Carnegie Mellon

Virtual Memory: Concepts

15-213/15-503: Introduction to Computer Systems
16 Lecture, June 11, 2025

Instructors:
Brian Railing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Midterm “Exam”

B All students (213 / 503):
= Comprehensive written assignment
Goes in the gradebook as two WAs
= Submitted to Gradescope
= @Graded by the course staff

B 213-only
= |n-person group exam on 6/20 at 12:30pm
= 1 hour to complete in groups of 2-3
= 1 sheet of notes per person
= Worth 2% of final grade
= (Questions may be similar or identical to take home questions
= All exams not taken in class will be solo

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

This Picture is a Lie

B This is RAM, we said... 00007FFFFFFFFFFF [o—
B But the computer can run |
more than one program at
a time!
B Where are all the other
p) Shared
prog rams: Libraries
$
B Let’s investigate. Heap
Data
Text
400000
000000

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Processes (Teaser for July)

B Definition: A process is an instance of a running
program.
= One of the most profound ideas in computer science
= Not the same as “program” or “processor”

B Unix: A parent process creates a new child process
by calling fork

= Child is (sort of) a copy of the parent
= forkreturns twice—once in each process

Different return value in each

B Parent can wait for child to finish by calling
waitpid
= For now, think of this as “what main returns to”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Hmmm, How Does This Work?!

Process 1 Process 2 Process n
O00007FFFFFFFFFFF O00007FFFFFFFFFFF
Stack Stack Stack
Shared Shared Shared
Libraries Libraries Libraries
1 t 1
Heap Heap Heap
Data Data Data
Text Text Text
400000 400000
000000 000000

Solution: Virtual Memory (today and next lecture)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

A System Using Physical Addressing

Main memory

Physical address
(PA)
4

CPU

A 4
N RWNRO

M-1:

Data word

B Used in “simple” systems like embedded microcontrollers in
devices like cars, elevators, and digital picture frames

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

A System Using Virtual Addressing

Main memory

0:
CPUC%#J 1:
Virtual address Physical address :
(VA) (PA))
CPU > MMU 7 > 4:
4100 5:
6:
7:
8:
M-1
Data word

B Used in all modern servers, laptops, and smart phones
B One of the great ideas in computer science

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

VM as a Tool for Memory Management

B Key idea: each process has its own virtual address space

= |t can view memory as a simple linear array

= Mapping function scatters addresses through physical memory

- Well-chosen mappings can improve locality

; 0 Address 0
Virtual ot
Address VP 1 transiation
Space for VP 2 PP 2
Process 1:
N-1
PP 6
Virtual 0
irtua —
Address VP 1
Space for VP 2
Process 2:
N-1 M-1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Physical
Address
Space

(DRAM)

(e.g., read-only
library code)

Carnegie Mellon

VM as a Tool for Memory Management

B Simplifying memory allocation

= Each virtual page can be mapped to any physical page

= Avirtual page can be stored in different physical pages at different times
B Sharing code and data among processes

= Map virtual pages to the same physical page (here: PP 6)

Address)
Virtual 0 lati 0 Physical
Address VP 1 transiation Address
Space for VP 2 PP 2 Space
Process 1: (DRAM)
N-1
(e.g., read-only
i library code)
: 0
Virtual PP 8
Address VP 1
Space for VP 2
Process 2:

N-1 M-1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Simplifying Linking and Loading

Memory
. invisible to
Kernel virtual memory
Lo user code
mLinking User stack
= Each program has similar virtual (ETEEEE alt R «—%rsp
address space (stack
= Code, data, and heap always start i pointer)
at the same addresses. Memory-mapped region for
shared libraries
mLoading T
= execve allocates virtual pages «—— brk
for .text and .data sections & Run-time heap
creates PTEs marked as invalid (created bymalloc)
\
* The .text and .data sections Read/write segment Loaded
are copied, page by page, on (.data, .bss) fL°m
, » the
demand by the virtual memory Feee kel G executable
system (.init, .text, .rodata) file
0x400000 ’
Unused

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 0 10

Carnegie Mellon

Address Spaces

B Linear address space: Ordered set of contiguous non-negative integer
addresses:
{0,1,2,3 ...}

@ Virtual address space: Set of N = 2" virtual addresses
{0,1, 2,3, ..., N-1}

B Physical address space: Set of M = 2™ physical addresses
{0,1, 2,3, .., M-1}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Why Virtual Memory (VM)?

