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The Memory Hierarchy

15-213/14-513/15-513: Introduction to Computer Systems
9th Lecture,  Summer 2025
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Announcements

 Attack lab due June 10
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Today

 The memory abstraction
 RAM : main memory building block
 Locality of reference
 The memory hierarchy
 Storage technologies and trends
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movq 8(%rsp), %rax

Read from memory to CPU: “Load”
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movq %rax, (%rbx, %rcx, 2)

Write from CPU to memory: “Store”
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Inside a CPU

Memory Controller

ALU

Register file

CPU chip
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A bus connects the CPU and Memory

 A bus is a collection of parallel wires that carry address, 
data, and control signals.

 Buses are typically shared by multiple devices.

Main
memoryMemory Controller

ALU

Register file

CPU chip

Memory bus
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Memory Read Transaction (1)

 CPU places address A on the memory bus.

ALU

Register file

Memory Controller

A
0

Ax

Main memory

%rax

Load operation: movq A, %rax
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Memory Read Transaction (2)

 Main memory reads A from the memory bus, retrieves 
word x, and places it on the bus.

ALU

Register file

Memory Controller

x 0

Ax

Main 
memory

%rax

Load operation: movq A, %rax



Carnegie Mellon

11

Memory Read Transaction (3)

 CPU reads word x from the bus and copies it into register 
%rax.

ALU

Register file

Memory Controller x

Main memory
0

A

%rax

Load operation: movq A, %rax

x
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Memory Write Transaction (1)

 CPU places address A on bus. Main memory reads it and 
waits for the corresponding data word to arrive.

y
ALU

Register file

Memory Controller

A

Main memory
0

A

%rax

Store operation: movq %rax, A
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Memory Write Transaction (2)

  CPU places data word y on the bus.

y
ALU

Register file

Memory Controller

y

Main memory
0

A

%rax

Store operation: movq %rax, A
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Memory Write Transaction (3)

 Main memory reads data word y from the bus and stores 
it at address A.

y
ALU

Register file

Memory Controller y

Main memory
0

A

%rax

Store operation: movq %rax, A
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Today

 The memory abstraction
 RAM : main memory building block
 Locality of reference
 The memory hierarchy
 Storage technologies and trends
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Random-Access Memory (RAM)

 Key features
▪ RAM is traditionally packaged as a chip.

▪ or embedded as part of processor chip

▪ Basic storage unit is normally a cell (one bit per cell).

▪ Multiple RAM chips form a memory.

 RAM comes in two varieties:
▪ SRAM (Static RAM)

▪ DRAM (Dynamic RAM)
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RAM Technologies

 DRAM

 1 Transistor + 1 
capacitor / bit

▪ Capacitor oriented 
vertically

 Must refresh state 
periodically

 SRAM

 6 transistors / bit

 Holds state 
indefinitely
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SRAM vs DRAM Summary

 Trends
▪ SRAM scales with semiconductor technology

▪ Reaching its limits

▪ DRAM scaling limited by need for minimum capacitance

▪ Aspect ratio limits how deep can make capacitor

▪ Also reaching its limits

Trans. Access Needs Needs  
 per bit  time refresh? EDC? Cost Applications

SRAM 6 or 8 1x No Maybe 100x Cache memories

DRAM 1 10x Yes Yes 1x Main memories,
      frame buffers

EDC: Error detection and correction
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Data striped across RAM chips in modules

: supercell (i,j)

64 MB  
memory module
consisting of
eight 8Mx8 DRAMs

addr (row = i, col = j)

Memory

controller

DRAM 7

DRAM 0

031 78151623243263 394047485556

64-bit word main memory address A

bits

0-7

bits

8-15

bits

16-23

bits

24-31

bits

32-39

bits

40-47

bits

48-55

bits

56-63

64-bit word

031 78151623243263 394047485556
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Today

 The memory Abstraction
 DRAM : main memory building block
 Locality of reference
 The memory hierarchy
 Storage technologies and trends
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The CPU-Memory Gap Keeps Growing
The gap widens between DRAM, disk, and CPU speeds. 

