 and T1 acquire the respective resources!

T0 T1

R0 R2
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Scenario: Circular wait
But both need the other resource as well before proceeding. How 

do we end up here?

T0 T1

R0 R2
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Circular wait

Thread 0

lock(&R1)
lock(&R2)

// critical section

unlock(&R2)
unlock(&R1)

Thread 1

lock(&R2)
lock(&R1)

// critical section

unlock(&R1)
unlock(&R2)
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Circular wait

Thread 0 (running)

lock(&R1)
lock(&R2)

// critical section

unlock(&R2)
unlock(&R1)

Thread 1

lock(&R2)
lock(&R1)

// critical section

unlock(&R1)
unlock(&R2)
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Circular wait

Thread 0

lock(&R1)
lock(&R2)

// critical section

unlock(&R2)
unlock(&R1)

Thread 1 (running)

lock(&R2)
lock(&R1)

// critical section

unlock(&R1)
unlock(&R2)
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Circular wait

Thread 0 (running)

lock(&R1)
lock(&R2)

// critical section

unlock(&R2)
unlock(&R1)

Thread 1

lock(&R2)
lock(&R1)

// critical section

unlock(&R1)
unlock(&R2)

Stalled!
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Circular wait

Thread 0

lock(&R1)
lock(&R2)

// critical section

unlock(&R2)
unlock(&R1)

Thread 1 (running)

lock(&R2)
lock(&R1)

// critical section

unlock(&R1)
unlock(&R2)

Use consistent lock orderings!■ How can we avoid deadlock?

Stalled! Stalled!

■ What situation are we in? Deadlock
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Synchronization
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Locking
■ We saw that all memory is shared across threads - how can 

we prevent unsafe behavior? 

■ There are various locks, including mutexes, semaphores, etc…

■ We’ll focus on using mutexes.

○ Use Locks!  (But correctly…)
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Review: Mutexes
■ Opaque object which is either locked or unlocked.

 

■ unlock(m)
○ Should only be called when m is locked, by the locker

○ Changes m’s state to unlocked

■ lock(m)
○ If m is not locked, lock it and return

○ If locked, wait until m is unlocked, then retry

■ Now we’re prepared for our activity!
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Activity: Thread-Safe Binary 
Grow-Only Trees



Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Problem
■ We want to create an implementation of BSTs that supports 

concurrent execution across multiple threads.

■ We provide code that works correctly for sequential accesses!

■ The tree structure only supports an insert operation.

■ Note that this BST does not support lookup or removal.
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Starter Code: Thread Safe Trees
■ Standard tree node struct that stores the value as well as it’s left 

and right children.
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Example Trace
■ Suppose we want to do insert(8) and insert(12) 

using two different threads on the tree below. 

■ Do we observe any racy behavior?

10

Original Tree
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Example Trace
■ Thread 1 enters the “left 

case” and finds that 

t->left = NULL

■ Thread 2 enters the 

“right case” and finds 

that t->right = NULL

■ Both proceed to create 

the new nodes.
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Example Trace
■ We only get one resultant tree!

10

128

■ We observed no race - there is only one possible tree.

■ Is this always the case? Does this mean our code is race free?
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Activity 1: Identify the Race
■ Suppose we want to do insert(8) and insert(7) using 

two different threads on the tree below. 

■ Get into groups of 3-4 and try to identify the various possible 

outcomes. Draw out the possible resulting trees!

10

Original Tree

10

8

7

One Possible (correct) Tree
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Identifying Race Condition
■ Thread 1 sees that t->left == NULL and prepares to 

create the node (eg. call calloc)

10 Thread 1 prepares to 
create node

Relevant Case:
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Identifying Race Condition
■ We then jump to thread 2, which also sees that 

t->left == NULL and prepares to create the node 

10

Thread 1 prepares to 
create node

Thread 2 prepares to 
create node

Relevant Case:



Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Identifying Race Condition
■ Now thread 1 continues to run, creating the left node with 

val = 8

10

Thread 1 creates 
node

Thread 2 prepares to 
create node

8

■ However from thread 2’s perspective, t->left is NULL!

○ The check has already occurred.
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Identifying Race Condition
■ Now thread 2 also attempts to create a new left node, losing 

the node written by thread 1

10

Thread 2 overwrites 7

■ Unsafe behavior!
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Why Did The Race Occur?
■ What is the shared resource in this scenario?

○ The root of the tree - more specifically the left node field

○ Both threads attempt a NULL check on the left child, 

which is unsafe (TOCTTOU)

Disclaimer: We want to create a locking design that is thread-safe 

in all scenarios! 
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Activity 1: Creating a Simple Lock Design
■ Good practice for designing + implementing a concurrent 

system is to start simple and then add levels of complexity

■ What is an example of a simple design?

○ Using a single mutex to lock the entire tree!

■ Get into groups of 3-4 and try to implement a coarse grain 

locking design that makes our tree structure thread-safe!



Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solution 1: Coarse Grain Locking
■ It is unsafe to have multiple threads accessing the tree at once

○ Let’s lock away the entire tree!
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Activity 2: Coarse Grain Analysis
■ Now that we have a locking design, let’s revisit the concurrent 

insert(7) and insert(8). 

■ Try to trace out an execution order of these instructions. 

What do you observe? 



Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Revisiting Example
■ Suppose thread 1 runs first. 

10 Thread 1 acquires 
the global lock
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Revisiting Example
■ Now suppose thread 2 runs.

