
Carnegie Mellon

1Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

15-213	Recitation	11
Processes,	Signals,	Tshlab

4	November	2019

Carnegie Mellon

2Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Outline
⬛ Logistics
⬛ Process	Lifecycle
⬛ Error	Handling
⬛ Signal	Handling

Carnegie Mellon

3Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Logistics
⬛ Malloc	Final	due	tomorrow	(11/5)
▪ Can	use	up	to	2	late	days!
▪ Style	grading	mm.c	(not	checkheap)

⬛ Midterm	regrades	released
▪ Review	exam	in	Professor	OH

Carnegie Mellon

4Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Shell	Lab
⬛ Due	date: next	Thursday	(November	14th)
⬛ Simulate	a	Linux-like	shell	with	I/O	redirection

⬛ Review	the	writeup	carefully.
▪ Review	once	before	starting,	and	again	when	halfway	through	
▪ This	will	save	you	a	lot	of	style	points	and	a	lot	of	grief!

⬛ Read	Chapter	8	in	the	textbook:
▪ Process	lifecycle	and	signal	handling
▪ How	race	conditions	occur,	and	how	to	avoid	them

▪ Be	careful	not	to	use	code	from	the	textbook	without	
understanding	it	first.

Carnegie Mellon

5Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Process	“Lifecycle”
⬛ fork()

Create	a	duplicate,	a	“child”,	of	the	process

⬛ execve()
Replace	the	running	program

⬛ ...	[Complete	Work]

⬛ exit()
End	the	running	program

⬛ waitpid()
Wait	for	a	child	process	to	terminate

Carnegie Mellon

6Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Notes	on	Examples
⬛ Full	source	code	of	all	programs	is	available

▪ TAs	may	demo	specific	programs

⬛ In	the	following	examples,	exit() is	called
▪ We	do	this	to	be	explicit	about	the	program’s	behavior
▪ Exit	should	generally	be	reserved	for	terminating	on	error

⬛ Unless	otherwise	noted,	assume	all	syscalls	succeed
▪ Error	checking	code	is	omitted.
▪ Be	careful	to	check	errors	when	writing	your	own	shell!

Carnegie Mellon

7Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Processes	are	separate
⬛ How	many	lines	are	printed?
⬛ If	pid	is	at	address	0x7fff2bcc264c,	what	is	printed?

int main(void) {
pid_t pid;
pid = fork();
printf("%p - %d\n", &pid, pid);
exit(0);

}

Carnegie Mellon

8Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Processes	are	separate
⬛ How	many	lines	are	printed?
⬛ If	pid	is	at	address	0x7fff2bcc264c,	what	is	printed?

int main(void) {
pid_t pid;
pid = fork();
printf("%p - %d\n", &pid, pid);
exit(0);

} 0x7fff2bcc264c - 24750
0x7fff2bcc264c - 0
The	order	and	the	child's	PID	(printed	by	
the	parent)	may	vary,	but	the	address	
will	be	the	same	in	the	parent	and	child.

Carnegie Mellon

9Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Processes	Change
⬛ What	does	this	program	print?

int main(void) {
char *args[3] = {

"/bin/echo", "Hi 18213!", NULL
};
execv(args[0], args);
printf("Hi 15213!\n");
exit(0);

}

Carnegie Mellon

10Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Processes	Change
⬛ What	does	this	program	print?

int main(void) {
char *args[3] = {

"/bin/echo", "Hi 18213!", NULL
};
execv(args[0], args);
printf("Hi 15213!\n");
exit(0);

}

Hi 18213!

Carnegie Mellon

11Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Processes	Change
⬛ What	about	this	program?	What	does	it	print?

int main(void) {
char *args[3] = {

"/bin/blahblah", "Hi 15513!", NULL
};
execv(args[0], args);
printf("Hi 14513!\n");
exit(0);

}

Carnegie Mellon

12Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Processes	Change
⬛ What	about	this	program?	What	does	it	print?

int main(void) {
char *args[3] = {

"/bin/blahblah", "Hi 15513!", NULL
};
execv(args[0], args);
printf("Hi 14513!\n");
exit(0);

}

Hi 14513!

