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Outline
⬛ Logistics
⬛ Process	Lifecycle
⬛ Error	Handling
⬛ Signal	Handling
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Logistics
⬛ Malloc	Final	due	tomorrow	(11/5)
▪ Can	use	up	to	2	late	days!
▪ Style	grading	mm.c	(not	checkheap)

⬛ Midterm	regrades	released
▪ Review	exam	in	Professor	OH
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Shell	Lab
⬛ Due	date: next	Thursday	(November	14th)
⬛ Simulate	a	Linux-like	shell	with	I/O	redirection

⬛ Review	the	writeup	carefully.
▪ Review	once	before	starting,	and	again	when	halfway	through	
▪ This	will	save	you	a	lot	of	style	points	and	a	lot	of	grief!

⬛ Read	Chapter	8	in	the	textbook:
▪ Process	lifecycle	and	signal	handling
▪ How	race	conditions	occur,	and	how	to	avoid	them

▪ Be	careful	not	to	use	code	from	the	textbook	without	
understanding	it	first.
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Process	“Lifecycle”
⬛ fork()

Create	a	duplicate,	a	“child”,	of	the	process

⬛ execve()
Replace	the	running	program

⬛ ...	[Complete	Work]

⬛ exit()
End	the	running	program

⬛ waitpid()
Wait	for	a	child	process	to	terminate
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Notes	on	Examples
⬛ Full	source	code	of	all	programs	is	available

▪ TAs	may	demo	specific	programs

⬛ In	the	following	examples,	exit() is	called
▪ We	do	this	to	be	explicit	about	the	program’s	behavior
▪ Exit	should	generally	be	reserved	for	terminating	on	error

⬛ Unless	otherwise	noted,	assume	all	syscalls	succeed
▪ Error	checking	code	is	omitted.
▪ Be	careful	to	check	errors	when	writing	your	own	shell!
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Processes	are	separate
⬛ How	many	lines	are	printed?
⬛ If	pid	is	at	address	0x7fff2bcc264c,	what	is	printed?

int main(void) {
pid_t pid;
pid = fork();
printf("%p - %d\n", &pid, pid);
exit(0);

}
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Processes	are	separate
⬛ How	many	lines	are	printed?
⬛ If	pid	is	at	address	0x7fff2bcc264c,	what	is	printed?

int main(void) {
pid_t pid;
pid = fork();
printf("%p - %d\n", &pid, pid);
exit(0);

} 0x7fff2bcc264c - 24750  
0x7fff2bcc264c - 0
The	order	and	the	child's	PID	(printed	by	
the	parent)	may	vary,	but	the	address	
will	be	the	same	in	the	parent	and	child.
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Processes	Change
⬛ What	does	this	program	print?

int main(void) {
char *args[3] = {

"/bin/echo", "Hi 18213!", NULL
};
execv(args[0], args);
printf("Hi 15213!\n");
exit(0);

}
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Processes	Change
⬛ What	does	this	program	print?

int main(void) {
char *args[3] = {

"/bin/echo", "Hi 18213!", NULL
};
execv(args[0], args);
printf("Hi 15213!\n");
exit(0);

}

Hi 18213!
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Processes	Change
⬛ What	about	this	program?	What	does	it	print?

int main(void) {
char *args[3] = {

"/bin/blahblah", "Hi 15513!", NULL
};
execv(args[0], args);
printf("Hi 14513!\n");
exit(0);

}
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Processes	Change
⬛ What	about	this	program?	What	does	it	print?

int main(void) {
char *args[3] = {

"/bin/blahblah", "Hi 15513!", NULL
};
execv(args[0], args);
printf("Hi 14513!\n");
exit(0);

}

Hi 14513!
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On	Error
⬛ What	should	we	do	if	malloc fails?

const size_t HUGE = 1 * 1024 * 1024 * 1024;
int main(void) {

char *buf = malloc(HUGE * HUGE);

printf("Buf at %p\n", buf);
free(buf);
exit(0);

