
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

15-213 Recitation
Networking and Proxies

Your TAs

Friday, July 18th

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reminders
■ tshlab is due July 21st (Monday)

■ proxylab is due July 29th (Tuesday)

■ sfslab will be released on July 23rd

○ Due August 1st

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Agenda
■ Network Review

■ Activity: Telephone

■ Proxy Lab

○ What is a proxy?

○ Getting started

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Networks

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Networking Refresher
■ UNIX File Abstraction: communicate over the network by

reading from and writing to file descriptors (fd’s).

■ Once we establish a connection and setup the fd’s, we can

send and receive data over those file descriptors.

Client Server

clientfd connfd

listenfd

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Telnet
■ telnet is a network protocol for text-based communication

■ Can run via: $ telnet <host> <port> to create a

connection to the specified user

■ Will be useful for this activity (as well as proxylab)!!

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity: Telephone

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disclaimer
■ Note that the code to be written in the activity is not

intended to be copied in your proxy implementations.

○ As with all code samples presented in lecture/recitations

■ Try to focus on getting an intuition about the networking

design aspect, which will be similar in nature to proxylab

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity
■ Download this week’s handout from the Schedule page.

■ Get into groups of 3-4 people!

○ Just open up the source code under telephone.c.

○ We’ll take each component incrementally together

$ wget https://www.cs.cmu.edu/~213/activities/rec11.tar
$ tar -xvf rec11.tar
$ cd rec11

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Objective: Telephone Game
■ Our goal is to create a player in the telephone game

■ We should be able to:

1. Receive messages from a person

2. Pass along the message to a specified person

3. Know when to stop sending messages

■ We communicate through a network!

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Brainstorm
■ What components do we need to implement to implement

the telephone game? Try to think in “networking terms.”

○ Connections?

○ File descriptors?

○ Other routines?

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Component Roadmap
We will generally follow this roadmap!

1. Listen for any incoming connections

2. Connect to an incoming connection

3. Read messages from the accepted connection

4. Parse these messages and handle them accordingly

a. FORWARD, STOP, and General messages

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Phase 1: Listening for Connections
■ In your groups, implement the component of setting up a file

descriptor to listen for incoming connections.

■ Take a moment to get familiar with the csapp library!

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Phase 1: Solution
■ We want to use open_listenfd(argv[1]), where the

first argument holds the port.

■ How can we test for its correctness?

○ Use verbose print statements to check for error/success!

○ What indicates failure?

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Phase 2: Accepting a Connection
■ In your groups, implement the accepting of any incoming

connections!

■ Keep in mind: how will we know if a connection is requested?

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Phase 2: Solution
■ We want to use accept(listenfd,…), which sets up a

file descriptor associated with out connection.

■ How can we test its correctness?

○ Use telnet to attempt a connection!

○ Use verbose printing to report success.

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Phase 3: Reading Inputs
■ In your groups, implement the reading inputs from the

connection we just accepted!

■ Hint: use the RIO (robust I/O) package in CSAPP

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Phase 3: Solution
■ We want to:

1. Initialize a RIO object via rio_readinitb(...)

a. What fd should we associate with the RIO object?

2. Fill the line buffer using rio_readlineb(...)

■ How can we test its correctness?

○ Use telnet to connect + send a message!

○ Print the received message and check for consistency

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Phase 4: Handling General Messages
■ In your groups, implement sending general messages to some

(later specified) destination.

■ Hint: we want to send the message via outputfd

■ How can we test this?

○ Since the default outputfd is STDOUT_FILENO, see if

we get the appropriate prints.

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Phase 5: Handling FORWARD
■ In your groups, implement the FORWARD state.

■ Remember that an user should only receive one valid

FORWARD message, which defines the destination user to

write to.

■ Note: We provide you with a parsing function at the top of

the file!

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Phase 5: Solution
■ We are given a host and port to connect to (parse from input)

■ Open a file descriptor to this destination user

○ Via open_clientfd(host,port)

■ Update outputfd and forwarding_state

■ How can we test this?

○ Use 2 terminals and send messages via telnet!

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Phase 6: Handling STOP
■ In your groups, implement the STOP state.

■ Remember that an user should also pass on the STOP

message (so that other users can stop), before stopping

themselves.

■ How can we test this?

○ Same test as forward, but make sure that all instances

terminate!

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Phase 7: Cleanup
■ Close any open file descriptors!

■ What could go wrong if we don’t?

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Connection to proxylab?
■ Why is this activity relevant?

■ Well, we just built a simple proxy!

○ We are the intermediary between the person sending a

message and the person that is waiting to receive a

message from us

■ A lot of the testing behavior will be extremely useful for

proxylab as well.

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Proxy Lab

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What is a proxy?

