
Carnegie Mellon

1

14-513 18-613

Carnegie Mellon

2

Cache Memories

15-213/14-513/15-513: Introduction to Computer Systems
10th Lecture, Summer 2025

Carnegie Mellon

3

Today

¢ Cache memory organization and operation CSAPP 6.4-6.5
¢ Performance impact of caches

§ Rearranging loops to improve spatial locality CSAPP 6.6.2
§ Using blocking to improve temporal locality CSAPP 6.6.3

Carnegie Mellon

4

Recall: General Cache Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

Carnegie Mellon

5

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!

Carnegie Mellon

6

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memoryRequest: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
• Replacement policy:

determines which block
gets evicted (victim)

Carnegie Mellon

7

Recall: Working Set, Locality, and Caches

¢ Working Set: The set of data a program is currently “working on”
§ Definition of “currently” depends on context, e.g., in this loop
§ Includes accesses to data and instructions

¢ Principle of Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used recently
§ Nearby addresses: Spatial Locality
§ Equal addresses: Temporal locality

¢ Caches take advantage of temporal locality by storing recently
used data, and spatial locality by copying data in block-sized
transfer units
§ Locality reduces working set sizes
§ Caches are most effective when the working set fits in the cache

Carnegie Mellon

8

Recall: General Caching Concepts:
3 Types of Cache Misses

¢ Cold (compulsory) miss
§ Cold misses occur because this is the first reference to the block.
 (Misses with infinitely large cache with no placement restrictions)

¢ Capacity miss
§ Occurs when the set of active cache blocks is larger than the cache.

(Additional misses from finite-sized cache with no placement restrictions)

¢ Conflict miss
§ Occurs when the cache is large enough, but too many data objects all

map (by the placement policy) to the same limited set of blocks
(Additional misses due to actual placement policy)

Carnegie Mellon

9

CPU Cache Memories

¢ CPU cache memories are small, fast SRAM-based
memories managed automatically in hardware
§ Hold frequently accessed blocks of main memory

¢ CPU looks first for data in cache
¢ Typical system structure:

Main
memoryMemory Controller

ALU

Register file

CPU chip

Memory bus

Cache
memory

Carnegie Mellon

10

Cache Organization: Direct-Mapped

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
4

4

Advantages?

Disadvantages?

Carnegie Mellon

12
Source: Diving into Systems

Index: Where is memory address in
cache?

https://diveintosystems.org/book/C11-MemHierarchy/caching.html

Carnegie Mellon

15

Memory address is in the cache block if the valid
bit (V) is 1 and tag matches.

Source: Diving into Systems

https://diveintosystems.org/book/C11-MemHierarchy/caching.html

Carnegie Mellon

16

Given cache block, offset is which bytes program
wants to retrieve.

Source: Diving into Systems

https://diveintosystems.org/book/C11-MemHierarchy/caching.html

Carnegie Mellon

17

Example read:
Assume 16 bit address, 32 byte block size, 128
cache lines.

Source: Diving into Systems

https://diveintosystems.org/book/C11-MemHierarchy/caching.html

Carnegie Mellon

18
Source: Diving into Systems

https://diveintosystems.org/book/C11-MemHierarchy/caching.html

Carnegie Mellon

20

Cache Organization: Set-Associative

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 8 143Cache

Memory
4

4

Why?

Carnegie Mellon

21

In two-way set associate cache, each
cache set can store 2 cache blocks.

Source: Diving into Systems

(D is dirty bit, more on that in later slides)

In general: Index says which
cache set (rather than line)
contains data.

https://diveintosystems.org/book/C11-MemHierarchy/caching.html

Carnegie Mellon

22

General Cache Organization (S, E, B)
E = 2e lines per set

S = 2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size
 = S x E x B data bytes

valid bit

Carnegie Mellon

23

Cache Read
E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit B = 2b bytes per cache block (the data)

t bits s bits b bits
Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set
• Check if any line in set

has matching tag
• Yes + line valid: hit
• Locate data starting

at offset

A = *0xFFFFF1032;

Carnegie Mellon

24

Example: Direct Mapped Cache (E = 1)

S = 2s sets

Direct mapped: One line per set
Assume: cache block size B=8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Carnegie Mellon