}
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On	Error
⬛ What	should	we	do	if	malloc fails?

const size_t HUGE = 1 * 1024 * 1024 * 1024;
int main(void) {

char *buf = malloc(HUGE * HUGE);

printf("Buf at %p\n", buf);
free(buf);
exit(0);

}

if (buf == NULL) {
fprintf(stderr, "Failure at %u\n", __LINE__);
exit(1);

}
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Exit	values	can	convey	information
⬛ Two	values	are	printed.	Are	they	related?

int main(void) {
pid_t pid = fork();
if (pid == 0) { exit(getpid()); }
else {

int status = 0;
waitpid(pid, &status, 0);
printf("0x%x exited with 0x%x\n", pid,

WEXITSTATUS(status));
}
exit(0);

}
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Exit	values	can	convey	information
⬛ Two	values	are	printed.	Are	they	related?

int main(void) {
pid_t pid = fork();
if (pid == 0) { exit(getpid()); }
else {

int status = 0;
waitpid(pid, &status, 0);
printf("0x%x exited with 0x%x\n", pid,

WEXITSTATUS(status));
}
exit(0);

} 0x7b54 exited with 0x54
They're	the	same!...	almost.
Exit	codes	are	only	one	byte	in	size.
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Processes	have	ancestry
⬛ What's	wrong	with	this	code?	(assume	that	fork	succeeds)

int main(void) {
int status = 0, ret = 0;
pid_t pid = fork();
if (pid == 0) {

pid = fork();
exit(getpid());

}

ret = waitpid(-1, &status, 0);
printf("Process %d exited with %d\n", ret, status);

ret = waitpid(-1, &status, 0);
printf("Process %d exited with %d\n", ret, status);
exit(0);

}
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Processes	have	ancestry
⬛ What's	wrong	with	this	code?	(assume	that	fork	succeeds)

int main(void) {
int status = 0, ret = 0;
pid_t pid = fork();
if (pid == 0) {

pid = fork();
exit(getpid());

}

ret = waitpid(-1, &status, 0);
printf("Process %d exited with %d\n", ret, status);

ret = waitpid(-1, &status, 0);
printf("Process %d exited with %d\n", ret, status);
exit(0);

}

waitpid will	reap	only	
children,	not	grandchildren,	
so	the	second	waitpid call	
will	return	an	error.
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Process	Graphs
⬛ How	many	different	sequences	can	be	printed?

int main(void) {
int status;
if (fork() == 0) {

pid_t pid = fork();
printf("Child: %d\n", getpid());
if (pid == 0) {

exit(0);
}
// Continues execution...

}
pid_t pid = wait(&status);
printf("Parent: %d\n", pid);
exit(0);

}
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Process	Graphs
⬛ How	many	different	sequences	can	be	printed?
int main(void) {

int status;
if (fork() == 0) {

pid_t pid = fork();
printf("Child: %d\n", getpid());
if (pid == 0) {

exit(0);
}
// Continues execution...

}
pid_t pid = wait(&status);
printf("Parent: %d\n", pid);
exit(0);

} fork

fork print

print exit

wait print exit

wait print exit
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Process	Graphs
⬛ How	many	different	lines	are	printed?

int main(void) {
char *tgt = "child";
pid_t pid = fork();
if (pid == 0) {

pid = getppid(); // Get parent pid
tgt = "parent";

}
kill(pid, SIGKILL);
printf("Sent SIGKILL to %s:%d\n", tgt, pid);
exit(0);

}
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Process	Graphs
⬛ How	many	different	lines	are	printed?

int main(void) {
char *tgt = "child";
pid_t pid = fork();
if (pid == 0) {

pid = getppid(); // Get parent pid
tgt = "parent";

}
kill(pid, SIGKILL);
printf("Sent SIGKILL to %s:%d\n", tgt, pid);
exit(0);

} Anywhere	from	0-2	lines.	The	parent	
and	child	try	to	terminate	each	other.
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Signals	and	Handling
⬛ Signals	can	happen	at	any	time

▪ Control	when	through	blocking	signals

⬛ Signals	also	communicate	that	events	have	occurred
▪ What	event(s)	correspond	to	each	signal?