B Uses main memory efficiently
= Use DRAM as a cache for parts of a virtual address space

B Simplifies memory management
= Each process gets the same uniform linear address space

B Isolates address spaces

= One process can’t interfere with another’s memory
= User program cannot access privileged kernel information and code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

VM Address Translation

B Virtual Address Space
= V={0 1,.. N-1}
B Physical Address Space
- P={01,.. M-1}
B Address Translation
* MAP: V> P U {0}
= For virtual address a:
- MAP(a) = a’ if data at virtual address a is at physical address a’in P

- MAP(a) = Zif data at virtual address a is not in physical memory
— Either invalid or stored on disk

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

MAP:V ->P

B Mapping function from virtual pages to physical pages
= Page is the granularity of mapping set by the ISA

B Function must be simple and efficient
= |mplemented in hardware
= Significant design constraints

B K-nary tree aka Page Table
= Each node of the tree is 1 page in size

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Enabling Data Structure: Page Table

B A page table is an array of page table entries (PTEs) that
maps virtual pages to physical pages.
= Per-process kernel data structure in DRAM
Physical memory

Physical page (DRAM)
number or
VP1 PPO

Valid disk address /
VP 2

VP4 PP3

—— VP 7
o//

=|o|lo|rR|O|R|=

null > Virtual memory
~

PTE 7 o "~ | . V1

. ~ ~
Memory resident "~ . Soo VP 2
page table NN ~a 3

(DRAM) so
‘\\ VP 4
VP 6
, , . : . VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Address Translation With a Page Table

Page table
base register (PTBR)
(CR3 in x86)

Virtual address

n-1 p p-1

Virtual page number (VPN)

Virtual page offset (VPO)

Page table
Valid Physical page number (PPN)

Physical page table
address for the current

process

Valid bit = 0:
Page not in memory
(page fault)

Valid bit=1

m-1

\ 4

p p-1

0

Physical page number (PPN)

Physical page offset (PPO)

Physical address

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

16

Carnegie Mellon

Page Hit

B Page hit: reference to VM word that is in physical memory
(DRAM cache hit)

Physical memory

Virtual address Physical page (DRAM)
number or TR
Valid disk address / vP1 PP O
1 ./—4 VP4 PP3
1
0 o
1 o/"\t/
0 null Y Virtual memory
0 Q\/ S~ (disk)
PTETL C = TN VP 1
Memory re;:dent \\ S~o . VP 2
page table S “~a
(DRAM) AN VP3
‘\\ VP4
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Address Translation: Page Hit
(2

CPU Chip PTEA)
g . PTE
CPU MMU e Cache/
PA .| Memory

Data

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory
4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Page Fault

B Page fault: reference to VM word that is not in physical
memory (DRAM cache miss)
Physical memory

Physical page
Virtual address number or (DRAM)

VP 1 PP O

Valid disk address /
VP 2

VP4 PP 3

\ 4

m|lo|lo|r|O]|=|m

—

null > Virtual memory
PTE 7 / \\ _ . VP 1
Memory resident \\ S~o . VP 2
page table S~ ~a
(DRAM) N vP3
N VP 4
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Address Translation: Page Fault

Exception

j————=—=—===== > Page fault handler
| 4
I
|
| 2 J\/L

CPU Chlp o I PTEA Victim page

CPU VA > MMU PTE Cache/ .
Disk
o e Memory
New page

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Handling Page Fault

B Page miss causes page fault (an exception)

Virtual address

PTEO

PTE 7

Carnegie Mellon

Physical memory

Physical page (DRAM)
number or TR
] disk add
Vagd isk a IIress /: VP2
nu
s VP 7
1 ./4 VP 4
1
0 o
1 o/"\t/
0 null Y Virtual memory
0 Q\/ \\\ (dlSk)
1 o ~. l N T
Memory resident ~~_ VP 2
page table ~a
(DRAM) vP3
. VP4
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PP 0O