Carnegie Mellon

13Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

On	Error
⬛ What	should	we	do	if	malloc fails?

const size_t HUGE = 1 * 1024 * 1024 * 1024;
int main(void) {

char *buf = malloc(HUGE * HUGE);

printf("Buf at %p\n", buf);
free(buf);
exit(0);

}

Carnegie Mellon

14Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

On	Error
⬛ What	should	we	do	if	malloc fails?

const size_t HUGE = 1 * 1024 * 1024 * 1024;
int main(void) {

char *buf = malloc(HUGE * HUGE);

printf("Buf at %p\n", buf);
free(buf);
exit(0);

}

if (buf == NULL) {
fprintf(stderr, "Failure at %u\n", __LINE__);
exit(1);

}

Carnegie Mellon

15Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Exit	values	can	convey	information
⬛ Two	values	are	printed.	Are	they	related?

int main(void) {
pid_t pid = fork();
if (pid == 0) { exit(getpid()); }
else {

int status = 0;
waitpid(pid, &status, 0);
printf("0x%x exited with 0x%x\n", pid,

WEXITSTATUS(status));
}
exit(0);

}

Carnegie Mellon

16Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Exit	values	can	convey	information
⬛ Two	values	are	printed.	Are	they	related?

int main(void) {
pid_t pid = fork();
if (pid == 0) { exit(getpid()); }
else {

int status = 0;
waitpid(pid, &status, 0);
printf("0x%x exited with 0x%x\n", pid,

WEXITSTATUS(status));
}
exit(0);

} 0x7b54 exited with 0x54
They're	the	same!...	almost.
Exit	codes	are	only	one	byte	in	size.

Carnegie Mellon

17Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Processes	have	ancestry
⬛ What's	wrong	with	this	code?	(assume	that	fork	succeeds)

int main(void) {
int status = 0, ret = 0;
pid_t pid = fork();
if (pid == 0) {

pid = fork();
exit(getpid());

}

ret = waitpid(-1, &status, 0);
printf("Process %d exited with %d\n", ret, status);

ret = waitpid(-1, &status, 0);
printf("Process %d exited with %d\n", ret, status);
exit(0);

}

Carnegie Mellon

18Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Processes	have	ancestry
⬛ What's	wrong	with	this	code?	(assume	that	fork	succeeds)

int main(void) {
int status = 0, ret = 0;
pid_t pid = fork();
if (pid == 0) {

pid = fork();
exit(getpid());

}

ret = waitpid(-1, &status, 0);
printf("Process %d exited with %d\n", ret, status);

ret = waitpid(-1, &status, 0);
printf("Process %d exited with %d\n", ret, status);
exit(0);

}

waitpid will	reap	only	
children,	not	grandchildren,	
so	the	second	waitpid call	
will	return	an	error.

Carnegie Mellon

19Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Process	Graphs
⬛ How	many	different	sequences	can	be	printed?

int main(void) {
int status;
if (fork() == 0) {

pid_t pid = fork();
printf("Child: %d\n", getpid());
if (pid == 0) {

exit(0);
}
// Continues execution...

}
pid_t pid = wait(&status);
printf("Parent: %d\n", pid);
exit(0);

}

Carnegie Mellon

20Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Process	Graphs
⬛ How	many	different	sequences	can	be	printed?
int main(void) {

int status;
if (fork() == 0) {

pid_t pid = fork();
printf("Child: %d\n", getpid());
if (pid == 0) {

exit(0);
}
// Continues execution...

}
pid_t pid = wait(&status);
printf("Parent: %d\n", pid);
exit(0);

} fork

fork print

print exit

wait print exit

wait print exit

Carnegie Mellon

21Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Process	Graphs
⬛ How	many	different	lines	are	printed?

int main(void) {
char *tgt = "child";
pid_t pid = fork();
if (pid == 0) {

pid = getppid(); // Get parent pid
tgt = "parent";

}
kill(pid, SIGKILL);
printf("Sent SIGKILL to %s:%d\n", tgt, pid);
exit(0);

}

Carnegie Mellon

22Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Process	Graphs
⬛ How	many	different	lines	are	printed?

int main(void) {
char *tgt = "child";
pid_t pid = fork();
if (pid == 0) {

pid = getppid(); // Get parent pid
tgt = "parent";

}
kill(pid, SIGKILL);
printf("Sent SIGKILL to %s:%d\n", tgt, pid);
exit(0);

} Anywhere	from	0-2	lines.	The	parent	
and	child	try	to	terminate	each	other.

