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Review: Virtual Addressing

m Each process has its own virtual address space
m Page tables map virtual to physical addresses
m Physical memory can be shared among processes

Address :
Virtual 0 lati 0 Physical
Address VP1 transiation Address
Space for VP 2 PP 2 Space
Process 1: (DRAM)
N-1
(e.g., read-only
i library code)
: 0
Virtual PP 8
Address VP 1
Space for
Process 2: oo
VP k

N-1 M-1
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Review: Memory Accesses without VM

CPU sends physical
address to cache

\ 4

Cache sends
data to CPU
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Review: Memory Accesses with VM

CPU sends virtual
address to MMU

\ 4

MMU looks up
physical address in
page table

\ 4

MMU sends physical
address to cache

\ 4

Cache sends
data to CPU
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Review: Memory Accesses with VM

CPU sends virtual
address to MMU

\ 4

MMU looks up
physical address in
page table

No

Yes

MMU sends physical
address to cache

\ 4

Cache sends
data to CPU

MMU triggers
page fault
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OS takes control and
does stuff we’ll discuss
later
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Review: Memory Accesses with VM

CPU sends virtual
address to MMU

\ 4

MMU looks up OS recovers, tells
physical address in [« MMU to retry
page table
No MMU triggers | OS takes control and
page fault tries to recover
Yes

OS cannot recover

MMU sends physical v
address to cache

OS terminates
malfunctioning
process

\ 4

Cache sends
data to CPU
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Review: The problem

00007FFFFFFFFFFF
N Stack
One 64-bit array element
for each 4096-byte page
248 pyte 248 8h
= . tes
address Shared / _ 39/4096 y
space Libraries = 2°7 bytes
= 512 gigabytes
4 for one page table
Heap / i
Data
v
Text
400000
000000
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Review: the problem
(with k-level page tables)

Page table
base register
(PTBR)
N1 VIRTUAL ADDRESS o-1 0
VPN 1 VPN 2 - VPN k VPO
the Level 1 a Level 2 a Level k
page table page table page table
> PP
/ | /_N }
Cache Cache Cache Cache
miss! miss! miss! miss!
; | z//P_ Cache

miss!
PPN PP
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Today

m Page Faults
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What happens on a page fault?

m What is a page fault?

m Why can they happen? How does the OS know?
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OS tracks VM “areas”

00007FEFEFFFFFEF o ¢ m Each area has permissions

| / purpose / etc

Shared
Libraries

Heap

Data
Text

400000
000000
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Types of Faults

1. This is a legal address
= Hard / Major faults — “normal” page faults

= Soft / minor faults — the OS took the page away, but has not reused
it

2. The address is legal, but ...
The type of access is wrong, so “protection exception”

3.  The address is not legal
Segmentation fault or bus error
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Today

m Conceptual Quiz
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Conceptual Quiz: 1

For a simple system with a one-level page table, what must
the MMU do before fetching the PTE?

Before fetching the Page Table Entry (PTE) from a one-level page table in a simple system, the Memory
Management Unit (MMU) performs the following sub-steps:
1.Virtual Address Splitting: The MMU splits the virtual address into two parts:

1. Virtual Page Number (VPN): The leftmost bits of the address represent the VPN.

2. Virtual Page Offset (VPO): The remaining bits indicate the offset within the page.
2.Indexing into Page Table: The VPN is used directly as an array index in the page table. The MMU looks
up the corresponding PTE using the VPN.
Feel free to ask if you need further clarification! &
For additional context and details, you can refer to the lecture materials from Carnegie Mellon
University!?
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Conceptual Quiz: 2

The MMU must know the physical address of the page table
order to read page table entries from memory. Why does
it ne@d\a physical address?