PP 3

21

Carnegie Mellon

Handling Page Fault

B Page miss causes page fault (an exception)
B Page fault handler selects a victim to be evicted (here VP 4)

Physical memory

Physical page
Virtual address number or (DRAM)
Valid disk address / z:: ; PPO
- — VP4 | pp3
1
0 o
1 o/"\t/
0 null Y Virtual memory
0 o~ | ~~_ (disk)
FTE7L C — The VP 1
Memory resident \\ R . VP 2
page table S~ ~a
(DRAM) so vP3
‘\\ VP4
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Handling Page Fault

B Page miss causes page fault (an exception)

Carnegie Mellon

B Page fault handler selects a victim to be evicted (here VP 4)

Virtual address

PTEO

PTE 7

Physical memory

0

Physical page (DRAM)
number or
VP1
VP 2
VP 7
VP 3

~
null ~_ A

klo|lo|o]|kr |k |-

Valid disk address /
null —1 /
— |
[3

Virtual memory

..\/‘\ (disk)

o =] R VP 1

Memory resident ~~_ "~ VP 2

age table AT

Pag Sol N VP 3
(DRAM) ~ol s

. VP4

VP 6

VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PP 0O

PP 3

23

Carnegie Mellon

Handling Page Fault

B Page miss causes page fault (an exception)
B Page fault handler selects a victim to be evicted (here VP 4)

B Offending instruction is restarted: page hit!
Physical memory

Physical page
Virtual address number or (DRAM)
Valid disk address / z:: ; PPO
- ./—4 VP3 PP 3
1
> 1 ./"
0 e
0 null "~ Virtual memory
0 o~ K. (disk)
FTE7L C = VP 1
Memory resident ~~_ \\ VP2
page table Sso Sao
(DRAM) TR vP3
RS VP 4

Key point: Waiting until the miss to copy the page to

VP 6
DRAM is known as demand paging

VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Allocating Pages

Carnegie Mellon

B Allocating a new page (VP 5) of virtual memory.

Physical memory

Physical page (DRAM)
number or o
Valid disk address / Ve 1 PPO
PTEO| o null / VP2
1 ./4. VP 3 PP 3
1
1 —
0 [N
0 & "~ Virtual memory
0 o« L (disk)
Fre7L '/'\‘\\‘x\\\\ VP 1
Memory resident\\\\ \\ o5
page table S \\ S
(DRAM) AN N VP3
DTN VP4
N VP 5
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

25

Carnegie Mellon

VM as a Tool for Memory Protection

B Extend PTEs with permission bits
B MMU checks these bits on each access

Physical
Processi: SUP READ WRITE EXEC Address Address Space
VP 0O: No Yes No Yes PP 6
VP 1: No Yes Yes Yes PP4
VP 2: Yes Yes Yes No PP 2 A
[J
° PP4
o
PP 6
Process] SUP READ WRITE EXEC Address PP 8
VP 0O: No Yes No Yes PP9 PP 9
VP1:| Yes Yes Yes Yes PP 6
VP2:| No Yes Yes Yes PP 11 PP 11

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

26

Carnegie Mellon

VM is also Caching

B Programs allocate virtual address ranges
= |mplicitly via binaries / libraries
= Explicitly through heap / stack

B The operating system decides which virtual pages should
be resident (i.e., in physical memory)

= OS manages the placement / replacement policies between
DRAM and disk

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

VM as a Tool for Caching

B Conceptually, virtual memory is an array of N contiguous
bytes stored on disk.

B The contents of the array on disk are cached in physical
memory (DRAM cache)

= These cache blocks are called pages (size is P = 2P bytes)

Virtual memory Physical memory

0

VP 0 | Unallocated
VP 1 | Cached \0b Empty PPO
Uncached PP1

Unallocated Empty

Cached
Uncached >< Empty
Cached PP 2mP-1

o M-1
VP 2"P-1 | Uncached N
Virtual pages (VPs) Physical pages (PPs)
stored on disk cached in DRAM

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

DRAM Cache Organization

B DRAM cache organization driven by the enormous miss penalty
= DRAM is about 10x slower than SRAM
= Disk is about 10,000x slower than DRAM

B Consequences
= Large page (block) size: typically 4 KB, sometimes 4 MB
= Fully associative
= Any VP can be placed in any PP
= Requires a “large” mapping function — different from cache memories
= Highly sophisticated, expensive replacement algorithms
- Too complicated and open-ended to be implemented in hardware
= Write-back rather than write-through

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Integrating VM and Cache

PTE
H \ 4
CPU Chip po— PTE
hit
PTEA prea| PTEA
> miss
CPU VA " MMU Memory
A PA PA PA
miss
PA . Data
hit
L1
Data cache

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Locality to the Rescue Again!