25

Example: Direct Mapped Cache (E = 1)
Direct mapped: One line per set
Assume: cache block size B=8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match: assume yes (= hit)valid? +

block offset

tag

Carnegie Mellon

26

Example: Direct Mapped Cache (E = 1)
Direct mapped: One line per set
Assume: cache block size B=8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match: assume yes (= hit)valid? +

int (4 Bytes) is here

block offset

If tag doesn’t match (= miss): old line is evicted and replaced

Carnegie Mellon

27

Direct-Mapped Cache Simulation
4-bit addresses (address space size M=16 bytes)
S=4 sets, E=1 blocks/set, B=2 bytes/block

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

x
t=1 s=2 b=1

xx x

0
v Tag Block

0
0
0

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

0 M[0-1]Set 0
Set 1
Set 2
Set 3

(cold)

(cold)
(cold)

(conflict)

Carnegie Mellon

28

E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size B=8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set

2 lines per set

S sets

Carnegie Mellon

29

E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size B=8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes (= hit)

block offset

tag

Carnegie Mellon

30

E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size B=8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes (= hit)

block offset

tag 54

short int (2 Bytes) is here

No match or not valid (= miss):
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

Carnegie Mellon

31

2-Way Set Associative Cache Simulation

4-bit addresses (M=16 bytes)
S=2 sets, E=2 blocks/set, B=2 bytes/block

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

xx
t=2 s=1 b=1

x x

0
v Tag Block

0

0
0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

Set 0

Set 1

(cold)

(cold)
(cold)

Carnegie Mellon

32

What about writes?
¢ Multiple copies of data exist:

§ L1, L2, L3, Main Memory

¢ What to do on a write-hit?
§ Write-through (write immediately to memory)
§ Write-back (defer write to memory until replacement of line)

§ Each cache line needs a dirty bit (set if data has been written to)

¢ What to do on a write-miss?
§ Write-allocate (load into cache, update line in cache)

§ Good if more writes to the location will follow
§ No-write-allocate (writes straight to memory,

 does not load into cache)

¢ Typical
§ Write-through + No-write-allocate
§ Write-back + Write-allocate

0 1 2 B-1tagd

B = 2b bytesdirty bit

v

valid bit

Carnegie Mellon

33

Practical Write-back Write-allocate
¢ A write to address X is issued

¢ If it is a hit
§ Update the contents of block
§ Set dirty bit to 1 (bit is sticky and only cleared on eviction)

¢ If it is a miss
§ Fetch block from memory (per a read miss)
§ Then perform the write operations (per a write hit)

¢ If a line is evicted and dirty bit is set to 1
§ The entire block of 2b bytes are written back to memory
§ Dirty bit is cleared (set to 0)
§ Line is replaced by new contents

0 1 2 B-1tagd

B = 2b bytesdirty bit

v

valid bit

Carnegie Mellon

34

Cache Performance Metrics
¢ Miss Rate

§ Fraction of memory references not found in cache (misses / accesses)
= 1 – hit rate

§ Typical numbers (in percentages):
§ 3-10% for L1
§ can be quite small (e.g., < 1%) for L2, depending on size, etc.

¢ Hit Time
§ Time to deliver a line in the cache to the processor

§ includes time to determine whether the line is in the cache
§ Typical numbers:

§ 4 clock cycle for L1
§ 10 clock cycles for L2

¢ Miss Penalty
§ Additional time required because of a miss

§ typically 50-200 cycles for main memory (Trend: increasing!)

Carnegie Mellon

35

¢ Huge difference between a hit and a miss
§ Could be 100x, if just L1 and main memory

¢ Would you believe 99% hits is twice as good as 97%?
§ Consider this simplified example:

 cache hit time of 1 cycle
 miss penalty of 100 cycles

§ Average access time:
 97% hits: 1 cycle + 0.03 x 100 cycles = 4 cycles
 99% hits: 1 cycle + 0.01 x 100 cycles = 2 cycles

¢ This is why “miss rate” is used instead of “hit rate”

Carnegie Mellon

36

Writing Cache Friendly Code

¢ Make the common case go fast
§ Focus on the inner loops of the core functions

¢ Minimize the misses in the inner loops
§ Repeated references to variables are good (temporal locality)
§ Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories

Carnegie Mellon

37

Quiz Time!

