
Carnegie Mellon

2

The Memory Hierarchy

15-213/14-513/15-513: Introduction to Computer Systems
9th Lecture, Summer 2025

Carnegie Mellon

3

Announcements

 Attack lab due June 10

Carnegie Mellon

4

Today

 The memory abstraction
 RAM : main memory building block
 Locality of reference
 The memory hierarchy
 Storage technologies and trends

Carnegie Mellon

5

movq 8(%rsp), %rax

Read from memory to CPU: “Load”

Carnegie Mellon

6

movq %rax, (%rbx, %rcx, 2)

Write from CPU to memory: “Store”

Carnegie Mellon

7

Inside a CPU

Memory Controller

ALU

Register file

CPU chip

Carnegie Mellon

8

A bus connects the CPU and Memory

 A bus is a collection of parallel wires that carry address,
data, and control signals.

 Buses are typically shared by multiple devices.

Main
memoryMemory Controller

ALU

Register file

CPU chip

Memory bus

Carnegie Mellon

9

Memory Read Transaction (1)

 CPU places address A on the memory bus.

ALU

Register file

Memory Controller

A
0

Ax

Main memory

%rax

Load operation: movq A, %rax

Carnegie Mellon

10

Memory Read Transaction (2)

 Main memory reads A from the memory bus, retrieves
word x, and places it on the bus.

ALU

Register file

Memory Controller

x 0

Ax

Main
memory

%rax

Load operation: movq A, %rax

Carnegie Mellon

11

Memory Read Transaction (3)

 CPU reads word x from the bus and copies it into register
%rax.

ALU

Register file

Memory Controller x

Main memory
0

A

%rax

Load operation: movq A, %rax

x

Carnegie Mellon

12

Memory Write Transaction (1)

 CPU places address A on bus. Main memory reads it and
waits for the corresponding data word to arrive.

y
ALU

Register file

Memory Controller

A

Main memory
0

A

%rax

Store operation: movq %rax, A

Carnegie Mellon

13

Memory Write Transaction (2)

 CPU places data word y on the bus.

y
ALU

Register file

Memory Controller

y

Main memory
0

A

%rax

Store operation: movq %rax, A

Carnegie Mellon

14

Memory Write Transaction (3)

 Main memory reads data word y from the bus and stores
it at address A.

y
ALU

Register file

Memory Controller y

Main memory
0

A

%rax

Store operation: movq %rax, A

Carnegie Mellon

15

Today

 The memory abstraction
 RAM : main memory building block
 Locality of reference
 The memory hierarchy
 Storage technologies and trends

Carnegie Mellon

16

Random-Access Memory (RAM)

 Key features
▪ RAM is traditionally packaged as a chip.

▪ or embedded as part of processor chip

▪ Basic storage unit is normally a cell (one bit per cell).

▪ Multiple RAM chips form a memory.

 RAM comes in two varieties:
▪ SRAM (Static RAM)

▪ DRAM (Dynamic RAM)

Carnegie Mellon

17

RAM Technologies

 DRAM

 1 Transistor + 1
capacitor / bit

▪ Capacitor oriented
vertically

 Must refresh state
periodically

 SRAM

 6 transistors / bit

 Holds state
indefinitely

Carnegie Mellon

18

SRAM vs DRAM Summary

 Trends
▪ SRAM scales with semiconductor technology

▪ Reaching its limits

▪ DRAM scaling limited by need for minimum capacitance

▪ Aspect ratio limits how deep can make capacitor

▪ Also reaching its limits

Trans. Access Needs Needs
 per bit time refresh? EDC? Cost Applications

SRAM 6 or 8 1x No Maybe 100x Cache memories

DRAM 1 10x Yes Yes 1x Main memories,
 frame buffers

EDC: Error detection and correction

Carnegie Mellon

23

Data striped across RAM chips in modules

: supercell (i,j)

64 MB
memory module
consisting of
eight 8Mx8 DRAMs

addr (row = i, col = j)

Memory

controller

DRAM 7

DRAM 0

031 78151623243263 394047485556

64-bit word main memory address A

bits

0-7

bits

8-15

bits

16-23

bits

24-31

bits

32-39

bits

40-47

bits

48-55

bits

56-63

64-bit word

031 78151623243263 394047485556

Carnegie Mellon

24

Today

 The memory Abstraction
 DRAM : main memory building block
 Locality of reference
 The memory hierarchy
 Storage technologies and trends

Carnegie Mellon

25

The CPU-Memory Gap Keeps Growing
The gap widens between DRAM, disk, and CPU speeds.