Carnegie Mellon

23Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Signals	and	Handling
⬛ Signals	can	happen	at	any	time

▪ Control	when	through	blocking	signals

⬛ Signals	also	communicate	that	events	have	occurred
▪ What	event(s)	correspond	to	each	signal?

⬛ Write	separate	routines	for	receiving	(i.e.,	signals)

Carnegie Mellon

24Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Counting	with	signals
⬛ Will	this	code	terminate?

volatile int counter = 0;
void handler(int sig) { counter++; }

int main(void) {
signal(SIGCHLD, handler);
for (int i = 0; i < 10; i++) {

if (fork() == 0) { exit(0); }
}
while (counter < 10) {

mine_bitcoin();
}
return 0;

}

Carnegie Mellon

25Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Counting	with	signals
⬛ Will	this	code	terminate?

volatile int counter = 0;
void handler(int sig) { counter++; }

int main(void) {
signal(SIGCHLD, handler);
for (int i = 0; i < 10; i++) {

if (fork() == 0) { exit(0); }
}
while (counter < 10) {

mine_bitcoin();
}
return 0;

} It	might	not,	since	
signals	can	coalesce.

(Don't	use	signal,	use	
Signal or	sigaction
instead!)

(Don't	busy-wait,	use	
sigsuspend instead!)

Carnegie Mellon

26Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Proper	signal	handling
⬛ How	can	we	fix	the	previous	code?

▪ Remember	that	signals	will	be	coalesced,	so	the	number	of	times	a	
signal	handler	has	executed	is	not necessarily	the	same	as	number	
of	times	a	signal	was	sent.

▪ We	need	some	other	way	to	count	the	number	of	children.

Carnegie Mellon

27Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Proper	signal	handling
⬛ How	can	we	fix	the	previous	code?

▪ Remember	that	signals	will	be	coalesced,	so	the	number	of	times	a	
signal	handler	has	executed	is	not necessarily	the	same	as	number	
of	times	a	signal	was	sent.

▪ We	need	some	other	way	to	count	the	number	of	children.

void handler(int sig) {
pid_t pid;
while ((pid = waitpid(-1, NULL, WNOHANG)) > 0) {

counter++;
}

}

(This	instruction	isn't	atomic.	Why	
won't	there	be	a	race	condition?)

Carnegie Mellon

28Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition 28

Error	in	UNIX	- return	value
⬛ Can	System	call	fail	?
⬛ How	to	tell	the	

difference	?

int main() {
int fd = open("213Grades.txt",

O_RDWR);
// Change grades to As or Fs

}

Carnegie Mellon

29Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition 29

Error	in	UNIX	- What	error	?
⬛ Can	System	call	fail	?
⬛ How	to	tell	the	difference	?

▪ Returned	-1

⬛ So,	my	fantastic	system	call	
failed.

⬛ How	can	I	tell	what	got	
wrong	?

int main() {
int fd = open("213Grades.txt",

O_RDWR);
if (fd < 0) {

printf("Failed\n");
exit(-1);

}
// Change grades to As or Fs

}

Carnegie Mellon

30Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition 30

Error	handling	- What	now	?
⬛ Can	System	call	fail	?
⬛ How	to	tell	the	difference	?

▪ Returned	-1

⬛ So,	my	fantastic	system	call	failed.
⬛ How	can	I	tell	what	got	wrong	?

▪ The	error	is	in	errno	(global)
(only	if	the	syscall	fail,
what	do	you	get	on	success	?)

⬛ What	do	I	do	?

int main() {
…
while (!quit) {
…
int fd = open(userfile,O_RDWR);
if (fd < 0) {
printf("Failed\n");
perror("open"); // use errno
exit(-1);

}
…

}
…

}

Carnegie Mellon

31Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition 31

Error	and	signals
⬛ Can	System	call	fail	?
⬛ How	to	tell	the	difference	?

▪ Returned	-1

⬛ So,	my	fantastic	system	call	
failed.

