Carnegie Mellon

Bits, Bytes, and Integers — Part 2

15-213/15-513: Introduction to Computer Systems
3"d Lecture, May 18, 2023

Instructors:
Brian Railing (15-513)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today: Bits, Bytes, and Integers

[]
[]
B Integers
= Representation: unsigned and signed; negation and addition
[]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Encoding “Integers”

Unsigned
Given a bit w-1
vector x, B2U(x) = z x; - 2
w bits long... =0

Examples (w = 5)

t16 8 4 2 1
o 1 0 1 O

16 8 4 2 1

1 0 1 1 O
-16 8 4 2 1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Signed (twos complement)

w-—2

B2T(x) = —x,,_1 - 2771 + Z x; - 2°
=0

\ Sign Bit

0+8+0+2+0= 10

16+8+0+2+0= 26

—-16+8+0+2+0=-10

Negation: Complement & Increment

B Negate through complement and increase

~x + 1 == -x

B Why? x [t]olo[1]i[1]ol1
" -x + X == 0 (by definition)
" ~x + x == 1111..111 == -1 + ~x [0{1]1]0{0|0}1{0
" ~x +x+1=0
" ~xt+l == -x

Example: x = 15213

Decimal| Hex Binary
X 156213 3B 6D| 00111011 01101101
~X -16214| C4 92| 11000100 10010010

~x+1 -156213| C4 93| 11000100 10010011
Y -15213| C4 93| 11000100 10010011

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Complement & Increment Examples

x=0
Decimal Hex Binary
0 0| 00 00| 00000000 00000000
~0 4| FF FF| 11111111 11111111
~0+1 0| 00 00| 00000000 00000000
X = Tmin
Decimal| Hex Binary
x -32768| 80 00| 10000000 00000000
~X 32767| 7F FF| 01111111 11111111 Oops!
~x+1 | -32768| 80 00| 10000000 00000000 It's still

negative!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

-2
1110
-3
1101
Eight negative
values: -4
) 1100
-1,-2,...,—8
-5
1011
Mathematicians -6
1010

would prefer it

if a 4-bit signed
number could
represent values
—-8...8, but that’s
2* + 1 values, so int min=-23
they won't all fit. —

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

2
0010
3
0011
4
0100
5
0101
6
0110

int_max = 23 -1

Eight non-
negative values:
0,1,...,7

What if we made
a 4-bit signed
number only
represent values
=7...7? Then we
wouldn’t be using
bit pattern 1000...

6

Unsigned Addition

Operands: w bits !
+ v
True Sum: w+1 bits
ut+v
Discard Carry: w bits UAdd,(u, v)
@
& o
B Standard Addition Function 0000
= |gnores carry output 8823
. . 0011
H Implements Modular Arithmetic 0100
0101
s = UAdd, (u,v) = wu+v mod2¥ 0110
0111
unsigned char 1110 1001 E9 233 1000

+ 1101 0101 + D5 + 213

RR|R[(RR]|=
olalelnl=lole|e|N|o|u|s|wNd| = o
'—l
o
'—l
o

HEH|{O|IQ|W|(P|o|lo|do|u|dlw|NdRk|o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Unsigned Addition

Operands: w bits !
+ Vv
True Sum: w+1 bits
utv
Discard Carry: w bits UAdd,(u, v)
< o
& o
B Standard Addition Function 0 [0 | 0000
= |gnores carry output ; ; 8823
. . 3 3 0011
H Implements Modular Arithmetic 4 |4 | 0100
5 5 0101
s = UAdd, (u,v) = wu+v mod2¥ 6 | 6 | 0110
7 7 0111
unsigned char 1110 1001 E9 233 o
+ 1101 0101 + D5 + 213 A [10] 1010
B |11 | 1011
1 1011 1110 1BE 446 C |12 | 1100
1011 1110 BE 190 AT REERD)
F |15]| 1111

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Visualizing (Mathematical) Integer Addition

Add,(u , v)

Hinteger Addition

n 4_b|t integers u, v Integer Addition

= Compute true sum
Add,(u, v)

= Values increase linearly
with uand v

* Forms planar surface

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Visualizing Unsigned Addition

Overflow

B Wraps Around \

= |f true sum > 2%

UAdd,(u, v)

= At most once

True Sum
2w+1 —_—
Overflow
2W -- _\- ‘|V
0 L

Modular Sum

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Two’s Complement Addition

Operands: w bits !
+ %
True Sum: w+1 bits U+ v

Discard Carry: w bits TAdd, (u, v)

Bl TAdd and UAdd have Identical Bit-Level Behavior

= Signed vs. unsigned addition in C:
int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);
t=u+v
= Willgive s == 1110 1001 E9 -23
+ 1101 0101 + D5 + -43
1 1011 1110 _lEE -66

1011 1110 BE -66

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Visualizing 2’s Complement Addition

NegOver

B Values \

= 4-bit two’s comp.

