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Reminders
■ tshlab is due July 21st (Monday)

■ proxylab is due July 29th (Tuesday)

■ sfslab will be released on July 23rd

○ Due August 1st



Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Agenda
■ Network Review

■ Activity: Telephone

■ Proxy Lab

○ What is a proxy?

○ Getting started
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Review: Networks
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Networking Refresher
■ UNIX File Abstraction: communicate over the network by 

reading from and writing to file descriptors (fd’s).

■ Once we establish a connection and setup the fd’s, we can 

send and receive data over those file descriptors.

Client Server

clientfd connfd

listenfd
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Review: Telnet
■ telnet is a network protocol for text-based communication

■ Can run via: $ telnet <host> <port> to create a 

connection to the specified user 

■ Will be useful for this activity (as well as proxylab)!!
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Activity: Telephone
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Disclaimer
■ Note that the code to be written in the activity is not 

intended to be copied in your proxy implementations.

○ As with all code samples presented in lecture/recitations

■ Try to focus on getting an intuition about the networking 

design aspect, which will be similar in nature to proxylab
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Activity
■ Download this week’s handout from the Schedule page.

■ Get into groups of 3-4 people!

○ Just open up the source code under telephone.c.

○ We’ll take each component incrementally together

$ wget https://www.cs.cmu.edu/~213/activities/rec11.tar
$ tar -xvf rec11.tar
$ cd rec11
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Objective: Telephone Game
■ Our goal is to create a player in the telephone game

■ We should be able to:

1. Receive messages from a person

2. Pass along the message to a specified person

3. Know when to stop sending messages

■ We communicate through a network!
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Brainstorm 
■ What components do we need to implement to implement 

the telephone game? Try to think in “networking terms.”

○ Connections? 

○ File descriptors? 

○ Other routines?
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Component Roadmap
We will generally follow this roadmap!

1. Listen for any incoming connections

2. Connect to an incoming connection 

3. Read messages from the accepted connection

4. Parse these messages and handle them accordingly

a. FORWARD, STOP, and General messages
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Phase 1: Listening for Connections
■ In your groups, implement the component of setting up a file 

descriptor to listen for incoming connections.

■ Take a moment to get familiar with the csapp library! 
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Phase 1: Solution
■ We want to use open_listenfd(argv[1]), where the 

first argument holds the port.

■ How can we test for its correctness?

○ Use verbose print statements to check for error/success!

○ What indicates failure?
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Phase 2: Accepting a Connection
■ In your groups, implement the accepting of any incoming 

connections! 

■ Keep in mind: how will we know if a connection is requested?
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Phase 2: Solution
■ We want to use accept(listenfd,…), which sets up a 

file descriptor associated with out connection.

■ How can we test its correctness?

○ Use telnet to attempt a connection! 

○ Use verbose printing to report success.
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Phase 3: Reading Inputs
■ In your groups, implement the reading inputs from the 

connection we just accepted!

■ Hint: use the RIO (robust I/O) package in CSAPP
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Phase 3: Solution
■ We want to:

1. Initialize a RIO object via rio_readinitb(...)

a. What fd should we associate with the RIO object?

2. Fill the line buffer using rio_readlineb(...)

■ How can we test its correctness?

○ Use telnet to connect + send a message!

○ Print the received message and check for consistency
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Phase 4: Handling General Messages
■ In your groups, implement sending general messages to some 

(later specified) destination.

■ Hint: we want to send the message via outputfd 

■ How can we test this?

○ Since the default outputfd is STDOUT_FILENO, see if 

we get the appropriate prints.



Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Phase 5: Handling FORWARD
■ In your groups, implement the FORWARD state.

■ Remember that an user should only receive one valid 

FORWARD message, which defines the destination user to 

write to.

■ Note: We provide you with a parsing function at the top of 

the file!
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Phase 5: Solution
■ We are given a host and port to connect to (parse from input)

■ Open a file descriptor to this destination user 

○ Via open_clientfd(host,port)

■ Update outputfd and forwarding_state

■ How can we test this?

○ Use 2 terminals and send messages via telnet!
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Phase 6: Handling STOP
■ In your groups, implement the STOP state.

■ Remember that an user should also pass on the STOP 

message (so that other users can stop), before stopping 

themselves.

■ How can we test this?

○ Same test as forward, but make sure that all instances 

terminate!
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Phase 7: Cleanup
■ Close any open file descriptors!

■ What could go wrong if we don’t?
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Connection to proxylab?
■ Why is this activity relevant? 

■ Well, we just built a simple proxy!

○ We are the intermediary between the person sending a 

message and the person that is waiting to receive a 

message from us

■ A lot of the testing behavior will be extremely useful for 

proxylab as well.
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Proxy Lab
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What is a proxy?

Client Proxy

GET 
https://www.cs.cmu.edu/~213/index.html

Origin 
Server

Request Request

ResponseResponse

■ Proxy sits between client and the server the client wants to 

talk to.