Canvas Quiz: Day 10 – Cache Memories
https://canvas.cmu.edu/courses/47415/quizzes/14
3236

Carnegie Mellon

38

Today

¢ Cache organization and operation
¢ Performance impact of caches

§ Rearranging loops to improve spatial locality
§ Using blocking to improve temporal locality

Carnegie Mellon

39

Remember matrix multiplication

Out[i, j] =
 dot product(A[i, ..], B[..,j])
 = sum (a[i, 0] * b[0, j],

 a[i, 1] * b[1, j],
 …

 a[i, n] * b[n, j])

Carnegie Mellon

40

Matrix Multiplication Example

¢ Description:
§ Multiply N x N matrices
§ Matrix elements are

doubles (8 bytes)
§ O(N3) total operations
§ N reads per source

element
§ N values summed per

destination
§ but may be able to

hold in register

/* ijk */
for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

Variable sum
held in register

matmult/mm.c

Carnegie Mellon

41

Miss Rate Analysis for Matrix Multiply

¢ Assume:
§ Block size = 32B (big enough for four doubles)
§ Matrix dimension (N) is very large

§ Approximate 1/N as 0.0
§ Cache is not even big enough to hold multiple rows

¢ Analysis Method:
§ Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

= x

Carnegie Mellon

42

Layout of C Arrays in Memory (review)
¢ C arrays allocated in row-major order

¢ Stepping through columns in one row:
§ for (i = 0; i < N; i++)

sum += a[0][i]
§ if block size (B) > sizeof(aij) bytes, exploit spatial locality

§ miss rate = sizeof(aij) / B
¢ Stepping through rows in one column:

§ for (i = 0; i < M; i++)
sum += a[i][0];

§ accesses distant elements: no spatial locality!
§ miss rate = 1 (i.e. 100%)

• • •
a
[0]
[0]

a
[0]
[N-1]

• • •
a
[1]
[0]

a
[1]
[N-1]

• • •
a

[M-1]
[0]

a
[M-1]
[N-1]

• • •

Carnegie Mellon

43

Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Miss rate for inner loop iterations:
 A B C

matmult/mm.c

Block size = 32B (four doubles)

Carnegie Mellon

44

Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Miss rate for inner loop iterations:
 A B C
 0.25 1.0 0.0

matmult/mm.c

Block size = 32B (four doubles)

Carnegie Mellon

45

Matrix Multiplication (kij)

/* kij */
for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Miss rate for inner loop iterations:
 A B C

matmult/mm.c

Block size = 32B (four doubles)

Carnegie Mellon

46

Matrix Multiplication (kij)

/* kij */
for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Miss rate for inner loop iterations:
 A B C
 0.0 0.25 0.25

matmult/mm.c

Block size = 32B (four doubles)

Carnegie Mellon

47

Matrix Multiplication (jki)

/* jki */
for (j=0; j<n; j++) {
 for (k=0; k<n; k++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Miss rate for inner loop iterations:
 A B C

matmult/mm.c

Block size = 32B (four doubles)

Carnegie Mellon

48

Matrix Multiplication (jki)

/* jki */
for (j=0; j<n; j++) {
 for (k=0; k<n; k++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Miss rate for inner loop iterations:
 A B C
 1.0 0.0 1.0

matmult/mm.c

Block size = 32B (four doubles)

Carnegie Mellon

49

Summary of Matrix Multiplication

ijk (& jik):
• 2 loads, 0 stores
• avg misses/iter = 1.25

kij (& ikj):
• 2 loads, 1 store
• avg misses/iter = 0.5

jki (& kji):
• 2 loads, 1 store
• avg misses/iter = 2.0

for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

for (j=0; j<n; j++) {
 for (k=0; k<n; k++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

Carnegie Mellon

50

Core i7 Matrix Multiply Performance

1

10

100

50 100 150 200 250 300 350 400 450 500 550 600 650 700
Array size (n)

jki
kji
ijk
jik
kij
ikj ijk / jik (1.25)

jki / kji (2.0)

kij / ikj (0.5)

