Carnegie Mellon

15-213 Recitation 11
Processes, Signals, Tshlab

4 November 2019

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Outline

m Logistics

m Process Lifecycle
m Error Handling
m Signal Handling

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Logistics

m Malloc Final due tomorrow (11/5)
= Can use up to 2 late days!
= Style grading mm.c (not checkheap)

m Midterm regrades released
= Review exam in Professor OH

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Shell Lab

m Due date: next Thursday (November 14t)
m Simulate a Linux-like shell with I/O redirection

m Review the writeup carefully.
= Review once before starting, and again when halfway through
= This will save you a lot of style points and a lot of grief!

m Read Chapter 8 in the textbook:

= Process lifecycle and signal handling
= How race conditions occur, and how to avoid them

= Be careful not to use code from the textbook without
understanding it first.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Process “Lifecycle”

m fork()

Create a duplicate, a “child”, of the process

m execve()
Replace the running program

B ... [Complete Work]

m exit()
End the running program

m waitpid()

Wait for a child process to terminate

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Notes on Examples

m Full source code of all programs is available
= TAs may demo specific programs

m In the following examples, exit () is called

= We do this to be explicit about the program’s behavior
= Exit should generally be reserved for terminating on error

m Unless otherwise noted, assume all syscalls succeed
= Error checking code is omitted.
= Be careful to check errors when writing your own shell!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Processes are separate

m How many lines are printed?
m If pidis at address Ox7fff2bcc264c, what is printed?

int main(void) {
pid t pid;
pid = fork();
printf("%p - %d\n", &pid, pid);
exit(0);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Processes are separate

m How many lines are printed?
m If pidis at address Ox7fff2bcc264c, what is printed?

int main(void) {
pid t pid;
pid = fork();
printf("%p - %d\n", &pid, pid);
exit(9);
} ox7fff2bcc264c - 24750
Ox7fff2bcc264c - ©
The order and the child's PID (printed by

the parent) may vary, but the address
will be the same in the parent and child.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Processes Change

m What does this program print?

int main(void) {
char *args[3] = {
"/bin/echo”, "Hi 18213!", NULL
}s
execv(args[o], args);
printf("Hi 15213!\n");
exit(09);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Processes Change

m What does this program print?

int main(void) {
char *args[3] = {
"/bin/echo”, "Hi 18213!", NULL
}s
execv(args[o], args);
printf("Hi 15213!\n");
exit(09);

Hi 18213!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Processes Change

m What about this program? What does it print?

int main(void) {
char *args[3] = {
"/bin/blahblah™, "Hi 15513!", NULL
}s
execv(args[@], args);
printf("Hi 14513!\n");
exit(09);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Processes Change

m What about this program? What does it print?

int main(void) {
char *args[3] = {
"/bin/blahblah™, "Hi 15513!", NULL
}s
execv(args[@], args);
printf("Hi 14513!\n");
exit(09);

Hi 14513!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

On Error

m What should we do if malloc fails?

const size t HUGE = 1 * 1024 * 1024 * 1024,
int main(void) {
char *buf = malloc(HUGE * HUGE);

printf("Buf at %p\n", buf);
free(buf);
exit(9);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

On Error

m What should we do if malloc fails?

const size t HUGE = 1 * 1024 * 1024 * 1024,
int main(void) {
char *buf = malloc(HUGE * HUGE);

if (buf == NULL) {
fprintf(stderr, "Failure at %u\n", _ LINE_);

exit(1);
}
printf("Buf at %p\n", buf);
free(buf);
exit(9);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Exit values can convey information

m Two values are printed. Are they related?

int main(void) {

pid_t pid = fork();

if (pid == 9) { exit(getpid()); }

else {
int status = 0;
waitpid(pid, &status, 0);
printf("0x%x exited with ox%x\n", pid,

WEXITSTATUS (status));

}
exit(0);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Exit values can convey information

m Two values are printed. Are they related?

int main(void) {

pid_t pid = fork();

if (pid == 9) { exit(getpid()); }

else {
int status = 0;
waitpid(pid, &status, 0);
printf("0x%x exited with ox%x\n", pid,