0.0
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1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0
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T
im

e
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n
s

)
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Disk seek time

SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle time

DRAM

CPU

SSD

Disk

SRAM
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Locality helps us bridge that gap

 Principle of Locality: Many programs tend to use data and 
instructions with addresses near or equal to those they 
have used recently.

 Temporal locality:  
▪ Recently referenced items are likely 

to be referenced again in the near future

 Spatial locality:  

▪ Items with nearby addresses tend 
to be referenced close together in time
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Locality Example

 Data references

▪ Reference array elements in succession 
(stride-1 reference pattern).

▪ Reference variable sum each iteration.

 Instruction references
▪ Reference instructions in sequence.

▪ Cycle through loop repeatedly. 

sum = 0;

for (i = 0; i < n; i++)

 sum += a[i];

return sum;

Spatial or Temporal
Locality?

temporal

spatial

temporal

spatial
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Qualitative Estimates of Locality
 Claim: Being able to look at code and get a qualitative 

sense of its locality is a key skill for a professional 
programmer.

 Question: Does this function have good locality with 
respect to array a? int sum_array_rows(int a[M][N])

{

    int i, j, sum = 0;

    for (i = 0; i < M; i++)

        for (j = 0; j < N; j++)

            sum += a[i][j];

    return sum;

}

Answer: yes

Hint: array layout
 is row-major order

• • •

a

[0]

[0]

a

[0]

[N-1]

• • •

a

[1]

[0]

a

[1]

[N-1]

• • •

a

[M-1]

[0]

a

[M-1]

[N-1]

• •  •
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Locality Example

 Question: Does this function have good locality with 
respect to array a?

int sum_array_cols(int a[M][N])

{

    int i, j, sum = 0;

    for (j = 0; j < N; j++)

        for (i = 0; i < M; i++)

            sum += a[i][j];

    return sum;

}

Answer: no, unless…

M is very small

• • •

a

[0]

[0]

a

[0]

[N-1]

• • •

a

[1]

[0]

a

[1]

[N-1]

• • •

a

[M-1]

[0]

a

[M-1]

[N-1]

• •  •
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Locality Example

 Question: Can you permute the loops so that the function 
scans the 3-d array a with a stride-1 reference pattern 

(and thus has good spatial locality)?

int sum_array_3d(int a[M][N][N])

{

    int i, j, k, sum = 0;

    for (i = 0; i < N; i++)

        for (j = 0; j < N; j++)

            for (k = 0; k < M; k++)

                sum += a[k][i][j];

    return sum;

}

Answer: make j the inner loop
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Today

 The memory abstraction
 DRAM : main memory building block
 Storage technologies and trends
 Locality of reference
 The memory hierarchy
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Memory Hierarchies

 Some fundamental and enduring properties of hardware 
and software:

▪ Fast storage technologies cost more per byte, have less capacity, 
and sometimes require more power (heat!). 

▪ The gap between CPU and main memory speed is widening.

▪ Well-written programs tend to exhibit good locality.

 These properties complement each other well for many 
types of programs.

 They suggest an approach for organizing memory and 
storage systems known as a memory hierarchy.
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Example Memory 
     Hierarchy Regs

L1 cache 
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,  
slower, 
and 
cheaper 
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files 
retrieved from disks 
on remote servers.

L2 cache 
(SRAM)

L1 cache holds cache lines retrieved 
from the L2 cache.

CPU registers hold words retrieved 
from the L1 cache.

L2 cache holds cache lines
 retrieved from L3 cache.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and 
costlier
(per byte)
storage 
devices

L3 cache 
(SRAM)

L3 cache holds cache lines
 retrieved from main memory.