The Memory Manag®gent Unit (MMU) requires the physical address of the page tab®tor several
reasons:

Address Translation: The MMBranslates virtual addresses (used by the &PU) to physical

addresses (used by RAM). To do thi®if needs to access the page tah

Page Table Lookup: When a virtual addr®sg is accessed, the MM#T uses the VPN (Virtual Page Number) to
index into the page table. The resulting PTE (Page Table Eatfy) contains the physical address of the
corresponding page frame in RAM.

Hardware Interaction: The MMU interacts dige€tly with"'\RAM and other hardware components. It needs
the physical address to perform memog#ccesses efficiently:

Protection and Permissions: The p#€e table entries also store infOwgation about page permissions (read-
only, read-write, etc.) and pga#€ction flags. The MMU checks these flagWo enforce memory protection.
In summary, the physiga#address of the page table allows the MMU to pert®wq address translation, look
up PTEs, and mag#8e memory efficiently. If you have further questions, feel freetgask!
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Today

m Concrete examples of virtual memory systems
= “Simple memory system” from CSAPP 9.6.4
" |ntel Corei7
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Simple Memory System Example

m Addressing

= 14-bit virtual addresses
= 12-bit physical address
= Page size = 64 bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

A

VPN > VPO —*
Virtual Page Number Virtual Page Offset

11 10 9 8 7 6 5 4 3 2 1 0

<— PPN > PPO—

Physical Page Number Physical Page Offset
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Simple Memory System TLB

m 16 entries
m 4-way associative

\ TLBT >< TLBI —>
13 12 11 10 9 8 7 6 5 4 3 2 1 0
0|00 |0|1|1)]0]|1

< VPN > VPO —*

VPN =0b1101 = 0x0D

Translation Lookaside Buffer (TLB)

Set Tag PPN | Valid | Tag PPN | Valid | Tag PPN | Valid | Tag PPN | Valid
0 03 - 0 09 oD 1 00 - 0 07 02 1
1 03 2D 1 02 - 0 04 - 0 0A - 0
2 02 - 0 08 - 0 06 - 0 03 - 0
3 07 - 0 03 oD 1 0A 34 1 02 - 0
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Simple Memory System Page Table

m Only showing the first 16 entries (out of 256)

VPN PPN Valid VPN PPN Valid
00 28 1 08 13 1
o1 - 0 09 17 1
02 33 1 0A 09 1
03 02 1 0B - 0
04 - 0 0C - 0
05 16 1 oD 2D 1 Ox0D — 0Ox2D
06 - 0 OE 11 1
07 - 0 OF oD 1
TLBT TLBl —
13 12 1 10 9 8 7 6 5 4 3 2 1 o0 1 10 s 8 7 6 5 4 3 2 1 o0
[0JoJoJoTafafo[a[ [ [ [ [ [ | wemmp [170JaTaJola] [ [ [ [ T ]
VPN VPO PPN PPO
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Simple Memory System Cache

m 16 lines, 4-byte cache line size

m Physically addressed

Carnegie Mellon

V[0b00001101 ] = V[0x369]
m Direct mapped /B[0b10 101 o1 P[0xB69] = 0x15

4 CO —>

1

1]0 1 1 1 o o

<— PPN PPO—
ldx Tag Valid BO B1 B2 B3 Idx Tag Valid B0 B1 B2 B3
0 19 1 99 11 23 11 8 24 1 3A 00 51 89
1 15 0 - - - - 9 2D 0 - - - -
2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B
3 36 0 - - - - B 0B 0 - - - -
4 32 1 43 6D 8F 09 C 12 0 - - - -
5 (1]0] 1 36 72 FO 1D D 16 1 04 96 34 15
6 31 0 - - - - E 13 1 83 77 1B D3
7 16 1 11 Cc2 DF 03 F 14 0 - - - -
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Intel Core i7 Memory System