WEXITSTATUS (status));

}
exit(0);

} Ox7b54 exited with 0x54

They're the samel... almost.
Exit codes are only one byte in size.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Processes have ancestry

m What's wrong with this code? (assume that fork succeeds)

int main(void) {
int status = 0, ret = 0;
pid_t pid = fork();
if (pid == 9) {
pid = fork();
exit(getpid());
}

ret = waitpid(-1, &status, 0);
printf("Process %d exited with %d\n", ret, status);

ret = waitpid(-1, &status, 0);

printf("Process %d exited with %d\n", ret, status);
exit(9);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Processes have ancestry

m What's wrong with this code? (assume that fork succeeds)

int main(void) {

int status = 6, ret = 0; waitpid will reap only
Eidz;iglg;@gozk(); children, not grandchildren,

pid = fork(); so the second waitpid call
} exit(getpid()); will return an error.

ret = waitpid(-1, &status, 0);
printf("Process %d exited with %d\n", ret, status);

ret = waitpid(-1, &status, 0);

printf("Process %d exited with %d\n", ret, status);
exit(9);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Process Graphs

m How many different sequences can be printed?

int main(void) {
int status;
if (fork() == 0) {
pid_t pid = fork();
printf("Child: %d\n", getpid());
if (pid == 0) {
exit(9);
}
// Continues execution...
}
pid_t pid = wait(&status);
printf("Parent: %d\n", pid);
exit(9);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Process Graphs

m How many different sequences can be printed?

int main(void) {
int status;
if (fork() == 0) {
pid_t pid = fork();
printf("Child: %d\n", getpid());
if (pid == 0) {
exit(9);
}
// Continues execution...
}
pid t pid = wait(&status);
printf("Parent: %d\n", pid);
exit(9);

} > wait print exit

print wait print exit

\ 4

print exit

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Process Graphs

m How many different lines are printed?

int main(void) {
char *tgt = "child";
pid_t pid = fork();
if (pid == 9) {
pid = getppid(); // Get parent pid
tgt = "parent”;
}
kill(pid, SIGKILL);
printf("Sent SIGKILL to %s:%d\n", tgt, pid);
exit(9);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Process Graphs

m How many different lines are printed?

int main(void) {
char *tgt = "child";
pid_t pid = fork();
if (pid == 9) {
pid = getppid(); // Get parent pid
tgt = "parent”;
}
kill(pid, SIGKILL);
printf("Sent SIGKILL to %s:%d\n", tgt, pid);
exit(9);

Anywhere from 0-2 lines. The parent
and child try to terminate each other.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Signals and Handling

m Signals can happen at any time
= Control when through blocking signals

m Signals also communicate that events have occurred
= What event(s) correspond to each signal?

m Write separate routines for receiving (i.e., signals)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Counting with signals

m Will this code terminate?

volatile int counter = 0;
void handler(int sig) { counter++; }

int main(void) {

signal (SIGCHLD, handler);

for (int 1 = 0; 1 < 10; i++) {
if (fork() == 0) { exit(@); }

}

while (counter < 10) {
mine_bitcoin();

}

return 0;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Counting with signals

m Will this code terminate?

volatile int counter = 0;
void handler(int sig) { counter++; }

int main(void) {

signal (SIGCHLD, handler); - (Don't use signal, use

for (int i = 0; i < 10; i++) { Signal or sigaction
if (fork() == 0) { exit(9); } instead!)

}

while (counter < 10) {
mine_bitcoin();

}

return 0;
} It might not, since

(Don't busy-wait, use . | |
sigsuspend instead!) SIgNalsS Can coalesce.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Proper sighal handling

m How can we fix the previous code?

= Remember that signals will be coalesced, so the number of times a
signal handler has executed is not necessarily the same as number
of times a signal was sent.

= We need some other way to count the number of children.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Proper sighal handling

m How can we fix the previous code?