⬛ Write	separate	routines	for	receiving	(i.e.,	signals)
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Counting	with	signals
⬛ Will	this	code	terminate?

volatile int counter = 0;
void handler(int sig) { counter++; }

int main(void) {
signal(SIGCHLD, handler);
for (int i = 0; i < 10; i++) {

if (fork() == 0) { exit(0); }
}
while (counter < 10) {

mine_bitcoin();
}
return 0;

}
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Counting	with	signals
⬛ Will	this	code	terminate?

volatile int counter = 0;
void handler(int sig) { counter++; }

int main(void) {
signal(SIGCHLD, handler);
for (int i = 0; i < 10; i++) {

if (fork() == 0) { exit(0); }
}
while (counter < 10) {

mine_bitcoin();
}
return 0;

} It	might	not,	since	
signals	can	coalesce.

(Don't	use	signal,	use	
Signal or	sigaction
instead!)

(Don't	busy-wait,	use	
sigsuspend instead!)
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Proper	signal	handling
⬛ How	can	we	fix	the	previous	code?

▪ Remember	that	signals	will	be	coalesced,	so	the	number	of	times	a	
signal	handler	has	executed	is	not necessarily	the	same	as	number	
of	times	a	signal	was	sent.

▪ We	need	some	other	way	to	count	the	number	of	children.
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Proper	signal	handling
⬛ How	can	we	fix	the	previous	code?

▪ Remember	that	signals	will	be	coalesced,	so	the	number	of	times	a	
signal	handler	has	executed	is	not necessarily	the	same	as	number	
of	times	a	signal	was	sent.

▪ We	need	some	other	way	to	count	the	number	of	children.

void handler(int sig) {
pid_t pid;
while ((pid = waitpid(-1, NULL, WNOHANG)) > 0) {

counter++;
}

}

(This	instruction	isn't	atomic.	Why	
won't	there	be	a	race	condition?)
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Error	in	UNIX	- return	value
⬛ Can	System	call	fail	?
⬛ How	to	tell	the	

difference	?

int main() {
int fd = open("213Grades.txt",

O_RDWR);
// Change grades to As or Fs

}
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Error	in	UNIX	- What	error	?
⬛ Can	System	call	fail	?
⬛ How	to	tell	the	difference	?

▪ Returned	-1

⬛ So,	my	fantastic	system	call	
failed.

⬛ How	can	I	tell	what	got	
wrong	?

int main() {
int fd = open("213Grades.txt",

O_RDWR);
if (fd < 0) {

printf("Failed\n");
exit(-1);

}
// Change grades to As or Fs

}
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Error	handling	- What	now	?
⬛ Can	System	call	fail	?
⬛ How	to	tell	the	difference	?

▪ Returned	-1

⬛ So,	my	fantastic	system	call	failed.
⬛ How	can	I	tell	what	got	wrong	?

▪ The	error	is	in	errno	(global)
(only	if	the	syscall	fail,
what	do	you	get	on	success	?)

⬛ What	do	I	do	?

int main() {
…
while (!quit) {
…
int fd = open(userfile,O_RDWR);
if (fd < 0) {
printf("Failed\n");
perror("open"); // use errno
exit(-1);

}
…

}
…

}
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Error	and	signals
⬛ Can	System	call	fail	?
⬛ How	to	tell	the	difference	?

▪ Returned	-1

⬛ So,	my	fantastic	system	call	
failed.

