Carnegie Mellon

Linking

15-213/15-503: Introduction to Computer Systems
oth Lecture, May 28, 2025

Instructors:
Brian Railing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Disclaimer

m Linkers continue to improve their functionality to help
avoid programmer mistakes

= This lecture follows the textbook, although some examples may be
out of date with linker defaults / terminology

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Today

m Linking
" Motivation
= What it does
= How it works

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Example C Program

int sum(int *a, int n); int sum(int *a, int n)
{
int array[2] = {1, 2}; int i, s = 0;
int main(int argc, char** argv) for (i = 0; 1 < n; i++) {
{ s += a[i];
int val = sum(array, 2); }
return val; return s;
} }
main.c sum.cC

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Linking

m Programs are translated and linked using a compiler driver:
" linux> gcc -0g -0 prog main.c sum.cC

" linux> ./prog

main .C sum.cC Source files
Translators Translators
(cpp, cc1, as) (cpp, cc1, as)
mag.n o suln o Separately compiled
l l relocatable object files
Linker (Id)

1 Fully linked executable object file
prog (contains code and data for all functions
defined in main.c and sum. c)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Why Linkers?

m Reason 1: Modularity

® Program can be written as a collection of smaller source files,
rather than one monolithic mass.

® Can build libraries of common functions

= e.g., Math library, standard C library
= Header files in C declare types that are defined in libraries

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Why Linkers? (cont)

m Reason 2: Efficiency

®= Time: Separate compilation
= Change one source file, compile, and then relink.
= No need to recompile other source files.
= Can compile multiple files concurrently.

= Space: Libraries
= Common functions can be aggregated into a single file...
= Option 1: Static Linking

— Executable files and running memory images contain only
the library code they actually use

= Option 2: Dynamic linking
— Executable files contain no library code

— During execution, single copy of library code can be shared
across all executing processes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

What Do Linkers Do?

m Step 1: Symbol resolution

® Programs define and reference symbols (global variables and functions):
= void swap() {..} /* define symbol swap */
= swap () ; /* reference symbol swap */
= int *xp = &x; /* define symbol xp, reference x */

= Symbol definitions are stored in object file (by assembler) in symbol table.
= Symbol table is an array of entries

= Each entry includes name, size, and location of symbol.

= During symbol resolution step, the linker associates each symbol reference
with exactly one symbol definition.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Symbols in Example C Program

Definitions

7 O~

iniiééé})nt *a, int n)
{
int i, s = 0;
for (1 = 0; i < n; i++) {
s += al[i];
}
return val; return s;
} }
LN . sum.cC
N
Reference

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

What Do Linkers Do? (cont’d)
m Step 2: Relocation

= Merges separate code and data sections into single sections

= Relocates symbols from their relative locations in the . o files to
their final absolute memory locations in the executable.

= Updates all references to these symbols to reflect their new
positions.

Let’s look at these two steps in more detail....

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Three Kinds of Object Files (Modules)

m Relocatable object file (. o file)

= Contains code and data in a form that can be combined with other
relocatable object files to form executable object file.

= Each .o fileis produced from exactly one source (. c) file

m Executable object file (a. out file)

= Contains code and data in a form that can be copied directly into
memory and then executed.

m Shared object file (. so file)

= Special type of relocatable object file that can be loaded into
memory and linked dynamically, at either load time or run-time.

= Called Dynamic Link Libraries (DLLs) by Windows

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Executable and Linkable Format (ELF)

m Standard binary format for object files

m One unified format for
= Relocatable object files (. o),
= Executable object files (a.out)
= Shared object files (. so)

m Generic name: ELF binaries

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

ELF Object File Format

m EIf header

= Word size, byte ordering, file type (.0, exec, .s0),

machine type, etc. 0
ELF header

m Segment header table

= Page size, virtual address memory segments
(sections), segment sizes.