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

T
im

e
 (

n
s

)

Year

Disk seek time

SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle time

DRAM

CPU

SSD

Disk

SRAM

Carnegie Mellon

26

Locality helps us bridge that gap

 Principle of Locality: Many programs tend to use data and
instructions with addresses near or equal to those they
have used recently.

 Temporal locality:
▪ Recently referenced items are likely

to be referenced again in the near future

 Spatial locality:

▪ Items with nearby addresses tend
to be referenced close together in time

Carnegie Mellon

27

Locality Example

 Data references

▪ Reference array elements in succession
(stride-1 reference pattern).

▪ Reference variable sum each iteration.

 Instruction references
▪ Reference instructions in sequence.

▪ Cycle through loop repeatedly.

sum = 0;

for (i = 0; i < n; i++)

 sum += a[i];

return sum;

Spatial or Temporal
Locality?

temporal

spatial

temporal

spatial

Carnegie Mellon

29

Qualitative Estimates of Locality
 Claim: Being able to look at code and get a qualitative

sense of its locality is a key skill for a professional
programmer.

 Question: Does this function have good locality with
respect to array a? int sum_array_rows(int a[M][N])

{

 int i, j, sum = 0;

 for (i = 0; i < M; i++)

 for (j = 0; j < N; j++)

 sum += a[i][j];

 return sum;

}

Answer: yes

Hint: array layout
 is row-major order

• • •

a

[0]

[0]

a

[0]

[N-1]

• • •

a

[1]

[0]

a

[1]

[N-1]

• • •

a

[M-1]

[0]

a

[M-1]

[N-1]

• • •

Carnegie Mellon

30

Locality Example

 Question: Does this function have good locality with
respect to array a?

int sum_array_cols(int a[M][N])

{

 int i, j, sum = 0;

 for (j = 0; j < N; j++)

 for (i = 0; i < M; i++)

 sum += a[i][j];

 return sum;

}

Answer: no, unless…

M is very small

• • •

a

[0]

[0]

a

[0]

[N-1]

• • •

a

[1]

[0]

a

[1]

[N-1]

• • •

a

[M-1]

[0]

a

[M-1]

[N-1]

• • •

Carnegie Mellon

31

Locality Example

 Question: Can you permute the loops so that the function
scans the 3-d array a with a stride-1 reference pattern

(and thus has good spatial locality)?

int sum_array_3d(int a[M][N][N])

{

 int i, j, k, sum = 0;

 for (i = 0; i < N; i++)

 for (j = 0; j < N; j++)

 for (k = 0; k < M; k++)

 sum += a[k][i][j];

 return sum;

}

Answer: make j the inner loop

Carnegie Mellon

32

Today

 The memory abstraction
 DRAM : main memory building block
 Storage technologies and trends
 Locality of reference
 The memory hierarchy

Carnegie Mellon

33

Memory Hierarchies

 Some fundamental and enduring properties of hardware
and software:

▪ Fast storage technologies cost more per byte, have less capacity,
and sometimes require more power (heat!).

▪ The gap between CPU and main memory speed is widening.

▪ Well-written programs tend to exhibit good locality.

 These properties complement each other well for many
types of programs.

 They suggest an approach for organizing memory and
storage systems known as a memory hierarchy.

Carnegie Mellon

34

Example Memory
 Hierarchy Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files
retrieved from disks
on remote servers.

L2 cache
(SRAM)

L1 cache holds cache lines retrieved
from the L2 cache.

CPU registers hold words retrieved
from the L1 cache.

L2 cache holds cache lines
 retrieved from L3 cache.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L3 cache holds cache lines
 retrieved from main memory.

L6:

Main memory holds disk blocks
retrieved from local disks.

Carnegie Mellon

35

Caches

 Cache: A smaller, faster storage device that acts as a staging
area for a subset of the data in a larger, slower device.

 Fundamental idea of a memory hierarchy:

▪ For each k, the faster, smaller device at level k serves as a cache for the
larger, slower device at level k+1.

 Why do memory hierarchies work?

▪ Because of locality: programs tend to access the data at level k more
often than they access the data at level k+1.

▪ Thus, the storage at level k+1 can be slower, and thus larger and
cheaper per bit.

 Big Idea (Ideal): The memory hierarchy creates a large pool
of storage that costs as much as the cheap storage near the
bottom, but that serves data to programs at the rate of the
fast storage near the top.

Carnegie Mellon

36

General Cache Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

10

Carnegie Mellon

37

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!