Processorpackage _ _ __
\  Core x4 |
' Reaisters Instruction MMU E
: é fetch (addr translation) !
1 A A i
1 4 1
| L1 d-cache L1 i-cache L1d-TLB L1i-TLB !
: 32 KB, 8-way 32 KB, 8-way 64 entries, 4-way 128 entries, 4-way :
1 4 A 4 1
' v A v : !
! L2 unified cache L2 unified TLB !
! 256 KB, 8-way 512 entries, 4-way !
. X '
! » To other
| QuickPath interconnect 3 cores
: 4links @ 25.6 GB/seach |, | \ 1.0
! 3 3 3 : bridge
: L3 unified cache DDR3 Memory controller !
: 8 MB, 16-way 3 > 3 x 64 bit @ 10.66 GB/s !
| (shared by all cores) 32 GBIs total (shared by all cores) |
! /Y Y 1
D e e e e e e e — e m e = = S 1
Main memory
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End-to-end Core i7 Address Translation

32/64
CPU y Result |« L2, L3, and
Virtual address (VA) 3 main memory
3% ¢ 12 -
[, VPN _|VPO, L1 L1
32 I 4 hit miss
TLBT| TLBI
I L1 d-ca.che
v v ! v TLB (64 sets, 8 Imes/set)A
> hit <
TLB > : >
miss N e I N N N T
. A A A A
L1 TLB (16 sets, 4 entries/set)
v9 9 9 9 40 § v 12 40 6| 6
VPN1 [ VPN2 | VPN3 | VPN4 PPN PPO ' cT cllco
T T A Physical
CR3 J > J J address
PTE] | PTE| W{PTE |/l PTE (PA)

age tables
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Core i7 Level 1-3 Page Table Entries

63 62 52 51 12 11 9 8 7 6 5 4 3 2 1 o0
XD Unused Page table physical base address Unused G | PS A | CD [ WT |U/S [R/W]|P=1
Available for OS (page table location on disk) P=0

Each entry references a 4K child page table. Significant fields:

P: Child page table present in physical memory (1) or not (0).

R/W: Read-only or read-write access access permission for all reachable pages.
U/S: user or supervisor (kernel) mode access permission for all reachable pages.
WT: Write-through or write-back cache policy for the child page table.

A: Reference bit (set by MMU on reads and writes, cleared by software).

PS: Page size either 4 KB or 4 MB (defined for Level 1 PTEs only).

Page table physical base address: 40 most significant bits of physical page table
address (forces page tables to be 4KB aligned)

XD: Disable or enable instruction fetches from all pages reachable from this
PTE.
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Core i7 Level 4 Page Table Entries

63 62 52 51 1211 9 8 7 6 5 4 3 2 1 0
XD | Unused Page physical base address Unused G D| A |CD|WT|U/S[R/W|P=1
Available for OS (page location on disk) P=0

Each entry references a 4K child page. Significant fields:

P: Child page is present in memory (1) or not (0)

R/W: Read-only or read-write access permission for child page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page

A: Reference bit (set by MMU on reads and writes, cleared by software)
D: Dirty bit (set by MMU on writes, cleared by software)

G: Global page (don’t evict from TLB on task switch)

Page physical base address: 40 most significant bits of physical page address
(forces pages to be 4KB aligned)

XD: Disable or enable instruction fetches from this page.
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Core i7 Page Table Translation

9 9 9 9 12 .
VPN 1 VPN 2 VPN 3 VPN 4 VPO | Virtual
address
L1PT L2 PT L3PT L4PT
Page global Page upper Page middle Page
CR3 410 R directory 4?; directory |40 directory |40 table
Physical
address Offset into
of L1PT 12 physical and
—» L1PTE —»{ L2 PTE —»| L3 PTE L » L4PTE [— virtual page
Physical
address
512GB 1GB 2MB 4KB of page
region region region region
per entry per entry per entry per entry
40
T
40 \4 12 A

i |Physical
address

PPN PPO
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Cute Trick for Speeding Up L1 Access