Segment header table
(required for executables)

. text section

m .text section

.rodata section
" Code

. .data section
m .rodata section

.bss section

= Read only data: jump tables, string constants, ...
.symtab section

m .data section

e 1 : .rel.txt section
= |nitialized global variables

. .rel.data section
m .bss section

® Uninitialized global variables
= “Block Started by Symbol”
= “Better Save Space”

.debug section

Section header table

® Has section header but occupies no space

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

ELF Object File Format (cont.)

m .symtab section
" Symbol table ELF header
" Procedure and static variable names
= Section names and locations

Segment header table
(required for executables)

m .rel.text section _text section
= Relocation info for . text section

= Addresses of instructions that will need to be
modified in the executable _data section

® |nstructions for modifying

.rodata section

.bss section

m .rel.data section
= Relocation info for .data section

= Addresses of pointer data that will need to be -rel.txt section
modified in the merged executable

.symtab section

.rel.data section

m .debug section

.debug section
= Info for symbolic debugging (gcc -g)

m Section header table Section header table

® Offsets and sizes of each section

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Linker Symbols

m Global symbols
= Symbols defined by module m that can be referenced by other modules.
= e.g., non-static Cfunctions and non-static global variables.

m External symbols

= Global symbols that are referenced by module m but defined by some
other module.

m Local symbols
= Symbols that are defined and referenced exclusively by module m.
= e.g, Cfunctions and global variables defined with the static attribute.
= Local linker symbols are not local program variables

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Step 1: Symbol Resolution

Referencing

a global...
...that’s defined here
int sum(Ant *a, int n); int sum(int *a, int n)
{
int array[2] = {1, 2}; nt 1, s = 0;
int main(int argc,char **argv) for (1 = i< n; i++) {
{ s += a[ll];
int val = sum(array, 2); }
eturn val; return s;

main.c } sum.c
Deflnlng \
a global Referencmg Linker knows

Linker knows
nothing of val

a global...

nothingof i or s

...that’s defined here

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

16

Carnegie Mellon

Symbol Identification

Which of the following names will be in the symbol
table of symbols.o?

Names:
bol . * incr
Sympoils.C. . foo
int inecr = 1; * a
static int foo(int a) { * argce
int b = a + incr; * argv
return b; * b _
} * main
* printf
e "%d\n"

int main(int argc,
char* argv[]) {
printf ("$d\n", foo(5));
return O;

}

Can find this with readel £:
linux> readelf -s symbols.o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Local Symbols

m Local non-static C variables vs. local static C variables

= Local non-static C variables: stored on the stack
® |ocal static C variables: stored in either .bss or .data

static int x = 15;

int £() {
static int x = 17; Compiler allocates space in .data for
return x++; ..

} each definition of x

int g() { Creates local symbols in the symbol
static int x = 19; table with unique names, e.g., x,
return x += 14; x.1721 and x.1724.

}

int h() {
return x += 27;

Bryant g } static-local.c Third Edition 18

How Linker Resolves Duplicate Symbol

Definitions

m Program symbols are either strong or weak
= Strong: procedures and initialized globals
= Weak: uninitialized globals
= Or ones declared with specifier extern

pl.c p2.c
strong » int foo=5; int foo; <« weak
strong » PL() { pP2() { < strong
} }

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Linker’s Symbol Rules

m Rule 1: Multiple strong symbols are not allowed
= Each item can be defined only once
= QOtherwise: Linker error

m Rule 2: Given a strong symbol and multiple weak symbols,
choose the strong symbol
= References to the weak symbol resolve to the strong symbol

m Rule 3: If there are multiple weak symbols, pick an arbitrary
one
= Can override this with gcc —fno-common

m Puzzles on the next slide

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Linker Puzzles

int x; . .)

p1() {} p1() {} Link time error: two strong symbols (p1)
int x; int x; References to x will refer to the same

p1() {} p2() {} uninitialized int. Is this what you really want?
int x; double x; i) ioh . |

At o p2() {} ertes to x in p2 might overwrite y!

pl1() {} Evil!

int x=7; double x; Writes to x in p2 might overwrite y!

int y=5; p2() {} Nasty!

pl() {1}

int x=7; int x; References to x will refer to the same initialized
pl() {} p2() {} variable.

Important: Linker does not do type checking.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Type Mismatch Example

long int x; /* Weak symbol */ /* Global strong symbol */
double = 3.14;
int main(int ,
char * [1) {

printf (, X);

return O;
}

mismatch-main.c mismatch-variable.c

m Compiles without any errors or warnings
m What gets printed? BTy I Ty

l'a_ll+|

4614253070214989087

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Global Variables

m Avoid if you can

m Otherwise
= Use static ifyoucan
= |nitialize if you define a global variable
= Use extern if you reference an external global variable
= Treated as weak symbol
= But also causes linker error if not defined in some file

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Use of extern in .h Files (#1)

cl.c
global.h
#include "global.h" .
extern int g;
int £() { int £0);
return g+1;
}
c2.cC