TAdd,(u, v)

= Range from -8 to +7

B Wraps Around
= |fsum>2w1
Becomes
negative
At most once
= |fsum <-2w1
Becomes

positive u 2, . - PosOver

At most once

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

TAdd Overflow

True Sum
B Functionality
= True sum requires 1it.1 2-1 1
w41 bits PosOver TAdd Result
- DrOp Off MSB 0100...0 2W—1_1 -’ —_ 011..1
= Treat remaining bits
as 2’s comp. integer 0000..0 0 T + 000.0
1011..1 _w-1 } L 00
1.000...0 _ow L1 NegOver

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Today: Bits, Bytes, and Integers

N
B Bit-level manipulations

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Boolean Algebra

B Developed by George Boole in 19th Century
= Algebraic representation of logic
- Encode “True” as 1 and “False” as 0

And Or
=« A&B = 1 when both A=1 and B=1 =« A|B =1 when either A=1 or B=1
&0 1 | 10 1
010 O 0|10 1
110 1 111 1
Not Exclusive-Or (Xor)
= “A =1 when A=0 = A7B = 1 when either A=1 or B=1, but not both
~1 Ao 1
0|1 O0(0 1
1[0 111 O

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

General Boolean Algebras

B Operate on Bit Vectors
= QOperations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 ~ 01010101 ~ 01010101

01000001 01111101 00111100 10101010

H All of the Properties of Boolean Algebra Apply

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Example: Representing & Manipulating Sets

B Representation
= Width w bit vector represents subsets of {0, ..., w—1}
" 3=1ifj €A

01101001 {0,3,5,6}
76543210

01010101 {0,2,4,6}

76543210
B Operations
= & Intersection 01000001 {0,6}
= | Union 01111101 {0,2,3,4,5,6}
= A Symmetric difference 00111100 {2,3,4,5}

= ~ Complement 10101010 {1,3,5,7}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Bit-Level Operations in C

4
W Operations &, |, ~, " Availablein C il

III

= Apply to any “integral” data type
- long, int, short, char, unsigned

= View arguments as bit vectors 0100

] e 0101
Arguments applied bit-wise 0110

B Examples (Char data type) gééé
= ~0x41 > 1001

= ~0x00 - 1914

HIHO QW olo/douo|bdlw|NdRk|o
RR(RRR|-
P S R 1 A S R e R Y U B SIS L e =
=
o
=
o

= 0Ox69 & 0x55 >

- 0X69 | 0X55 >

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Bit-Level Operations in C

+
W Operations &, |, ~, ™ Availablein C R 0°

III

= Apply to any “integral” data type
- long, int, short, char, unsigned
= View arguments as bit vectors

= Arguments applied bit-wise

B Examples (Char data type)
= ~0x41 -> OxBE
. ~0100 0001, - 1011 1110,
= ~0x00 > OxFF
. ~0000 0000, > 1111 1111,
= 0x69 & 0x55 - 0x41
. 0110 1001, & 0101 0101, - 0100 0001,
= 0x69 | Ox55 - 0x7D
. 0110 1001, | 0101 0101, - 0111 1101,

RR(R(R|RR
e s S e P R R S U B N LN (=)
=
o
=
o

HIHO QW olo/douo|bdlw|NdRk|o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Contrast: Logic Operations in C

B Contrast to Bit-Level Operators
= Logic Operation R, |],!
= View 0 as “Fal
= Anything
= Alwa

sl Watch out for && vs. & (and || vs. |)...
ey one of the more common oopsies in

Y C programming
= 10X00 >
= 110x41-> 0Ox01

= 0x69 && 0x55 - 0x01
= 0x69 || Ox55 - 0x01
= p&&*p (avoids null pointer access)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Logical versus Bitwise

X IX 11X X == X ~X ~~X ~~X ==

—1 0 1 No —1 0 —1 Yes

0 1 0 Yes 0 —1 0 Yes

1 0 1 Yes 1 —2 1 Yes

2 0 1 No 2 -3 2 Yes
IIx 1= x ~X == X

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Today: Bits, Bytes, and Integers

[]
B Integers

= Conversion, casting, extension, truncation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Mapping Between Sighed & Unsigned