Client Proxy

GET
https://www.cs.cmu.edu/~213/index.html

Origin
Server

Request Request

ResponseResponse

■ Proxy sits between client and the server the client wants to

talk to.

■ Can do useful things in-between (not assessed in

proxylab):

○ Caching, logging, anonymization, transcoding, etc.

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Proxies are Servers

■ Proxies need to listen for and handle requests from clients.

■ Ideally, they should be able to do so for multiple clients at the

same time!

Client
A

Proxy
Origin
Server

Request

ResponseClient
B

Proxy

listenfd
A

B

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Proxies are Clients

■ Proxy parses headers in client’s request to figure out which

server to contact.

■ Then connects to a server to get the data the client asked for.

Client
A

Proxy
Origin
Server

Request

ResponseClient
B

Proxy

listenfd
A

B

connfd

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Proxy Lab: Overview
■ You’ll implement a web proxy like the one on the previous

slide!

Part I

■ Accept connections from clients.

■ Parse headers to determine origin server (see

http_parser.h)

■ Fetch data from the server, and forward response back to the

client.

Part II

■ Handle concurrent requests with POSIX threads (Tuesday’s

lecture)!

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Proxy Lab: Getting Started
■ Worth 4% of course grade.

■ You have one week to complete the lab. Start early!

■ Resources:

○ Network Programming Lectures

○ Textbook: Chapter 11

○ Write-up!

■ Make sure you’re familiar with the provided libraries before

you start:

○ csapp.h – Networking Wrappers, rio
○ http_parser.h – For parsing requests

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Debugging Proxy Lab: PxyDrive !
■ Testing framework for Proxy

Lab
○ Autolab uses it to grade

your code…
○ You can use it to debug!

■ PxyDrive workflow:
○ Generate text and binary

data
○ Create server(s)
○ Build transactions
○ Trace transactions to

inspect headers and
response data.

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PxyDrive Demo
■ Let’s run through some of the features of PxyDrive!

■ If you want to follow along:

$ wget http://www.cs.cmu.edu/~213/activities/rec11-pxy.tar
$ tar -xvf rec11-pxy.tar
$ cd pxydrive-tutorial

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PxyDrive – Tutorial 1

■ Take a look at s01-basic-fetch.cmd

■ Then try running the commands yourself in the REPL:

$ python2 ./pxy/pxydrive.py -p ./proxy-ref
> generate data1.txt 1k
...

■ generate data1.txt 1k – Generates a 1K text file
called data1.txt

■ serve s1 – Launches a server called s1
■ fetch f1 data1.txt s1 – Fetches data1.txt from

server s1, in a transaction called f1
■ trace f1 – Traces the transaction f1
■ check f1 – Checks the transaction f1

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PxyDrive – Tutorial 1

■ Try running the trace again with the -f flag:

$ python2 ./pxy/pxydrive.py -f s01-basic-fetch.cmd -p ./proxy-ref

■ Can you identify:

○ GET command

○ Host header? Other headers?

○ Request from client to proxy

○ Request from proxy to server

○ Response by server to proxy

○ Response by proxy to client

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PxyDrive – Tutorial 2

■ Let’s see what happens with a buggy proxy…

$ python2 ./pxy/pxydrive.py -f s01-basic-fetch.cmd -p ./proxy-corrupt

■ What happens?

Make sure it was retrieved properly
> check f1
ERROR: Request f1 generated status 'error'. Expecting 'ok'
(Mismatch between source file ./source_files/random/data1.txt and
response file ./response_files/f1-data1.txt starting at position
447: 'F' (hex 0x46) != 'G' (hex 0x47))
> quit
ERROR COUNT = 1

■ Proxy clobbers response from server.

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PxyDrive – Tutorial 3

■ Let’s try another buggy proxy…

$ python2 ./pxy/pxydrive.py -f s03-overrun.cmd -p ./proxy-overrun

■ Is the error message helpful?

ERROR: Request f1 generated status 'error'. Expecting 'ok'
(Socket closed after reading 106386/200000 bytes)

■ Let’s use gdb!

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PxyDrive – Multi-Window Debugging

■ Use gdb to run proxy-overrun in a fresh window.

$ gdb ./proxy-overrun
(gdb) run <port>

■ Now run pxydrive in another window (same Shark):

$ python2 ./pxy/pxydrive.py -P localhost:<port> -f s03-overrun.cmd

■ When debugging proxylab, run ./port-for-user.pl

to get a unique port number, so your debugging doesn’t

conflict with other students.

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PxyDrive – Multi-Window Debugging

■ Multi-Window debugging is helpful even without gdb:

$./proxy-overrun <port>

$./pxy/pxydrive.py -P localhost:<port> -f s03-overrun.cmd

■ Can redirect output of proxy to a file.

■ If you include thread IDs in your print statements, can use

awk to split thread outputs to different files for easier

debugging.

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The End