⬛ How	can	I	tell	what	got	
wrong	?
▪ The	error	is	in	errno	(a	global)
▪ If	success	errno	may	contain	

anything

⬛ What	do	I	do	?
▪ Look	at	errno	and	take	action

⬛ Hey,	here	comes	a	signal…

int main() {
…
while (!quit) {

…
int fd = open(userfile,O_RDWR);
if (fd < 0) {

if (errno == EACCESS) {
// tell user he’s wrong
continue;

} else if(…) {
…

} else {
perror("open"); // use errno
exit(-1);

}
}
…

}
…

}
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Error	and	signals	:	Recap
⬛ You	can’t	expect	people	to	block	signals	around	all	error	

handling	logic
⬛ Hence,	your	signal	handler	shouldn’t	interfere	with	them
⬛ Solution	:

▪ Do	not	make	any	system	call	that	could	set	errno
▪ Save	and	restore	errno	(store	at	beginning	of	handler	and	restore	

after)
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Example	Question
What	are	all	possible	output	values?
int	main(	)	{	

int	val	=	2;	
printf("%d",	0);	
fflush(stdout);	
if	(fork(	)	==	0)	{	

val++;	
printf("%d",	val);	
fflush(stdout);	

}	else	{	
val--;	
printf("%d",	val);	
fflush(stdout);	
wait(NULL);

}	
val++;	
printf("%d",	val);	
fflush(stdout);	
exit(0);	

}
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If	you	get	stuck
⬛ Read	the	writeup!
⬛ Do	manual	unit	testing	before	runtrace and	sdriver!

⬛ Read	the	writeup!
⬛ Post	private	questions	on	Piazza!

⬛ Think	carefully	about	error	conditions.
▪ Read	the	man	pages	for	each	syscall	when	in	doubt.
▪ What	errors	can	each	syscall	return?
▪ How	should	the	errors	be	handled?



Carnegie Mellon

35Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Appendix:	Blocking	signals
⬛ Surround	blocks	of	code	with	calls	to	sigprocmask.

▪ Use	SIG_BLOCK	to	block	signals	at	the	start.
▪ Use	SIG_SETMASK	to	restore	the	previous	signal	mask	at	the	end.

⬛ Don't	use	SIG_UNBLOCK.
▪ We	don't	want	to	unblock	a	signal	if	it	was	already	blocked.
▪ This	allows	us	to	nest	this	procedure	multiple	times.

sigset_t mask, prev;
sigemptyset(&mask, SIGINT);
sigaddset(&mask, SIGINT);
sigprocmask(SIG_BLOCK, &mask, &prev);
// ...
sigprocmask(SIG_SETMASK, &prev, NULL);
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Appendix:	Errno
⬛ Global	integer	variable	used	to	store	an	error	code.

▪ Its	value	is	set	when	a	system	call	fails.
▪ Only	examine	its	value	when	the	system	call's	return	code	indicates	

that	an	error	has	occurred!
▪ Be	careful	not	to	call	make	other	system	calls	before	checking	the	

value	of	errno!

⬛ Lets	you	know	why	a	system	call	failed.
▪ Use	functions	like	strerror,	perror to	get	error	messages.

⬛ Example:	assume	there	is	no	“foo.txt”	in	our	path
int fd = open("foo.txt", O_RDONLY);
if (fd < 0) perror("open");
// open: No such file or directory

#include <errno.h>



Carnegie Mellon

37Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Appendix:	Writing	signal	handlers
⬛ G1.	Call	only	async-signal-safe	functions	in	your	handlers.

▪ Do	not	call	printf,	sprintf,	malloc,	exit!	Doing	so	can	cause	
deadlocks,	since	these	functions	may	require	global	locks.

▪ We've	provided	you	with	sio_printf which	you	can	use	instead.

⬛ G2.	Save	and	restore	errno on	entry	and	exit.
▪ If	not,	the	signal	handler	can	corrupt	code	that	tries	to	read	errno.
▪ The	driver	will	print	a	warning	if	errno is	corrupted.

⬛ G3.	Temporarily	block	signals	to	protect	shared	data.
▪ This	will	prevent	race	conditions	when	writing	to	shared	data.

⬛ Avoid	the	use	of	global	variables	in	tshlab.
▪ They	are	a	source	of	pernicious	race	conditions!
▪ You	do	not	need	to	declare	any	global	variables	to	complete	tshlab.
▪ Use	the	functions	provided	by	tsh_helper.