Unsigned

Two’s Complement

T2U

S *| T2B *| B2U > U
X

Maintain Same Bit Pattern

Two’s Complement

Unsigned U2T

u *|U2B |—| B2T > S
X

Maintain Same Bit Pattern

B Mappings between unsigned and two’s complement numbers:
Keep bit representations and reinterpret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Relation between Signhed & Unsigned

Unsigned U2T Two’s Complement
u > U2B > B2T > S
X
Maintain Same Bit Pattern
w—1 0
u +|+|+ . e
s -+ + +]+]+

Large positive weight
becomes
Large negative weight

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Mapping Signed <> Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 — 3
0100 4 <_> 4
0101 5 5
0110 6 6
0111 7 7
1000 -8 8
1001 -7 9
1010 -6 +16 10
1011 -5 ‘ ' 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Conversion Visualized

B 2’s Comp. » Unsigned _

UMax
= Ordering Inversion UMax — 1
= Negative — Big Positive
TMax +1 :
_ / ! Unsigned
TMax @ > TMax
Range
2’s Complement 0o @ »® O
Range -1 .J/ B
-2
TMin

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Signed vs. Unsigned in C

B Constants
= By default are considered to be signed integers

= Unsigned if have “U” as suffix
0U, 4294967259U

W Casting
= Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (int) ux;

uy = (unsigned) ty;

= Implicit casting also occurs via assignments and procedure calls
tx = ux; int fun (unsigned u) ;

uy = ty; uy = fun (tx) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Casting Surprises

B Expression Evaluation

= |f there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

* Including comparison operations <, >, ==, <=, >=

= Examples:

Constant 1 Constant 2 Relation Evaluation
0 ou == Unsigned
-1 0 < Signed
-1 ou > Unsigned
INT MAX INT MIN > Signed
(unsigned) INT MAX INT MIN < Unsigned
-1 -2 > Signed
(unsigned) -1 -2 > Unsigned
INT MAX ((unsigned) INT MAX) + 1 < Unsigned
INT MAX (int) (((unsigned) INT MAX) + 1) > Signed

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Summary
Casting Sighed € Unsigned: Basic Rules

H Bit pattern is maintained
B But reinterpreted
B Can have unexpected effects: adding or subtracting 2%

B Expression containing signed and unsigned int
= intiscasttounsigned!!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Today: Bits, Bytes, and Integers

[]
B Integers

= Multiplication, division, shifting

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Sign Extension and Truncation

B Sign Extension

< W >
X LCLI1 eee [T111]
X' [TT oo TTTTT X [TT] Make Kcopies of
< K > W s Sign bit
B Truncation
< k >< W >
X [T eee TTTTTT e TTT1
x' O ITT _+e¢ TTT] Chop off Khighest
< s bits
w

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Sign Extension: Simple Example

Positive number Negative number
-16 8 4 2 1 -16 8 4 2 1
10 = 0 1 0 1 0 -10 = 0 1 1 0
-3 16 8 4 2 1 -3 16 8 4 2 1
10 = % 1 0 1 0 -10 = 1 { 0 1 1 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Truncation: Simple Example

No sign change Sign change

-16 8 4 2 1 -16 8 4 2 1

2 = 0 0 0 1 0 10 = 0 1 0 1 0
-8 4 2 1 -8 4 2 1

2 = 0 0 1 0 -0 = 1 0 1 0
2 mod 16 = 2 10 mod 16 = 10U mod 16 = 10U = -6

-16 8 4 2 1 -16 8 4 2 1

-6 = 1 1 0 1 0 -10 = 1 0 1 1 0

-8 4 2 1 -8 4 2 1

-6 = 1 0 1 0 6 = 0 1 1 0
-6 mod 16 = 26U mod 16 = 10U = -6 -10 mod 16 = 22U mod 16 = 6U = 6

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Today: Bits, Bytes, and Integers

Addition, multiplication

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Shifting

. Left Shift: x << v Argument x 01100010

® Shift bit-vector x left y << 3 [@00Ego00
positions _

" Throw away extra bits on left Logical >>2 0 VREE000

" Fill with 0’s on right Arithmetic >>2 00011000
® Equivalent to multiplying by 2¥
[] nght Shift: x >> y

Shift bit-vector x right v Argument x 10100010
positions —
" Throw away extra bits on right <<3 00
" Two kinds: Logical >>2 00101000

= “Logical”: Fill with O’s on left

= “Arithmetic”: Replicate most
significant bit on left

" Almost equivalent to dividing
by 2V

B Undefined Behavior (in C)