⬛ How	can	I	tell	what	got	
wrong	?
▪ The	error	is	in	errno	(a	global)
▪ If	success	errno	may	contain	

anything

⬛ What	do	I	do	?
▪ Look	at	errno	and	take	action

⬛ Hey,	here	comes	a	signal…

int main() {
…
while (!quit) {

…
int fd = open(userfile,O_RDWR);
if (fd < 0) {

if (errno == EACCESS) {
// tell user he’s wrong
continue;

} else if(…) {
…

} else {
perror("open"); // use errno
exit(-1);

}
}
…

}
…

}

Carnegie Mellon

32Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition 32

Error	and	signals	:	Recap
⬛ You	can’t	expect	people	to	block	signals	around	all	error	

handling	logic
⬛ Hence,	your	signal	handler	shouldn’t	interfere	with	them
⬛ Solution	:

▪ Do	not	make	any	system	call	that	could	set	errno
▪ Save	and	restore	errno	(store	at	beginning	of	handler	and	restore	

after)

Carnegie Mellon

33Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Example	Question
What	are	all	possible	output	values?
int	main()	{	

int	val	=	2;	
printf("%d",	0);	
fflush(stdout);	
if	(fork()	==	0)	{	

val++;	
printf("%d",	val);	
fflush(stdout);	

}	else	{	
val--;	
printf("%d",	val);	
fflush(stdout);	
wait(NULL);

}	
val++;	
printf("%d",	val);	
fflush(stdout);	
exit(0);	

}

Carnegie Mellon

34Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

If	you	get	stuck
⬛ Read	the	writeup!
⬛ Do	manual	unit	testing	before	runtrace and	sdriver!

⬛ Read	the	writeup!
⬛ Post	private	questions	on	Piazza!

⬛ Think	carefully	about	error	conditions.
▪ Read	the	man	pages	for	each	syscall	when	in	doubt.
▪ What	errors	can	each	syscall	return?
▪ How	should	the	errors	be	handled?

Carnegie Mellon

35Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Appendix:	Blocking	signals
⬛ Surround	blocks	of	code	with	calls	to	sigprocmask.

▪ Use	SIG_BLOCK	to	block	signals	at	the	start.
▪ Use	SIG_SETMASK	to	restore	the	previous	signal	mask	at	the	end.

⬛ Don't	use	SIG_UNBLOCK.
▪ We	don't	want	to	unblock	a	signal	if	it	was	already	blocked.
▪ This	allows	us	to	nest	this	procedure	multiple	times.

sigset_t mask, prev;
sigemptyset(&mask, SIGINT);
sigaddset(&mask, SIGINT);
sigprocmask(SIG_BLOCK, &mask, &prev);
// ...
sigprocmask(SIG_SETMASK, &prev, NULL);

Carnegie Mellon

36Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Appendix:	Errno
⬛ Global	integer	variable	used	to	store	an	error	code.

▪ Its	value	is	set	when	a	system	call	fails.
▪ Only	examine	its	value	when	the	system	call's	return	code	indicates	

that	an	error	has	occurred!
▪ Be	careful	not	to	call	make	other	system	calls	before	checking	the	

value	of	errno!

⬛ Lets	you	know	why	a	system	call	failed.
▪ Use	functions	like	strerror,	perror to	get	error	messages.

⬛ Example:	assume	there	is	no	“foo.txt”	in	our	path
int fd = open("foo.txt", O_RDONLY);
if (fd < 0) perror("open");
// open: No such file or directory

#include <errno.h>

Carnegie Mellon

37Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Appendix:	Writing	signal	handlers
⬛ G1.	Call	only	async-signal-safe	functions	in	your	handlers.

▪ Do	not	call	printf,	sprintf,	malloc,	exit!	Doing	so	can	cause	
deadlocks,	since	these	functions	may	require	global	locks.

▪ We've	provided	you	with	sio_printf which	you	can	use	instead.

⬛ G2.	Save	and	restore	errno on	entry	and	exit.
▪ If	not,	the	signal	handler	can	corrupt	code	that	tries	to	read	errno.
▪ The	driver	will	print	a	warning	if	errno is	corrupted.

⬛ G3.	Temporarily	block	signals	to	protect	shared	data.
▪ This	will	prevent	race	conditions	when	writing	to	shared	data.

⬛ Avoid	the	use	of	global	variables	in	tshlab.
▪ They	are	a	source	of	pernicious	race	conditions!
▪ You	do	not	need	to	declare	any	global	variables	to	complete	tshlab.
▪ Use	the	functions	provided	by	tsh_helper.