Carnegie Mellon

38

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memory

Request: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
•Replacement policy:

determines which block
gets evicted (victim)

Carnegie Mellon

39

General Caching Concepts:
3 Types of Cache Misses

 Cold (compulsory) miss

▪ Cold misses occur because the cache starts empty and this is the first
reference to the block.

 Capacity miss
▪ Occurs when the set of active cache blocks (working set) is larger than

the cache.

 Conflict miss
▪ Most caches limit blocks at level k+1 to a small subset (sometimes a

singleton) of the block positions at level k.

▪ E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

▪ Conflict misses occur when the level k cache is large enough, but multiple
data objects all map to the same level k block.

▪ E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

Carnegie Mellon

40

Examples of Caching in the Mem. Hierarchy

Hardware
MMU

0On-Chip TLBAddress translationsTLB

Web browser10,000,000Local diskWeb pagesBrowser cache

Web cache

Network buffer
cache

Buffer cache

Virtual Memory

L2 cache

L1 cache

Registers

Cache Type

Web pages

Parts of files

Parts of files

4-KB pages

64-byte blocks

64-byte blocks

4-8 byte words

What is Cached?

Web proxy
server

1,000,000,000Remote server disks

OS100Main memory

Hardware4On-Chip L1

Hardware10On-Chip L2

NFS client10,000,000Local disk

Hardware + OS100Main memory

Compiler0CPU core

Managed ByLatency (cycles)Where is it Cached?

Disk cache Disk sectors Disk controller 100,000 Disk firmware

Carnegie Mellon

42

Today

 The memory abstraction
 RAM : main memory building block
 Locality of reference
 The memory hierarchy
 Storage technologies and trends

Carnegie Mellon

43

Storage Technologies

 Magnetic Disks

 Store on magnetic
medium

 Electromechanical
access

 Nonvolatile (Flash)
Memory

 Store as persistent
charge

 Implemented with 3-D
structure

▪ 100+ levels of cells

▪ 3-4 bits data per cell

Carnegie Mellon

44

What’s Inside A Disk Drive?
SpindleArm

Actuator

Platters

Electronics
(including a
processor
and memory!)SCSI

connector

Image courtesy of Seagate Technology

Carnegie Mellon

45

Disk Geometry

 Disks consist of platters, each with two surfaces.

 Each surface consists of concentric rings called tracks.

 Each track consists of sectors separated by gaps.

Spindle

Surface
Tracks

Track k

Sectors

Gaps

Carnegie Mellon

46

Disk Capacity

 Capacity: maximum number of bits that can be stored.
▪ Vendors express capacity in units of gigabytes (GB) or terabytes (TB),

where 1 GB = 109 Bytes and 1 TB = 1012 Bytes

 Capacity is determined by these technology factors:
▪ Recording density (bits/in): number of bits that can be squeezed into

a 1 inch segment of a track.

▪ Track density (tracks/in): number of tracks that can be squeezed into
a 1 inch radial segment.

▪ Areal density (bits/in2): product of
recording and track density.

Tracks

Carnegie Mellon

47

Disk Operation (Single-Platter View)

The disk surface
spins at a fixed
rotational rate

By moving radially, the arm can
position the read/write head
over any track.

The read/write head
is attached to the end
of the arm and flies over
the disk surface on
a thin cushion of air.

s
p

in
d

le

spindle

s
p

in
d

le
spindlespindle

Carnegie Mellon

48

Disk Operation (Multi-Platter View)

Arm

Read/write heads
move in unison
from cylinder to
cylinder

Spindle

Carnegie Mellon

49

Disk Access – Service Time Components

After BLUE read Seek for RED Rotational latency After RED read

Data transfer Seek Rotational
latency

Data transfer

Carnegie Mellon

50

Disk Access Time

 Average time to access some target sector approximated by:
▪ Taccess = Tavg seek + Tavg rotation + Tavg transfer

 Seek time (Tavg seek)

▪ Time to position heads over cylinder containing target sector.

▪ Typical Tavg seek is 3—9 ms

 Rotational latency (Tavg rotation)

▪ Time waiting for first bit of target sector to pass under r/w head.

▪ Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min

▪ Typical rotational rate = 7,200 RPMs

 Transfer time (Tavg transfer)
▪ Time to read the bits in the target sector.

▪ Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min

time for one rotation (in minutes) fraction of a rotation to be read

Carnegie Mellon

51

Disk Access Time Example

 Given:
▪ Rotational rate = 7,200 RPM

▪ Average seek time = 9 ms

▪ Avg # sectors/track = 400

 Derived:

▪ Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms

▪ Tavg transfer = 60/7200 x 1/400 x 1000 ms/sec = 0.02 ms

▪ Taccess = 9 ms + 4 ms + 0.02 ms

 Important points:
▪ Access time dominated by seek time and rotational latency.