® Shift amount < 0 or > word size

Arithmetic>>2 11101000

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Multiplication

B Goal: Computing Product of w-bit numbers x, y
= Either signed or unsigned

H But, exact results can be bigger than w bits
= Unsigned: up to 2w bits
Resultrange:0<x*y<(2w—-1)2%2 = 22w—-2w+l + 1
= Two’s complement min (negative): Up to 2w-1 bits
Result range: x * y > (-2w1)*(2w1-1) = —22w=24 w1
= Two’s complement max (positive): Up to 2w bits, but only for (TMin ,)?
Result range: x * y < (-2w1) 2 = 22w
B So, maintaining exact results...
= would need to keep expanding word size with each product computed
= jsdone in software, if needed
e.g., by “arbitrary precision” arithmetic packages

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Unsigned Multiplication in C

Operands: w bits

True Product: 2*w bits

UMult, (u , v)

Discard w bits: w bits

B Standard Multiplication Function
= |gnores high order w bits

B Implements Modular Arithmetic

UMult (u,v) = u v mod?2Y¥
1110 1001 E9 233
* 1101 0101 * D5 * 213
1100 0001 1101 1101 Cl1lDD 49629

1101 1101 DD 221

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Signed Multiplication in C

Operands: w bits

u-v

True Product: 2*w bits

TMult, (u, v)

Discard w bits: w bits

B Standard Multiplication Function
= |gnores high order w bits

= Some of which are different for signed
vs. unsigned multiplication

= Lower bits are the same

1110 1001 E9 -23

* 1101 0101 * D5 * -43
0000 0011 1101 1101 03DD 989
1101 1101 DD -35

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Power-of-2 Multiply with Shift

B Operation
= u << kgivesu * 2k
= Both signed and unsigned

Operands: w bits

* 28 |o] eee JO]1]0O] eee |0O]O
.0k
True Product: w+k bits u2 ®o o0 0| eee |O]O
Discard k bits: w bits UMult, (u , 2) X 0] eee 0|0
TMult, (u , 2¥)
B Examples
= u << 3 == u * 8
" (u << 5) - (u << 3) == u * 24

= Most machines shift and add faster than multiply
Compiler generates this code automatically

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Today: Bits, Bytes, and Integers

B Byte order in memory, pointers, strings

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Byte-Oriented Memory Organization

QQ Qﬁ.

B Programs refer to data by address
= |magine all of RAM as an enormous array of bytes
= An addressis an index into that array
= A pointer variable stores an address

H System provides a private address space to each “process”
= A process is an instance of a program, being executed
= An address space is one of those enormous arrays of bytes
= Each program can see only its own code and data within its enormous array
= We'll come back to this later (“virtual memory” classes)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Machine Words

B Any given computer has a “Word Size”
= Nominal size of integer-valued data
- and of addresses

= Until recently, most machines used 32 bits (4 bytes) as word size
- Limits addresses to 4GB (232 bytes)

= Increasingly, machines have 64-bit word size

- Potentially, could have 16 EB (exabytes) of addressable memory

- That’s 18.4 x 108 bytes Yes, both of these numbers are
correct.
This discrepancy is known as the

m i i : Great Storage Industry Marketing
Machines still support multiple data formats oo ity -

- Fractions or multiples of word size you really want to know.
= Always integral number of bytes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Addresses Always Specify Byte Locations

32-bit 64-bit g ytes Addr.
= Address of a word is address of Words Words
the first byte in the word 0000
: Adar 0001
= Addresses of successive words = 005
differ by 4 (32-bit) or 8 (64-bit) Adar 0003
OO_OO 0004
Adar 0005
0004 0006
0007
0008
Addr 0009
0008 Addr 0010
_ 0011
0008 0012
Addr 0013
00_12 0014
0015

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Example Data Representations

C Data Type Typical 32-bit | Typical 64-bit x86-64

char

short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
pointer 4 8 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Byte Ordering

B So, how are the bytes within a multi-byte word ordered in
memory?

B Conventions
= Big Endian: Sun, PPC Mac, network packet headers
= Least significant byte has highest address

= Little Endian: x86, ARM processors running Android, iOS, and
Windows

= Least significant byte has lowest address

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Byte Ordering Example

B Example
= Variable x has 4-byte value of 0x01234567
= Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
01 23 45 67

Little Endian 0x100 0x101 0x102 0x103
67 45 23 01

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

Decimal: 15213

Representing Integers |sinary: 0011 1011 0110 1101

Hex: 3 B 6 D
int A = 15213; long int C = 15213;
I1A32, x86-64 Sun
1A32 x86-64 Sun
2z =
S5 00 |
£|8 00 |

int B = -15213;
1A32, x86-64 Sun

T~

Two’s complement
representation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Examining Data Representations