B Virtual memory seems terribly inefficient, but it works
because of locality.

B At any point in time, programs tend to access a set of active
virtual pages called the working set
= Programs with better temporal locality will have smaller working sets

m If (working set size < main memory size)
= Good performance for one process after compulsory misses

® If (SUM(working set sizes) > main memory size)

= Thrashing: Performance meltdown where pages are swapped (copied)
in and out continuously

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Speeding up Translation with a TLB

B Page table entries (PTEs) are cached in L1 like any other
memory word
= PTEs may be evicted by other data references
= PTE hit still requires a small L1 delay

B Solution: Translation Lookaside Buffer (TLB)
= Small set-associative hardware cache in MMU
= Maps virtual page numbers to physical page numbers
= Contains complete page table entries for small number of pages

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Accessing the TLB

B MMU uses the VPN portion of the virtual address to
access the TLB:

T =2tsets
VPN
TLBT matchestag — — —
of line within set n-1 p+t p+t-1 p p-1 0

TLB tag (TLBT) | TLB index (TLBI) VPO

Set 0 v tag_l PTE v tag_l PTE
TLBI selects the set
Set1l v tag_l PTE v tag_l PTE <
[]
[]
[]
SetT-1 |[|v] | tag || PTE v| [tag | | PTE

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

TLB Hit

CPU Chip .
e PTE
VPN | e
@
VA . PA \
CPU MMU ° | cache /

Memory

Data

A TLB hit eliminates a memory access

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

TLB Miss

CPU Chip
TLB °
0 5 PTE
VPN
VA \ PTEA \
CPU MMU "l cache/
PA | Memory
Data

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare. Why?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Summary of Address Translation Symbols

B Basic Parameters
= N=2": Number of addresses in virtual address space
= M=2": Number of addresses in physical address space
= P =2P :Pagesize (bytes)
B Components of the virtual address (VA)
= TLBI: TLB index
= TLBT: TLB tag
= VPO: Virtual page offset
= VPN: Virtual page number

B Components of the physical address (PA)
= PPO: Physical page offset (same as VPO)
= PPN: Physical page number

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Quiz

https://canvas.cmu.edu/courses/47415/quizzes/143265

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

https://canvas.cmu.edu/courses/47415/quizzes/143265

We have a m

Virtual

memory

{(null)

VPO

220 Entries of

VP 1023 > 2K allocated VM pages

4 bytes ea Ch VP 1024 for code and data
vP2047 |
\
(null)
Gap > 6K unallocated VM pages

{(null)

/
1023
unallocated 1023 unallocated pages
pages
FTE 5215 _ VP 9215 1 allocated VM page
. for the stack
32 bit addresses, 4KB pages, 4-byte PTEs « .o e

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Multi-Level Page Tables

B Suppose: Level 2
= 4KB (21%) page size, 48-bit address space, 8-byte PTE Tables

B Problem:

Level 1
= Would need a 512 GB page table! Table
- 248 * 2-12 * 23 - 239 bytes ;/’

B Common solution: Multi-level page table

B Example: 2-level page table

= Level 1 table: each PTE points to a page table (always
memory resident)

= Level 2 table: each PTE points to a page
(paged in and out like any other data)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

A Two-Level Page Table Hierarchy

Level 1 Level 2 Virtual
page table page tables memory
0
vo |)
PTE O — [reo
VP 1023 > 2K allocated VM pages
PTE 1 VP 1024 for code and data
PTE 2 (null) PTE 1023
PTE 3 (null)
vP2047 |
PTE 5 (null)
PTE 7 (null) Gap > 6K unallocated VM pages
PTE 8 >
1023 null
(1K - 9) PTEs Y,
null PTEs PTE 1023 1023
unallocated 1023 unallocated pages
pages
VP 9215 1 allocated VM page