10

Thread 1 has the lock

Thread 2 attempts to 
acquire the lock

Thread 2 fails to acquire the lock! It must 
wait for thread 1 to drop the lock first.
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Revisiting Example
■ Now thread 1 continues to run, creating the left node with 

val = 8

10

Thread 1 creates 
node

Thread 2 waits for the lock to 
be dropped

8

■ Note that thread 2 knows nothing about t->left; it has not 

entered the insert routine.
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Revisiting Example
■ Thread 1 completes, and now thread 2 runs!

10

Thread 1 drops the 
lock after inserting

Thread 2 acquires the lock 
and starts inserting

8
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Revisiting Example
■ Thread 2 continues inserting and now it sees the changes that 

thread 1 has made to root->left

Thread 2 completes 
insert and drops lock

10

8

7

■ Now we have a correct tree! 
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Analysis: Coarse Grain Locking

Node 1 Node 2 Node 3Thread 1 Idle Idle Idle

Idle Idle IdleThread 2 Node 1 Node 2 Node 3

■ Looking at another example, assuming each thread’s call takes 3 

iterations through the tree, we can see the following behavior! 

■ Wrapping each function call in locks makes all execution 

sequential - as we saw in the previous example.
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Activity 3: Tracing for Ideal Behavior
■ Our original goal was to design a concurrent program - 

however, all of our accesses are sequential.

■ Can we use our threads more effectively? Let’s examine 

example traces to observe potential parallelism and whether 

it is utilized!
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Activity 3: Tracing for Ideal Behavior
■ Consider the following tree:

                        
6

4 8

■ Try tracing out the behavior of these 2 scenarios:

○ insert(2), insert(3) in parallel 

○ insert(3), insert(9) in parallel
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Activity 3: Tracing for Ideal Behavior
■ Recall the first example, where a lock was not required to 

ensure correct behavior. Can we find other similar scenarios?

■ insert(2), insert(3)access the left field of node 4, 

meaning the accesses must be protected (TOCTTOU issue)

○ This is similar to our first racy trace!

■ insert(3), insert(9)access different branches, which 

means consequent checks are independent - no race will occur
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Activity 3: Tracing for Ideal Behavior
■ insert(2), insert(3)must be protected, so they must 

run sequentially with respect to each other

○ Hint: How can we use locks to enforce this ordering?

■ What about insert(3), insert(9)? Do these 

operations also require sequential ordering?

○ No! (Hint: How might this be reflected in our lock design?)

■ Can we put this all together to create a non-sequentially 

ordered locking mechanism?
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Discussion: Reducing Shared Resource Size
■ The previous examples showed us there is parallelism in the 

branches. What is a simple design that reveals branch 

independence?

○ Use two global locks to protect each branch!

■ Does this design always perform better than the coarse grain 

locking design? Think about varying tree structures.

○ Balanced trees result in good concurrency

○ If all nodes are in one branch, we still run serially… 
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Discussion: Reducing Shared Resource Size
■ We’ve successfully reduced the size of our shared resources, 

consequently reducing our critical section. 

■ However, we also found some cases don’t perform well… Can 

we do better? 

○ In other words, can we further reduce the size of our 

shared resource?
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Activity 4: Fine Grain Locking
■ As groups, brainstorm a locking design that is thread-safe, but is 

not always sequentially ordered.

○ Use mutexes [you may modify the struct :) ]
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Solution 4: Fine Grain locking
■ We can implement per-node locking. This ensures no two 

threads will try to simultaneously update the same node. 

■ We can adjust the node struct to include a lock (shown below)
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Example: Fine Grain locking
■ Let’s consider the insert(3), insert(9) in parallel case.  

6

4 8

Original Tree
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Example: Fine Grain locking
■ Suppose thread 1 runs first (insert(3)):

6

4 8

Thread 1 acquires 
the node 6 lock
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Example: Fine Grain locking
■ Now suppose thread 2 runs (insert(9)):

6

4 8

Thread 1 has the 
node 6 lock

Thread 2 attempts to 
acquire the lock

Thread 2 must wait!
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Example: Fine Grain locking
■ Now thread 1 continues:

6

4 8Thread 1 acquires node 
4 lock and drops node 6 

lock

Thread 2 attempts to 
acquire the lock
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Example: Fine Grain locking
■ But wait, thread 2 can now make progress!

6

4 8Thread 1 has node 4 
lock and can continue

Thread 2 acquires node 
6 lock

■ Note: Since there is no need for thread 2 to wait for thread 1, it 

is possible for the threads to run concurrently
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Example: Fine Grain locking
■ Both threads can concurrently run to completion!

6

4 8

Thread 1 has node 4 
lock and inserts

Thread 2 acquires node 
8 lock and inserts

3 9
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Analysis: Solution 4
■ How does fine-grain locking help? Let’s return to the figure 

from before! 

○ Again, we assume each thread makes 3 iterations

Node 1 Node 2 Node 3Thread 1 Idle

Idle Node1 Node2Thread 2 Node 3

■ Nice! We managed to expose the potential concurrency in these 

iterations 
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Analysis: Solution 4
■ In our first coarse-grain solution, any lock protected the entire 

tree - creating a large critical section. What about this solution?

■ Drastic Reduction! 

○ We now only block off one node access at a time (as 

pointed to by the previous diagram)

■ A more detailed analysis of parallelism and locking is beyond 

the scope of 15-213 - look into 15-346 / 15-410 / 15-418!
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The End