B Code to Print Byte Representation of Data
= Casting pointer to unsigned char * allows treatment as a byte array

typedef unsigned char *pointer;

void show bytes (pointer start, size t len) {
size t i;
for (i = 0; i < len; i++)
printf ("%$p\t0x%.2x\n",start+i, start[i]):
printf ("\n") ;

}

Printf directives:
%p: Print pointer
%X: Print Hexadecimal

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

show bytes Execution Example

int a = 15213;
printf ("int a = 15213;\n");
show bytes ((pointer) &a, sizeof (int));

Result (Linux x86-64):

int a = 15213;

Ox7fffb7f71dbc od
Ox7fffb7f71dbd 3b
Ox7fffb7f71dbe 00
Ox7fffb7f71dbf 00

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Representing Pointers

int B = -15213;
int *P = &B;
Sun 1A32 x86-64
EF AC 3C
FF 28 1B
FB F5 FE
2C FF 82
FD
TF
00
00

Different compilers & machines assign different locations to objects

Even get different results each time run program

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

Representing Strings

char S[6] = "18213";
B StringsinC

= Represented by array of characters

= Each character encoded in ASCIl format 1A32 Sun
- Standard 7-bit encoding of character set 31 |« | 31
. Charz.ac‘te.r 0” has code Ox.30 38 |« | 38
— Digit i has code 0x30+i 32 | J 32
= String should be null-terminated
31 |« * 31
= Final character=0
C tibilit) 1=
ompatioil
[] Y y 00 | *| 00

= Byte ordering not an issue

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

Representing x86 machine code

B x86 machine code is a sequence of bytes

= @Grouped into variable-length instructions, which look like strings...
= But they contain embedded little-endian numbers...

B Example Fragment

Address Instruction Code Assembly Rendition
8048365: 5b pop %ebx

8048366 8l c3 ab 12 00 00 add $0x12ab, $ebx
804836¢: 83 bb 28 0000 00 00 cmpl x0, 0x28 (%$ebx)

B Deciphering Numbers

= Value: 0x1l2ab
= Pad to 32 bits: 0x000012ab
= Split into bytes: 00 00 12 ab

= Reverse: ab 12 00 00

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

	Slide 1: Bits, Bytes, and Integers – Part 2 15-213/15-513: Introduction to Computer Systems 3rd Lecture, May 18, 2023
	Slide 2: Today: Bits, Bytes, and Integers
	Slide 3: Encoding “Integers”
	Slide 4: Negation: Complement & Increment
	Slide 5: Complement & Increment Examples
	Slide 6
	Slide 7: Unsigned Addition
	Slide 8: Unsigned Addition
	Slide 9: Visualizing (Mathematical) Integer Addition
	Slide 10: Visualizing Unsigned Addition
	Slide 11: Two’s Complement Addition
	Slide 12: Visualizing 2’s Complement Addition
	Slide 13: TAdd Overflow
	Slide 14: Today: Bits, Bytes, and Integers
	Slide 15: Boolean Algebra
	Slide 17: General Boolean Algebras
	Slide 18: Example: Representing & Manipulating Sets
	Slide 19: Bit-Level Operations in C
	Slide 20: Bit-Level Operations in C
	Slide 21: Contrast: Logic Operations in C
	Slide 23: Logical versus Bitwise
	Slide 24: Today: Bits, Bytes, and Integers
	Slide 25: Mapping Between Signed & Unsigned
	Slide 26: Relation between Signed & Unsigned
	Slide 27: Mapping Signed  Unsigned
	Slide 28: Conversion Visualized
	Slide 29: Signed vs. Unsigned in C
	Slide 30: Casting Surprises
	Slide 31: Summary Casting Signed ↔ Unsigned: Basic Rules
	Slide 32: Today: Bits, Bytes, and Integers
	Slide 33: Sign Extension and Truncation
	Slide 34: Sign Extension: Simple Example
	Slide 35: Truncation: Simple Example
	Slide 36: Today: Bits, Bytes, and Integers
	Slide 37: Shifting
	Slide 38: Multiplication
	Slide 40: Unsigned Multiplication in C
	Slide 41: Signed Multiplication in C
	Slide 42: Power-of-2 Multiply with Shift
	Slide 43: Today: Bits, Bytes, and Integers
	Slide 44: Byte-Oriented Memory Organization
	Slide 45: Machine Words
	Slide 46: Addresses Always Specify Byte Locations
	Slide 47: Example Data Representations
	Slide 48: Byte Ordering
	Slide 49: Byte Ordering Example
	Slide 50: Representing Integers
	Slide 51: Examining Data Representations
	Slide 52: show_bytes Execution Example
	Slide 53: Representing Pointers
	Slide 54: Representing Strings
	Slide 55: Representing x86 machine code