Cycles per inner loop iteration

Carnegie Mellon

51

Today

¢ Cache organization and operation
¢ Performance impact of caches

§ Rearranging loops to improve spatial locality
§ Using blocking to improve temporal locality

Carnegie Mellon

52

Example: Matrix Multiplication

a b

i

j

x
c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;
 for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 for (k = 0; k < n; k++)
 c[i*n + j] += a[i*n + k] * b[k*n + j];
}

Carnegie Mellon

53

Cache Miss Analysis
¢ Assume:

§ Matrix elements are doubles
§ Cache block = 8 doubles
§ Cache size C << n (much smaller than n)

¢ First iteration:
§ n/8 + n = 9n/8 misses

§ Afterwards in cache:
(schematic)

x=

n

x=
8 wide

Carnegie Mellon

54

Cache Miss Analysis
¢ Assume:

§ Matrix elements are doubles
§ Cache block = 8 doubles
§ Cache size C << n (much smaller than n)

¢ Second iteration:
§ Again:

n/8 + n = 9n/8 misses

¢ Total misses:
§ (9n/8) n2 = (9/8) n3

n

x=
8 wide

Carnegie Mellon

55

Blocked Matrix Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;
 for (i = 0; i < n; i+=B)
 for (j = 0; j < n; j+=B)
 for (k = 0; k < n; k+=B)
 /* B x B mini matrix multiplications */
 for (i1 = i; i1 < i+B; i1++)
 for (j1 = j; j1 < j+B; j1++)
 for (k1 = k; k1 < k+B; k1++)
 c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
}

a b

i1

j1

x
c

=
c

+

Block size B x B

matmult/bmm.c

Carnegie Mellon

56

Cache Miss Analysis
¢ Assume:

§ Cache block = 8 doubles
§ Cache size C << n (much smaller than n)
§ Three blocks fit into cache: 3B2 < C

¢ First (block) iteration:
§ B*B/8 misses for each block
§ 2n/B x B2/8 = nB/4

(omitting matrix c)

§ Afterwards in cache
(schematic)

x=

x=

Block size B x B

n/B blocks

Carnegie Mellon

57

Cache Miss Analysis
¢ Assume:

§ Cache block = 8 doubles
§ Cache size C << n (much smaller than n)
§ Three blocks fit into cache: 3B2 < C

¢ Second (block) iteration:
§ Same as first iteration
§ 2n/B x B2/8 = nB/4

¢ Total misses:
§ nB/4 * (n/B)2 = n3/(4B)

x=

Block size B x B

n/B blocks

Carnegie Mellon

58

Blocking Summary

¢ No blocking: (9/8) n3 misses
¢ Blocking: (1/(4B)) n3 misses

¢ Use largest block size B, such that B satisfies 3B2 < C
§ Fit three blocks in cache! Two input, one output.

¢ Reason for dramatic difference:
§ Matrix multiplication has inherent temporal locality:

§ Input data: 3n2, computation 2n3

§ Every array elements used O(n) times!
§ But program has to be written properly

Carnegie Mellon

59

Cache Summary

¢ Cache memories can have significant performance impact

¢ You can write your programs to exploit this!
§ Focus on the inner loops, where bulk of computations and memory

accesses occur.
§ Try to maximize spatial locality by reading data objects sequentially

with stride 1.
§ Try to maximize temporal locality by using a data object as often as

possible once it’s read from memory.

Carnegie Mellon

60

Supplemental slides

Carnegie Mellon

61

Recall: Locality

¢ Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they
have used recently

¢ Temporal locality:
§ Recently referenced items are likely

to be referenced again in the near future

¢ Spatial locality:
§ Items with nearby addresses tend

to be referenced close together in time

Carnegie Mellon

62

Recall: Memory
 Hierarchy Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files
retrieved from disks
on remote servers.

L2 cache
(SRAM)

L1 cache holds cache lines retrieved
from the L2 cache.

CPU registers hold words retrieved
from the L1 cache.

L2 cache holds cache lines
 retrieved from L3 cache.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L3 cache holds cache lines
 retrieved from main memory.

L6:

Main memory holds disk blocks
retrieved from local disks.