▪ First bit in a sector is the most expensive, the rest are free.

▪ SRAM access time is about 4 ns/doubleword, DRAM about 60 ns

▪ Disk is about 40,000 times slower than SRAM,

▪ 2,500 times slower than DRAM.

Carnegie Mellon

52

I/O Bus

Bus interface

ALU

Register file

CPU chip

Memory bus

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

Disk

I/O bus Expansion slots for
other devices such
as network adapters.

Memory
Controller

Main
memory

Carnegie Mellon

53

Reading a Disk Sector (1)

Main
memory

ALU

Register file

CPU chip

Disk
controller

Graphics
adapter

USB
controller

mouse keyboard Monitor

Disk

I/O bus

Bus interface

CPU initiates a disk read by writing a
command, logical block number, and
destination memory address to a port
(address) associated with disk controller.

Memory
Controller

Carnegie Mellon

54

Reading a Disk Sector (2)

Main
memory

ALU

Register file

CPU chip

Disk
controller

Graphics
adapter

USB
controller

mouse keyboard Monitor

Disk

I/O bus

Bus interface

Disk controller reads the sector and
performs a direct memory access (DMA)
transfer into main memory.

Memory
Controller

Carnegie Mellon

55

Reading a Disk Sector (3)

Main
memory

ALU

Register file

CPU chip

Disk
controller

Graphics
adapter

USB
controller

mouse keyboard Monitor

Disk

I/O bus

Bus interface

When the DMA transfer completes, the
disk controller notifies the CPU with an
interrupt (i.e., asserts a special
“interrupt” pin on the CPU).
.

Memory
Controller

Carnegie Mellon

56

Nonvolatile Memories

 DRAM and SRAM are volatile memories
▪ Lose information if powered off.

 Nonvolatile memories retain value even if powered off
▪ Read-only memory (ROM): programmed during production

▪ Electrically eraseable PROM (EEPROM): electronic erase capability

▪ Flash memory: EEPROMs, with partial (block-level) erase capability

▪ Wears out after about 100,000 erasings

▪ 3D Xpoint? (Intel Optane) & emerging? NVMs

▪ New materials

 Uses for Nonvolatile Memories
▪ Firmware programs stored in a ROM (BIOS, controllers for disks,

network cards, graphics accelerators, security subsystems,…)

▪ Solid state disks (replacing rotating disks)

▪ Disk caches

Carnegie Mellon

57

Solid State Disks (SSDs)

 Pages: 512KB to 4KB, Blocks: 32 to 128 pages

 Data read/written in units of pages.

 Page can be written only after its block has been erased.

 A block wears out after about 10,000 repeated writes.

Flash
translation layer

I/O bus

Page 0 Page 1 Page P-1…
Block 0

… Page 0 Page 1 Page P-1…
Block B-1

Flash memory

Solid State Disk (SSD)

Requests to read and
write logical disk blocks

DRAM
Buffer

Carnegie Mellon

58

SSD Performance Characteristics
 Benchmark of Samsung 970 EVO Plus

 Sequential access faster than random access
▪ Common theme in the memory hierarchy

▪ DQ = deep queue, issuing many concurrent reads (latency hurts!)

 Random writes are tricky
▪ Erasing a block takes a long time (~1 ms), but the SSD has a pool of

pre-erased blocks

▪ Modifying a block page requires all other pages to be copied to
new block.

▪ But the SSD has a write cache that it accumulates writes into…

Sequential read throughput 2,221 MB/s Sequential write tput 1,912 MB/s
Random ST throughput 61.7 MB/s Random write tput 165 MB/s
Random DQ throughput 947 MB/s Random DQ write 1028 MB/s

https://ssd.userbenchmark.com/SpeedTest/711305/Samsung-SSD-970-EVO-Plus-250GB

Carnegie Mellon

59

SSD Tradeoffs vs Rotating Disks

 Advantages
▪ No moving parts → faster, less power, more rugged

 Disadvantages
▪ Have the potential to wear out

▪ Mitigated by “wear leveling logic” in flash translation layer

▪ E.g. Samsung 940 EVO Plus guarantees 600 writes/byte of
writes before they wear out

▪ Controller migrates data to minimize wear level

▪ In 2022, about 4-5 times more expensive per byte

▪ Rcost will probably keep dropping

 Where are are rotating disks still used?
▪ Bulk storage – video, huge datasets / databases, etc.