L6:

Main memory holds disk blocks 
retrieved from local disks.
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Caches

 Cache: A smaller, faster storage device that acts as a staging 
area for a subset of the data in a larger, slower device.

 Fundamental idea of a memory hierarchy:

▪ For each k, the faster, smaller device at level k serves as a cache for the 
larger, slower device at level k+1.

 Why do memory hierarchies work?

▪ Because of locality: programs tend to access the data at level k more 
often than they access the data at level k+1. 

▪ Thus, the storage at level k+1 can be slower, and thus larger and 
cheaper per bit.

 Big Idea (Ideal):  The memory hierarchy creates a large pool
of storage that costs as much as the cheap storage near the 
bottom, but that serves data to programs at the rate of the 
fast storage near the top.
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General Cache Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized 
transfer units

Smaller, faster, more expensive
memory caches a  subset of
the blocks

4

4

4

10

10

10
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General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!
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General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memory

Request: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
•Replacement policy:

determines which block
gets evicted (victim)
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General Caching Concepts: 
3 Types of Cache Misses

 Cold (compulsory) miss

▪ Cold misses occur because the cache starts empty and this is the first 
reference to the block.

 Capacity miss
▪ Occurs when the set of active cache blocks (working set) is larger than 

the cache.

 Conflict miss
▪ Most caches limit blocks at level k+1 to a small subset (sometimes a 

singleton) of the block positions at level k.

▪ E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

▪ Conflict misses occur when the level k cache is large enough, but multiple 
data objects all map to the same level k block.

▪ E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.
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Examples of Caching in the Mem. Hierarchy

Hardware 
MMU

0On-Chip TLBAddress translationsTLB

Web browser10,000,000Local diskWeb pagesBrowser cache

Web cache

Network buffer 
cache

Buffer cache

Virtual Memory

L2 cache

L1 cache

Registers

Cache Type

Web pages

Parts of files

Parts of files

4-KB pages

64-byte blocks

64-byte blocks

4-8 byte words

What is Cached?

Web proxy 
server

1,000,000,000Remote server disks

OS100Main memory

Hardware4On-Chip L1

Hardware10On-Chip L2

NFS client10,000,000Local disk

Hardware + OS100Main memory

Compiler0CPU core

Managed ByLatency (cycles)Where is it Cached?

Disk cache Disk sectors Disk controller 100,000 Disk firmware
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Today

 The memory abstraction
 RAM : main memory building block
 Locality of reference
 The memory hierarchy
 Storage technologies and trends
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Storage Technologies

 Magnetic Disks

 Store on magnetic 
medium

 Electromechanical 
access

 Nonvolatile (Flash) 
Memory

 Store as persistent 
charge

 Implemented with 3-D 
structure

▪ 100+ levels of cells

▪ 3-4 bits data per cell
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What’s Inside A Disk Drive?
SpindleArm

Actuator

Platters

Electronics
(including a 
processor 
and memory!)SCSI

connector

Image courtesy of Seagate Technology
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Disk Geometry

 Disks consist of platters, each with two surfaces.

 Each surface consists of concentric rings called tracks.

 Each track consists of sectors separated by gaps.

Spindle

Surface
Tracks

Track k

Sectors

Gaps



Carnegie Mellon

46

Disk Capacity

 Capacity: maximum number of bits that can be stored.
▪ Vendors express capacity in units of gigabytes (GB) or terabytes (TB),  

where 1 GB = 109 Bytes and 1 TB = 1012 Bytes 

 Capacity is determined by these technology factors:
▪ Recording density (bits/in): number of bits that can be squeezed into 

a 1 inch segment of a track.

▪ Track density (tracks/in): number of tracks that can be squeezed into 
a 1 inch radial segment.

▪ Areal density (bits/in2): product of 
recording and track density.

Tracks
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Disk Operation (Single-Platter View)

The disk surface 
spins at a fixed
rotational rate

By moving radially, the arm can 
position the read/write head 
over any track.