#include <stdio.h>
#include "global.h”

int g = 0;

int main(int argc, char argv[]) {
int t = £();
printf ("Calling f yields %d\n", t);
return O;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Linking Example

int sum(int *a, int n); int sum(int *a, int n)
{

int array[2] = {1, 2}; int 1, s = 0;
int main(int argc,char **argv) for (i = 0; 1 < n; i++) {
{ s += a[1i];

int val = sum(array, 2); }

return val; return s;
} main.c } sum.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Step 2: Relocation

Relocatable Object Files Executable Object File
System code . text 0
Headers
System data -data System code)
\ main ()
. . text
main.o >
fext sum ()
main () -tex
q
int array[2]={1,2} .data More system code
Syst dat
sum. o Lkt .data
/ int array[2]={1,2}

sum () .text

.symtab
.debug

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Relocation Entries

int array[2] = {1, 2};

int main(int argc, char**
argv)
{
int val = sum(array, 2);
return val;

} main.c

0000000000000000 <main>:

0: 48 83 ec 08 sub $0x8,%rsp
4: be 02 00 00 00 mov $0x2, %esi
9: bf 00 00 00 00 mov $0x0,%edi # %edi = &array
a: R X86 64 32 array # Relocation entry
e: e8 00 00 00 0O callg 13 <main+0x13> # sum()
f: R X86 64 PC32 sum-0x4 # Relocation entry
13: 48 83 c4 08 add $0x8,%rsp
17: c3 retqg

main.o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Source: objdump -r —d main.o 28

Relocated .text section

00000000004004d0 <main>:

4004d0: 48 83 ec 08 sub $0x8,%rsp

4004d4: be 02 00 00 00 mov $0x2, %esi

400449: bf 18 10 60 00 mov $0x601018,%edi # %edi = &array
4004de: e8 callg 4004e8 <sum> # sum()

4004e3: 48 83 c4 08 add S0x8,%rsp

4004e7: c3 retqg

00000000004004e8 <sum>:

4004e8: b8 00 00 00 00 mov $0x0, %eax

4004ed: ba 00 00 00 00 mov $0x0, $edx

4004f2: eb 09 jmp 4004fd <sum+0x15>
4004f4: 48 63 ca movslqg %edx, %$rcx

4004£7: 03 04 8f add (%rdi, %rcx,4) ,%eax
4004fa: 83 c2 01 add $0x1, $edx

4004£d: 39 f2 cmp %esi, %edx

4004ff: 7c £3 jl 4004£f4 <sum+0xc>
400501: £3 c3 repz retq

callgqginstruction uses PC-relative addressing for sum():
0x4004e8 =0x4004e3 +

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Source: objdump -d prog 29

Loading Executable Object Files

Executable Object File

ELF header

Program header table
(required for executables)

.init section

.text section

.rodata section

.data section

.bss section

.symtab

.debug

Jine

.strtab

Section header table
(required for relocatables)

0x400000

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 0

Kernel virtual memory

User stack
(created at runtime)

v

Memory-mapped region for
shared libraries

T

Run-time heap
(created by malloc)

Memory
invisible to
user code

<« —3%rsp
(stack
pointer)

<« brk

Read/write data segment
(.data, .bss)

Loaded
from

Read-only code segment
(.init, .text, .rodata)

y the
executable
file

Unused

30

Carnegie Mellon

Quiz

https://canvas.cmu.edu/courses/47415/quizzes/143244

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

https://canvas.cmu.edu/courses/47415/quizzes/143244

Carnegie Mellon

Packaging Commonly Used Functions

B How to package functions commonly used by programmers?
= Math, I/0, memory management, string manipulation, etc.

B Awkward, given the linker framework so far:
= Option 1: Put all functions into a single source file
= Programmers link big object file into their programs
= Space and time inefficient
= Option 2: Put each function in a separate source file

= Programmers explicitly link appropriate binaries into their
programs

- More efficient, but burdensome on the programmer

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Old-fashioned Solution: Static Libraries

@ Static libraries (.a archive files)

= Concatenate related relocatable object files into a single file with an
index (called an archive).

= Enhance linker so that it tries to resolve unresolved external references
by looking for the symbols in one or more archives.

= |f an archive member file resolves reference, link it into the executable.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Creating Static Libraries

atoi.c printf.c random.c
Translator Translator Translator
atoi.o printf.o random. o

Archiver (ar)

l

libc.a C standard library

unix> ar rs libc.a \
atoi.o printf.o .. random.o

B Archiver allows incremental updates
B Recompile function that changes and replace .o file in archive.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Commonly Used Libraries

libc. a (the C standard library)
= 4.6 MB archive of 1496 object files.