▪ Cheap storage – desktops.

Carnegie Mellon

60

Summary

 The speed gap between CPU, memory and mass storage
continues to widen.

 Many well-written programs exhibit a property called
locality.

 Memory hierarchies based on caching close the gap by
exploiting locality.

 Flash memory progress outpacing all other memory and
storage technologies (DRAM, SRAM, magnetic disk)
▪ Able to stack cells in three dimensions

Carnegie Mellon

61

Supplemental slides

Carnegie Mellon

62

Metric 1985 1990 1995 2000 2005 2010 2015 2015:1985

$/MB 880 100 30 1 0.1 0.06 0.02 44,000

access (ns) 200 100 70 60 50 40 20 10

typical size (MB) 0.256 4 16 64 2,000 8,000 16.000 62,500

Storage Trends

DRAM

SRAM

Metric 1985 1990 1995 2000 2005 2010 2015 2015:1985

$/GB 100,000 8,000 300 10 5 0.3 0.03 3,333,333

access (ms) 75 28 10 8 5 3 3 25

typical size (GB) 0.01 0.16 1 20 160 1,500 3,000 300,000

Disk

Metric 1985 1990 1995 2000 2005 2010 2015 2015:1985

$/MB 2,900 320 256 100 75 60 320 116

access (ns) 150 35 15 3 2 1.5 200 115

Carnegie Mellon

63

CPU Clock Rates

1985 1990 1995 2003 2005 2010 2015 2015:1985

CPU 80286 80386 Pentium P-4 Core 2 Core i7(n) Core i7(h)

Clock

rate (MHz) 6 20 150 3,300 2,000 2,500 3,000 500

Cycle

time (ns) 166 50 6 0.30 0.50 0.4 0.33 500

Cores 1 1 1 1 2 4 4 4

Effective

cycle 166 50 6 0.30 0.25 0.10 0.08 2,075
time (ns)

Inflection point in computer history
when designers hit the “Power Wall”

(n) Nehalem processor
(h) Haswell processor

	Slide 2: The Memory Hierarchy 15-213/14-513/15-513: Introduction to Computer Systems 9th Lecture, Summer 2025
	Slide 3: Announcements
	Slide 4: Today
	Slide 5
	Slide 6
	Slide 7: Inside a CPU
	Slide 8: A bus connects the CPU and Memory
	Slide 9: Memory Read Transaction (1)
	Slide 10: Memory Read Transaction (2)
	Slide 11: Memory Read Transaction (3)
	Slide 12: Memory Write Transaction (1)
	Slide 13: Memory Write Transaction (2)
	Slide 14: Memory Write Transaction (3)
	Slide 15: Today
	Slide 16: Random-Access Memory (RAM)
	Slide 17: RAM Technologies
	Slide 18: SRAM vs DRAM Summary
	Slide 23: Data striped across RAM chips in modules
	Slide 24: Today
	Slide 25: The CPU-Memory Gap Keeps Growing
	Slide 26: Locality helps us bridge that gap
	Slide 27: Locality Example
	Slide 29: Qualitative Estimates of Locality
	Slide 30: Locality Example
	Slide 31: Locality Example
	Slide 32: Today
	Slide 33: Memory Hierarchies
	Slide 34: Example Memory Hierarchy
	Slide 35: Caches
	Slide 36: General Cache Concepts
	Slide 37: General Cache Concepts: Hit
	Slide 38: General Cache Concepts: Miss
	Slide 39: General Caching Concepts: 3 Types of Cache Misses
	Slide 40: Examples of Caching in the Mem. Hierarchy
	Slide 42: Today
	Slide 43: Storage Technologies
	Slide 44: What’s Inside A Disk Drive?
	Slide 45: Disk Geometry
	Slide 46: Disk Capacity
	Slide 47: Disk Operation (Single-Platter View)
	Slide 48: Disk Operation (Multi-Platter View)
	Slide 49: Disk Access – Service Time Components
	Slide 50: Disk Access Time
	Slide 51: Disk Access Time Example
	Slide 52: I/O Bus
	Slide 53: Reading a Disk Sector (1)
	Slide 54: Reading a Disk Sector (2)
	Slide 55: Reading a Disk Sector (3)
	Slide 56: Nonvolatile Memories
	Slide 57: Solid State Disks (SSDs)
	Slide 58: SSD Performance Characteristics
	Slide 59: SSD Tradeoffs vs Rotating Disks
	Slide 60: Summary
	Slide 61: Supplemental slides
	Slide 62: Storage Trends
	Slide 63: CPU Clock Rates