. for the stack
32 bit addresses, 4KB pages, 4-byte PTEs

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Translating with a k-level Page Table

Page table
base register
(PTBR)
n-1 VIRTUAL ADDRESS o-1 0

VPN 1 VPN 2 VPN k VPO
the Level 1 a Level 2 a Level k

page table page table page table

: PPN} —

m'1 4 p'1 v 0
PPN PPO
PHYSICAL ADDRESS

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

41

TLBs and k-level Page Tables

B TLBs cache the complete virtual to physical mapping

= Regardless of the levels of page tables,
the TLB stores the VPN -> PPN

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Summary

B Programmer’s view of virtual memory
= Each process has its own private linear address space
= Cannot be corrupted by other processes

B System view of virtual memory
= Uses memory efficiently by caching virtual memory pages
Efficient only because of locality
= Simplifies memory management and programming

= Simplifies protection by providing a convenient interpositioning point
to check permissions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Activity Part 1

wget http://www.cs.cmu.edu/~213/activities/vm—-concepts.tar
tar xf vm-concepts.tar

cd vm-concepts

less addrs.c

... further instructions in handout ...
Stop after part 1 (end of page 2)

Caution: problems 3-5 involve deliberately running the sharks out of
memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

http://www.cs.cmu.edu/~213/activities/vm-concepts.tar

Carnegie Mellon

Activity Part 2 through 4

B Now you have some idea what is going on
B Let’s look at how it’s done

B Details aren’t supposed to be visible
= We can get some clues via performance monitoring

B Do activity part 2 through 4 now
= Stop at the end of page 5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Activity Part 5 and 6

B So far we’ve only been looking at well-behaved
programs

B What if they misbehave?

B Wouldn't it be nice if a misbehaving process couldn’t
interfere with any other processes?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

	Slide 1: Virtual Memory: Concepts 15-213/15-503: Introduction to Computer Systems 16th Lecture, June 11, 2025
	Slide 2: Midterm “Exam”
	Slide 3: This Picture is a Lie
	Slide 4: Processes (Teaser for July)
	Slide 5: Hmmm, How Does This Work?!
	Slide 6: A System Using Physical Addressing
	Slide 7: A System Using Virtual Addressing
	Slide 8: VM as a Tool for Memory Management
	Slide 9: VM as a Tool for Memory Management
	Slide 10: Simplifying Linking and Loading
	Slide 11: Address Spaces
	Slide 12: Why Virtual Memory (VM)?
	Slide 13: VM Address Translation
	Slide 14: MAP: V -> P
	Slide 15: Enabling Data Structure: Page Table
	Slide 16: Address Translation With a Page Table
	Slide 17: Page Hit
	Slide 18: Address Translation: Page Hit
	Slide 19: Page Fault
	Slide 20: Address Translation: Page Fault
	Slide 21: Handling Page Fault
	Slide 22: Handling Page Fault
	Slide 23: Handling Page Fault
	Slide 24: Handling Page Fault
	Slide 25: Allocating Pages
	Slide 26: VM as a Tool for Memory Protection
	Slide 27: VM is also Caching
	Slide 28: VM as a Tool for Caching
	Slide 29: DRAM Cache Organization
	Slide 30: Integrating VM and Cache
	Slide 31: Locality to the Rescue Again!
	Slide 32: Speeding up Translation with a TLB
	Slide 33: Accessing the TLB
	Slide 34: TLB Hit
	Slide 35: TLB Miss
	Slide 36: Summary of Address Translation Symbols
	Slide 37: Quiz
	Slide 38: We have a problem
	Slide 39: Multi-Level Page Tables
	Slide 40: A Two-Level Page Table Hierarchy
	Slide 41: Translating with a k-level Page Table
	Slide 42: TLBs and k-level Page Tables
	Slide 43: Summary
	Slide 44: Activity Part 1
	Slide 45: Activity Part 2 through 4
	Slide 46: Activity Part 5 and 6