The read/write head
is attached to the end
of the arm and flies over
the disk surface on
a thin cushion of air.

s
p

in
d

le

spindle

s
p

in
d

le
spindlespindle
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Disk Operation (Multi-Platter View)

Arm

Read/write heads 
move in unison
from cylinder to 
cylinder

Spindle
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Disk Access – Service Time Components

After BLUE read Seek for RED Rotational latency After RED read

Data transfer Seek Rotational 
latency

Data transfer



Carnegie Mellon

50

Disk Access Time

 Average time to access some target sector approximated by:
▪ Taccess  =  Tavg seek +  Tavg rotation + Tavg transfer 

 Seek time (Tavg seek)

▪ Time to position heads over cylinder containing target sector.

▪ Typical  Tavg seek is 3—9 ms

 Rotational latency (Tavg rotation)

▪ Time waiting for first bit of target sector to pass under r/w head.

▪ Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min

▪ Typical rotational rate = 7,200 RPMs

 Transfer time (Tavg transfer) 
▪ Time to read the bits in the target sector.

▪ Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min

time for one rotation (in minutes) fraction of a rotation to be read
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Disk Access Time Example

 Given:
▪ Rotational rate = 7,200 RPM

▪ Average seek time = 9 ms

▪ Avg # sectors/track = 400

 Derived:

▪ Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms

▪ Tavg transfer = 60/7200 x 1/400 x 1000 ms/sec = 0.02 ms

▪ Taccess  = 9 ms + 4 ms + 0.02 ms

 Important points:
▪ Access time dominated by seek time and rotational latency.

▪ First bit in a sector is the most expensive, the rest are free.

▪ SRAM access time is about  4 ns/doubleword, DRAM about  60 ns

▪ Disk is about 40,000 times slower than SRAM, 

▪ 2,500 times slower than DRAM.



Carnegie Mellon

52

I/O Bus

Bus interface

ALU

Register file

CPU chip

Memory bus

Disk 
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

Disk

I/O bus Expansion slots for
other devices such
as network adapters.

Memory 
Controller

Main
memory
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Reading a Disk Sector (1)

Main
memory

ALU

Register file

CPU chip

Disk 
controller

Graphics
adapter

USB
controller

mouse keyboard Monitor

Disk

I/O bus

Bus interface

CPU initiates a disk read by writing a 
command, logical block number, and 
destination memory address to a port 
(address) associated with disk controller.

Memory 
Controller
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Reading a Disk Sector (2)

Main
memory

ALU

Register file

CPU chip

Disk 
controller

Graphics
adapter

USB
controller

mouse keyboard Monitor

Disk

I/O bus

Bus interface

Disk controller reads the sector and 
performs a direct memory access (DMA) 
transfer into main memory.

Memory 
Controller
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Reading a Disk Sector (3)

Main
memory

ALU

Register file

CPU chip

Disk 
controller

Graphics
adapter

USB
controller

mouse keyboard Monitor

Disk

I/O bus

Bus interface

When the DMA transfer completes, the 
disk controller notifies the CPU with an 
interrupt (i.e., asserts a special 
“interrupt” pin on the CPU).
.

Memory 
Controller
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Nonvolatile Memories

 DRAM and SRAM are volatile memories
▪ Lose information if powered off.

 Nonvolatile memories retain value even if powered off
▪ Read-only memory (ROM): programmed during production

▪ Electrically eraseable PROM (EEPROM): electronic erase capability

▪ Flash memory: EEPROMs, with partial (block-level) erase capability

▪ Wears out after about 100,000 erasings

▪ 3D Xpoint? (Intel Optane) & emerging? NVMs

▪ New materials

 Uses for Nonvolatile Memories
▪ Firmware programs stored in a ROM (BIOS, controllers for disks, 

network cards, graphics accelerators, security subsystems,…)

▪ Solid state disks (replacing rotating disks)

▪ Disk caches
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Solid State Disks (SSDs)

 Pages: 512KB to 4KB, Blocks: 32 to 128 pages

 Data read/written in units of pages. 