Jr— . > Tag Check
A A A A A A4 A
40 7 6 6
Physical cTé |cco
address
(PA) PPN PPO
d9e[eTefeTele o]
Address No ¥
Virtual Translation Cha"ge‘,:"
< Cl
address °
VPN VPO
(VA) L1
36 12 Cache

m Observation
= Bits that determine Cl identical in virtual and physical address
= Canindex into cache while address translation taking place
= Generally we hit in TLB, so PPN bits (CT bits) available quickly
= “Virtually indexed, physically tagged”
® Cache carefully sized to make this possible
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Quiz

https://canvas.cmu.edu/courses/47415/quizzes/143247
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Today

m Nifty things virtual memory makes possible
= Memory-mapped files (RAM as cache for disk)
= Copy-on-write sharing
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Memory-Mapped Files

m Paging = every page of a program’s physical RAM is
backed by some page of disk*

m Normally, those pages belong to swap space
m But what if some pages were backed by ... files?

* This is how it used to work 20 years ago.
Nowadays, not always true.
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Memory-Mapped Files

Process Physical
virtual memory memory

- ~
- ~<o
- ~<
~
-~ ~o
P
-
I~
- ~~.
- S~
- ~<
~
~
~
~
=<

- ~

File on disk
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Memory-Mapped Files

Process 2 Process 1 Physical
virtual memory  virtual memory memory

. Swap space

= ~L File on disk
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Demo

Show mmap from sfs
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Copy-on-write sharing

m fork creates a new Parent Physical
process by copying the virtual memory memory
entire address space i
of the parent process . . Swap space

" That sounds slow .

" |t jsslow File on disk

m Clever trick:
= Just duplicate the page tables
= Mark everything read only
= Copy only on write faults
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Copy-on-write sharing

Child Parent Physical
virtual memory virtual memory memory

- ~-o
~~
=~
— S~
- - -~
_____ -
- -
- ~
— ~
_____ - S~a
- f’ ~~
- ~
- - ~o
_____ -
~~

bl ~

_______ File on disk

m Clever trick:
= Just duplicate the page tables
= Mark everything read only
= Copy only on write faults
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Copy-on-write sharing

Child Parent Physical
virtual memory virtual memory memory

child | — W ..o l ! Swap space
woteto | @ @TH—------------- - ___C
thispage | | | 4 - P ———

_______ File on disk

m Clever trick:
= Just duplicate the page tables
= Mark everything read only
= Copy only on write faults
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Summary

m Multi-level page tables reduce total memory
consumption of page tables

m Translation lookaside buffers reduce time cost of
translation

m Real systems have 3 to 5 levels of page table

m Virtual memory makes nifty things possible
= Memory protection and process isolation
= Paging/swapping (disk as extra RAM)
= Memory-mapped files (RAM as cache for disk)
= Copy-on-write sharing
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Conceptual Quiz: 3

Why are one-level page tables impractical and how do multi-
level page tables fix this problem?

A single-level page table covering the entire address space of
a typical system would be much too large. For instance, with
4kB pages, a 48-bit address space, and a 8-byte PTE, a single-

level page table would occupy 512 gigabytes, which is more
RAM than most computers have.
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Conceptual Quiz: 4

Why is memory access slower with a multi-level page table
than with a single-level page table?

A k-level page table requires k memory loads in order to

determine the physical address. There is no spatial locality to
these loads.
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Conceptual Quiz: 5

What is the Translation Lookaside Buffer (TLB), what
problem does it solve, and when is it used?

The TLB is a small cache dedicated to storing mappings from

virtual to physical addresses. It avoids the cost of lookups in a
multi-level page table.

The MMU consults the TLB for each address as its first action;

if there is a TLB hit, it does not need to fetch anything from
the page table.
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Conceptual Quiz: 6

How does virtual memory interact with the memory
cache(s)?

The cache’s function is to speed up access to whatever data is
most frequently used. The MMU sits “in between” the CPU
and the cache; the cache works only with physical addresses.
This means data from multiple processes may coexist in the
cache (or compete for cache space).
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