= |/O, memory allocation, signal handling, string handling, data and time,
random numbers, integer math

libm. a (the C math library)
= 2 MB archive of 444 object files.
= floating point math (sin, cos, tan, log, exp, sqrt, ...)

% ar -t libc.a | sort % ar -t libm.a | sort
fork.o e _acos.o

" e acosf.o

fprintf.o e acosh.o

fpu control.o e _acoshf.o

fputc.o e _acoshl.o

freopen.o e acosl.o

fscanf.o e asin.o

fseek.o e asinf.o

fstab.o e asinl.o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Linking with N
Static Libraries o

— N
void addvec(int *x, int *y,
#include <stdio.h> int *z, int n) {
#include "vector.h" int i;
int x[2] = {1, 2}; for (1 = 0; 1 < n; i++)
int y[2] = {3, 4}; z[i] = x[i] + yI[i];
int z[2]; } addvec. c
int main(int argc, char** void multvec (int *x, int *y,
argv) int *z, int n)
{ {
addvec(x, y, z, 2); int i;
printf("z = [%d %d]\n”,
z[0], =z[1]): for (i = 0; i < n; i++)
return O; main2.c z[i] = x[i] * y[i];
} } multvec.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Linking with Static Libraries

addvec.o multvec.o

|

main2.c vector.h Archiver

[o

Translators

(cpp, ccl, as) libvector.a libc.a Static libraries
Rle)l.oc:;?;ble ma inZ.\o‘ addvec .o pr:c'.inltf . o” a:zl any c_)th:;
object files modules called by printf. o

Linker (1d)
prog2c Fully linked

executable object file

“c” for “compile-time”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Using Static Libraries

B Linker’s algorithm for resolving external references:
= Scan .o filesand . afiles in the command line order.
= During the scan, keep a list of the current unresolved references.

= Aseach new .oor .afile, obj, is encountered, try to resolve each
unresolved reference in the list against the symbols defined in obj.

= |f any entries in the unresolved list at end of scan, then error.

B Problem:
= Command line order matters!
= Moral: put libraries at the end of the command line.

unix> gcc -L. libtest.o -lmine
unix> gcc -L. -lmine libtest.o
libtest.o: In function 'main’':

libtest.o(.text+0x4) : undefined reference to 'libfun'

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Modern Solution: Shared Libraries

B Static libraries have the following disadvantages:
= Duplication in the stored executables (every function needs libc)
= Duplication in the running executables

= Minor bug fixes of system libraries require each application to explicitly
relink

= Rebuild everything with glibc?
- https://security.googleblog.com/2016/02/cve-2015-7547-glibc-
getaddrinfo-stack.html

B Modern solution: Shared Libraries

= QObject files that contain code and data that are loaded and linked into
an application dynamically, at either load-time or run-time

= Also called: dynamic link libraries, DLLs, . so files

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

https://security.googleblog.com/2016/02/cve-2015-7547-glibc-getaddrinfo-stack.html
https://security.googleblog.com/2016/02/cve-2015-7547-glibc-getaddrinfo-stack.html

Carnegie Mellon

Shared Libraries (cont.)

B Dynamic linking can occur when executable is first loaded
and run (load-time linking).

= Common case for Linux, handled automatically by the dynamic linker
(ld-linux.so).

= Standard C library (Libc. so) usually dynamically linked.

B Dynamic linking can also occur after program has begun
(run-time linking).
= |n Linux, this is done by calls to the dlopen () interface.
= Distributing software.
= High-performance web servers.
= Runtime library interpositioning.

B Shared library routines can be shared by multiple processes.
= More on this when we learn about virtual memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

What dynamic libraries are required?

B .interp section
= Specifies the dynamic linker to use (i.e., 1d-1inux. so)

B .dynamic section

= Specifies the names, etc of the dynamic libraries to use

= Follow an example of csim-ref from cachelab

(NEEDED) Shared library: [libm.so.6]
B Where are the libraries found?