 Page can be written only after its block has been erased.

 A block wears out after about 10,000 repeated writes.

Flash 
translation layer

I/O bus

Page 0 Page 1 Page P-1…
Block 0

… Page 0 Page 1 Page P-1…
Block  B-1

Flash memory

Solid State Disk (SSD)

Requests to read and 
write logical disk blocks

DRAM
Buffer
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SSD Performance Characteristics 
 Benchmark of Samsung 970 EVO Plus

 Sequential access faster than random access
▪ Common theme in the memory hierarchy

▪ DQ = deep queue, issuing many concurrent reads (latency hurts!)

 Random writes are tricky
▪ Erasing a block takes a long time (~1 ms), but the SSD has a pool of 

pre-erased blocks

▪ Modifying a block page requires all other pages to be copied to 
new block.

▪ But the SSD has a write cache that it accumulates writes into…

Sequential read throughput   2,221 MB/s  Sequential write tput 1,912 MB/s
Random ST throughput          61.7 MB/s  Random write tput       165 MB/s
Random DQ throughput            947  MB/s      Random DQ write               1028 MB/s

https://ssd.userbenchmark.com/SpeedTest/711305/Samsung-SSD-970-EVO-Plus-250GB
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SSD Tradeoffs vs Rotating Disks

 Advantages 
▪ No moving parts → faster, less power, more rugged

 Disadvantages
▪ Have the potential to wear out 

▪ Mitigated by “wear leveling logic” in flash translation layer

▪ E.g. Samsung 940 EVO Plus guarantees 600 writes/byte of 
writes before they wear out

▪ Controller migrates data to minimize wear level

▪ In 2022, about 4-5 times more expensive per byte

▪ Rcost will probably keep dropping

 Where are are rotating disks still used?
▪ Bulk storage – video, huge datasets / databases, etc.

▪ Cheap storage – desktops.
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Summary

 The speed gap between CPU, memory and mass storage 
continues to widen.

 Many well-written programs exhibit a property called 
locality.

 Memory hierarchies based on caching close the gap by 
exploiting locality.

 Flash memory progress outpacing all other memory and 
storage technologies (DRAM, SRAM, magnetic disk)
▪ Able to stack cells in three dimensions
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Supplemental slides
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Metric  1985 1990 1995 2000 2005 2010 2015 2015:1985

$/MB  880 100 30 1 0.1 0.06 0.02 44,000

access (ns) 200 100 70 60 50 40 20 10

typical size (MB) 0.256 4 16 64 2,000 8,000 16.000 62,500

Storage Trends

DRAM

SRAM

Metric  1985 1990 1995 2000 2005 2010 2015 2015:1985

$/GB  100,000 8,000 300 10 5 0.3 0.03 3,333,333

access (ms) 75 28 10 8 5 3 3 25

typical size (GB) 0.01 0.16 1 20 160 1,500 3,000 300,000

Disk

Metric  1985 1990 1995 2000 2005 2010 2015 2015:1985

$/MB  2,900 320 256 100 75 60 320 116

access (ns) 150 35 15 3 2 1.5 200 115
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CPU Clock Rates

1985 1990 1995 2003 2005 2010 2015 2015:1985

CPU  80286 80386 Pentium P-4 Core 2 Core i7(n) Core i7(h) 

Clock 

rate (MHz) 6 20 150 3,300 2,000 2,500 3,000 500

Cycle 

time (ns) 166 50 6 0.30 0.50 0.4 0.33 500

Cores  1  1 1 1 2 4 4 4

Effective

cycle 166 50 6 0.30 0.25 0.10 0.08 2,075
time (ns)

Inflection point in computer history
when designers hit the “Power Wall”

(n) Nehalem processor
(h) Haswell processor
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