■ Can do useful things in-between (not assessed in 

proxylab):

○ Caching, logging, anonymization, transcoding, etc.
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Proxies are Servers

■ Proxies need to listen for and handle requests from clients.

■ Ideally, they should be able to do so for multiple clients at the 

same time! 

Client
A

Proxy
Origin 
Server

Request

ResponseClient
B

Proxy

listenfd
A

B
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Proxies are Clients

■ Proxy parses headers in client’s request to figure out which 

server to contact.

■ Then connects to a server to get the data the client asked for.

Client
A

Proxy
Origin 
Server

Request

ResponseClient
B

Proxy

listenfd
A

B

connfd
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Proxy Lab: Overview
■ You’ll implement a web proxy like the one on the previous 

slide!

Part I

■ Accept connections from clients.

■ Parse headers to determine origin server (see 

http_parser.h)

■ Fetch data from the server, and forward response back to the 

client.

Part II

■ Handle concurrent requests with POSIX threads (Tuesday’s 

lecture)!
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Proxy Lab: Getting Started
■ Worth 4% of course grade. 

■ You have one week to complete the lab. Start early!

■ Resources:

○ Network Programming Lectures

○ Textbook: Chapter 11

○ Write-up!

■ Make sure you’re familiar with the provided libraries before 

you start:

○ csapp.h – Networking Wrappers, rio
○ http_parser.h – For parsing requests
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Debugging Proxy Lab: PxyDrive !
■ Testing framework for Proxy 

Lab
○ Autolab uses it to grade 

your code…
○ You can use it to debug!

■ PxyDrive workflow:
○ Generate text and binary 

data
○ Create server(s)
○ Build transactions
○ Trace transactions to 

inspect headers and 
response data.
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PxyDrive Demo
■ Let’s run through some of the features of PxyDrive!

■ If you want to follow along:

$ wget http://www.cs.cmu.edu/~213/activities/rec11-pxy.tar
$ tar -xvf rec11-pxy.tar
$ cd pxydrive-tutorial
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PxyDrive – Tutorial 1

■ Take a look at s01-basic-fetch.cmd

■ Then try running the commands yourself in the REPL:

$ python2 ./pxy/pxydrive.py -p ./proxy-ref
> generate data1.txt 1k
...

■ generate data1.txt 1k – Generates a 1K text file 
called data1.txt

■ serve s1 – Launches a server called s1
■ fetch f1 data1.txt s1 – Fetches data1.txt from 

server s1, in a transaction called f1
■ trace f1 – Traces the transaction f1
■ check f1 – Checks the transaction f1
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PxyDrive – Tutorial 1

■ Try running the trace again with the -f flag:

$ python2 ./pxy/pxydrive.py -f s01-basic-fetch.cmd -p ./proxy-ref

■ Can you identify:

○ GET command

○ Host header? Other headers?

○ Request from client to proxy

○ Request from proxy to server

○ Response by server to proxy

○ Response by proxy to client
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PxyDrive – Tutorial 2

■ Let’s see what happens with a buggy proxy…

$ python2 ./pxy/pxydrive.py -f s01-basic-fetch.cmd -p ./proxy-corrupt

■ What happens?

# Make sure it was retrieved properly
> check f1
ERROR: Request f1 generated status 'error'.  Expecting 'ok' 
(Mismatch between source file ./source_files/random/data1.txt and 
response file ./response_files/f1-data1.txt starting at position 
447: 'F' (hex 0x46) != 'G' (hex 0x47))
> quit
ERROR COUNT = 1

■ Proxy clobbers response from server.
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PxyDrive – Tutorial 3

■ Let’s try another buggy proxy…

$ python2 ./pxy/pxydrive.py -f s03-overrun.cmd -p ./proxy-overrun

■ Is the error message helpful?

ERROR: Request f1 generated status 'error'.  Expecting 'ok' 
(Socket closed after reading 106386/200000 bytes)

■ Let’s use gdb!
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PxyDrive – Multi-Window Debugging

■ Use gdb to run proxy-overrun in a fresh window.

$ gdb ./proxy-overrun
(gdb) run <port>

■ Now run pxydrive in another window (same Shark):

$ python2 ./pxy/pxydrive.py -P localhost:<port> -f s03-overrun.cmd

■ When debugging proxylab, run ./port-for-user.pl 

to get a unique port number, so your debugging doesn’t 

conflict with other students. 
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PxyDrive – Multi-Window Debugging

■ Multi-Window debugging is helpful even without gdb: 

$ ./proxy-overrun <port>

$ ./pxy/pxydrive.py -P localhost:<port> -f s03-overrun.cmd

■ Can redirect output of proxy to a file.

■ If you include thread IDs in your print statements, can use 

awk to split thread outputs to different files for easier 

debugging.
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The End