= Use “1dd” to find out:

unix> ldd csim-ref
linux-vdso.so.l => (0x00007££cl1l95£5000)
libc.so.6 => /1ib/x86 64-linux-gnu/libc.so.6 (0x00007£345eda6000)
/1ib64/1d-1linux-x86-64.s0.2 (0x00007£345£181000)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Dynamic Linking at Load-time

main2.c vector.h unix> gcc -shared -o libvector.so \
addvec.c multvec.c -fpic

Translators /
(cpp, ccl, as) libec.so

l libvector.so
Rel oc.:atab'le main2.o Relocation and symbol
object file l table info
Linker (1d)
Partiall;t Iink?d pr o£'2 1
executable object file l
Loader libe.so
(execve) libvector. so
Code and data
Fully linked v
executable Dynamic linker (1d-1inux. so)

in memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Dynamic Linking at Run-time

#include <stdio.h>
#include <stdlib.h>
#include <dlfcn.h>

int x[2] = {1, 2};
int y[2] = {3, 4};
int z[2];

int main(int argc, char** argv)

{
void *handle;
void (*addvec) (int *, int *, int *, int);
char *error;

/* Dynamically load the shared library that contains addvec() */
handle = dlopen("./libvector.so", RTLD LAZY) ;
if ('handle) {

fprintf (stderr, "%$s\n", dlerror()):;

exit(1l);

dll.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Dynamic Linking at Run-time (cont)

/* Get a pointer to the addvec() function we just loaded */
addvec = dlsym(handle, "addvec");

if ((error = dlerror()) !'= NULL) {
fprintf (stderr, "%s\n", error);
exit(1l);

}

/* Now we can call addvec() just like any other function */
addvec(x, y, z, 2);
printf("z = [%d %d]\n", z[0], z[1]1);

/* Unload the shared library */

if (dlclose(handle) < 0) {
fprintf (stderr, "%s\n", dlerror()):;
exit(1l);

}

return 0O;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Dynamic Linking at Run-time

dll.c vector.h unix> gcc -shared -o libvector.so \
addvec.c multvec.c -fpic

Translators
(cpp, ccl, as)

libvector. so

l libe.so
Rel oc.:atab'l € dll.o Relocation and symbol
object file l table info
Linker (1d)
.
prog2r
v libc.so
Partially linked Loader
executable object file (execve) Code and data
v
Fully linked Dynamic linker (1d-1inux. so)
texecutable Call to dynamic linker via dlopen |«
in memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Linking Recap

m Usually: Just happens, no big deal
m Sometimes: Strange errors

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Supplemental

m Dynamic linking can also be

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

	Slide 1: Linking 15-213/15-503: Introduction to Computer Systems 9th Lecture, May 28, 2025
	Slide 2: Disclaimer
	Slide 3: Today
	Slide 4: Example C Program
	Slide 5: Linking
	Slide 6: Why Linkers?
	Slide 7: Why Linkers? (cont)
	Slide 8: What Do Linkers Do?
	Slide 9: Symbols in Example C Program
	Slide 10: What Do Linkers Do? (cont’d)
	Slide 11: Three Kinds of Object Files (Modules)
	Slide 12: Executable and Linkable Format (ELF)
	Slide 13: ELF Object File Format
	Slide 14: ELF Object File Format (cont.)
	Slide 15: Linker Symbols
	Slide 16: Step 1: Symbol Resolution
	Slide 17: Symbol Identification
	Slide 18: Local Symbols
	Slide 19: How Linker Resolves Duplicate Symbol Definitions
	Slide 20: Linker’s Symbol Rules
	Slide 21: Linker Puzzles
	Slide 22: Type Mismatch Example
	Slide 23: Global Variables
	Slide 24: Use of extern in .h Files (#1)
	Slide 26: Linking Example
	Slide 27: Step 2: Relocation
	Slide 28: Relocation Entries
	Slide 29: Relocated .text section
	Slide 30: Loading Executable Object Files
	Slide 31: Quiz
	Slide 32: Packaging Commonly Used Functions
	Slide 33: Old-fashioned Solution: Static Libraries
	Slide 34: Creating Static Libraries
	Slide 35: Commonly Used Libraries
	Slide 36: Linking with Static Libraries
	Slide 37: Linking with Static Libraries
	Slide 38: Using Static Libraries
	Slide 39: Modern Solution: Shared Libraries
	Slide 40: Shared Libraries (cont.)
	Slide 41: What dynamic libraries are required?
	Slide 42: Dynamic Linking at Load-time
	Slide 43: Dynamic Linking at Run-time
	Slide 44: Dynamic Linking at Run-time (cont)
	Slide 45: Dynamic Linking at Run-time
	Slide 47: Linking Recap
	Slide 48: Supplemental

