
15213/15503 - Attack Lab Recitation
June 3rd, 2025

To download the activity, enter into a Shark machine:

$ wget https://www.cs.cmu.edu/~213/activities/s25-rec4.tar
$ tar -xvf s25-rec4.tar
$ cd s25-rec4
$ gdb activity

Activity 1
The goal of this activity is to input a string that causes the program to call win(0x15213),
and thereby win a cookie1. Work with your group to fill in the stack diagram, and discuss:

1.​ Where is long before stored on the stack? What about long after?

2.​ How many bytes can Gets() copy before overwriting something?

3.​ If the user types “12345678\n”, what will the resulting stack look like? (Fill in the
stack diagram on the back.) What will the corresponding value read from %rdx be?

4.​ How can you use GDB to check if your buffer overflow worked as intended?

Activity 2
We've upped the stakes! Can you figure out how to call win(0x18213) for two cookies?

1.​ Which lines of assembly correspond to win(0x15213) and win(0x18213)?

2.​ Which value will the retq instruction read off of the stack? Can it be overwritten?

Activity 3
If you finished the other activities early, see if you can manage to call win(0x18613)!

1.​ Note the suspiciously named function gadget1. Does it obey calling conventions by
preserving the stack pointer when it returns? What value will it place into %rdi?

1 Actual availability of cookies is neither guaranteed or implied. However, there are always
plenty of stack cookies available for you to choose from!

https://www.cs.cmu.edu/~213/activities/rec5.tar
https://en.wikipedia.org/wiki/Buffer_overflow_protection#Canaries

Code for solve()
0x4006b5 <+0>: sub $0x38,%rsp
0x4006b9 <+4>: movq $0xb4,0x28(%rsp)
0x4006c2 <+13>: movq $0xaf,0x8(%rsp)
0x4006cb <+22>: lea 0x10(%rsp),%rdi
0x4006d0 <+27>: callq 0x40073f <Gets>

0x4006d5 <+32>: mov 0x28(%rsp),%rdx
0x4006da <+37>: movabs $0x3331323531,%rax
0x4006e4 <+47>: cmp %rax,%rdx
0x4006e7 <+50>: jne 0x4006f3<solve+62>
0x4006e9 <+52>: mov $0x15213,%edi
0x4006ee <+57>: callq 0x40064d <win>

0x4006f3 <+62>: mov 0x8(%rsp),%rdx
0x4006f8 <+67>: movabs $0x3331323831,%rax
0x400702 <+77>: cmp %rax,%rdx
0x400705 <+80>: jne 0x400711<solve+92>
0x400707 <+82>: mov $0x18213,%edi
0x40070c <+87>: callq 0x40064d <win>

0x400711 <+92>: add $0x38,%rsp
0x400715 <+96>: retq

void solve(void) {
 long before = 0xb4;
 char buf[16];
 long after = 0xaf;

 Gets(buf);

 if (before == 0x3331323531)
 win(0x15213);

 if (after == 0x3331323831)
 win(0x18213);

}

Stack diagram

 7 6 5 4 3 2 1 0 Notes

0x602058 00 00 00 00 00 40 07 83 Return Address

0x602050

0x602048

0x602040

0x602038

0x602030

0x602028

0x602020

	Activity 1
	Activity 2
	Activity 3
	Code for solve()
	Stack diagram