Carnegie Mellon

63

Recall: Modern CPU Design

Execution

Functional
Units

Instruction Control

Branch Arith Arith Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Prediction OK?

DataData

Addr. Addr.

Arith

Operation Results

Retirement
Unit

Register
File

Register Updates

Carnegie Mellon

64

What it Really Looks Like

Bus interface

ALU

Register file

CPU chip

Cache
memory

Core i7-3960XAMD FX 8150Nehalem

Carnegie Mellon

65

What it Really Looks Like (Cont.)

Intel Sandy Bridge
Processor Die

L1: 32KB Instruction + 32KB Data
L2: 256KB
L3: 3–20MB

Carnegie Mellon

66

Why Index Using Middle Bits?

S = 2s sets

Direct mapped: One line per set
Assume: cache block size 8 bytes

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

t bits 0…01 100
Address of int:

find set

Standard Method:
Middle bit indexing

t bits1…11 100
Address of int:

find set

Alternative Method:
High bit indexing

Carnegie Mellon

67

Illustration of Indexing
Approaches
¢ 64-byte memory

§ 6-bit addresses

¢ 16 byte, direct-mapped cache
¢ Block size = 4. (Thus, 4 sets; why?)
¢ 2 bits tag, 2 bits index, 2 bits offset

Set 0

Set 1

Set 2

Set 3

1111xx

1110xx

1101xx

1100xx

1011xx

1010xx

1001xx

1000xx

0111xx

0110xx

0101xx

0100xx

0011xx

0010xx

0001xx

0000xx

Carnegie Mellon

68

Middle Bit Indexing

¢ Addresses of form TTSSBB
§ TT Tag bits
§ SS Set index bits
§ BB Offset bits

¢ Makes good use of spatial locality

Set 0

Set 1

Set 2

Set 3

1111xx

1110xx

1101xx

1100xx

1011xx

1010xx

1001xx

1000xx

0111xx

0110xx

0101xx

0100xx

0011xx

0010xx

0001xx

0000xx

Carnegie Mellon

69

High Bit Indexing

¢ Addresses of form SSTTBB
§ SS Set index bits
§ TT Tag bits
§ BB Offset bits

¢ Program with high spatial locality
would generate lots of conflicts

Set 0

Set 1

Set 2

Set 3

1111xx

1110xx

1101xx

1100xx

1011xx

1010xx

1001xx

1000xx

0111xx

0110xx

0101xx

0100xx

0011xx

0010xx

0001xx

0000xx

Carnegie Mellon

70

Example: Core i7 L1 Data Cache

B =
S = , s =
E = , e =
C =

Block offset: . bits
Set index: . bits
Tag: . bits

Stack Address:
0x00007f7262a1e010

Block offset: 0x??
Set index: 0x??
Tag: 0x??

32 kB 8-way set associative
64 bytes/block
47 bit address range

Carnegie Mellon

71

Example: Core i7 L1 Data Cache

B = 64
S = 64, s = 6
E = 8, e = 3
C = 64 x 64 x 8 = 32,768

Block offset: 6 bits
Set index: 6 bits
Tag: 35 bits

Stack Address:
0x00007f7262a1e010

Block offset: 0x10
Set index: 0x0
Tag: 0x7f7262a1e

32 kB 8-way set associative
64 bytes/block
47 bit address range

0000 0001 0000

Carnegie Mellon

72

Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; j++) {
 for (i=0; i<n; i++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum
 }
}

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Row-wise Column-
wise

Fixed

Misses per inner loop iteration:
 A B C
 0.25 1.0 0.0

matmult/mm.c

Block size = 32B (four doubles)

Carnegie Mellon

73

Matrix Multiplication (ikj)

/* ikj */
for (i=0; i<n; i++) {
 for (k=0; k<n; k++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
 A B C
 0.0 0.25 0.25

matmult/mm.c

Block size = 32B (four doubles)

Carnegie Mellon

74

Matrix Multiplication (kji)

/* kji */
for (k=0; k<n; k++) {
 for (j=0; j<n; j++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

FixedColumn-
wise

Column-
wise

Misses per inner loop iteration:
 A B C
 1.0 0.0 1.0

matmult/mm.c

Block size = 32B (four doubles)