= Remember that signals will be coalesced, so the number of times a
signal handler has executed is not necessarily the same as number
of times a signal was sent.

= We need some other way to count the number of children.

void handler(int sig) {
pid t pid;
while ((pid = waitpid(-1, NULL, WNOHANG)) > @) {
counter++;

¥

(This instruction isn't atomic. Why
won't there be a race condition?)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Error in UNIX - return value

m Can System call fail ? int main() {
int fd = open("213Grades.txt",

O_RDWR);
// Change grades to As or Fs

m How to tell the
difference ?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Error in UNIX - What error ?

m Can System call fail ? int main() {

m How to tell the difference ? int ¥d = Ope”(;zizsgi‘?es't)‘t"’
= Returned -1 i (fd < @) ~ ’

m So, my fantastic system call printf("Failed\n");
failed. exit(-1);

m How can | tell what got }
wrong ? // Change grades to As or Fs

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Error handling - What now ?

m Can System call fail ? int main() {

m How to tell the difference ?

while (!quit
= Returned -1 (a) 1

B So, my fantastic system caIIfaiIed.;,r,»c fd = open(userfile,0 RDWR);
m How can | tell what got wrong ? if (fd < @) {

= The erroris in errno (global) printf("Failed\n");
(only if the syscall fail, perror("open"); // use errno
what do you get on success ?) exit(-1);
m Whatdoldo? }
}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 380

Carnegie Mellon

Error and signals

m Can System call fail ?

m How to tell the difference ?
= Returned -1

B So, my fantastic system call
failed.

m How can | tell what got
wrong ?
= The errorisin errno (a global)

= |f success errno may contain
anything

B Whatdoldo?

= Look at errno and take action

m Hey, here comes a signal...

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int main() {

while (!quit) {

int fd = open(userfile,O_RDWR);
if (fd < 9) {
if (errno == EACCESS) {
// tell user he’s wrong
continue;

} else if(..) {

} else {
perror("open"); // use errno
exit(-1);
}
}

31

Carnegie Mellon

Error and signals : Recap

m You can’t expect people to block signals around all error
handling logic

m Hence, your signal handler shouldn’t interfere with them

m Solution:

= Do not make any system call that could set errno

= Save and restore errno (store at beginning of handler and restore
after)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 322

Carnegie Mellon

Example Question

What are all possible output values?
int main() {
intval = 2;
printf("%d", 0);
fflush(stdout);
if (fork() ==0) {
val++;
printf("%d", val);
fflush(stdout);
} else {
val--;
printf("%d", val);
fflush(stdout);
wait(NULL);
}
val++;
printf("%d", val);
fflush(stdout);
exit(0);

Bryant ;imd O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

If you get stuck

m Read the writeup!
B Do manual unit testing before runtrace and sdriver!

m Read the writeup!
m Post private questions on Piazza!

m Think carefully about error conditions.

= Read the man pages for each syscall when in doubt.
= What errors can each syscall return?
= How should the errors be handled?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Appendix: Blocking signals

m Surround blocks of code with calls to sigprocmask.

= Use SIG_BLOCK to block signals at the start.

= Use SIG_SETMASK to restore the previous signal mask at the end.
m Don't use SIG_UNBLOCK.

= We don't want to unblock a signal if it was already blocked.
= This allows us to nest this procedure multiple times.

sigset t mask, prev;
sigemptyset(&mask, SIGINT);
sigaddset(&mask, SIGINT);
sigprocmask(SIG_BLOCK, &mask, &prev);

/] ...
sigprocmask (SIG_SETMASK, &prev, NULL);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

AppendiX: Errno #include <errno.h>

m Global integer variable used to store an error code.

= |ts value is set when a system call fails.
= Only examine its value when the system call's return code indicates
that an error has occurred!

= Be careful not to call make other system calls before checking the
value of errno!

B Lets you know why a system call failed.
= Use functions like strerror, perror to get error messages.

m Example: assume there is no “foo.txt” in our path

int fd = open("foo.txt", O RDONLY);
if (fd < @) perror("open");
// open: No such file or directory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Appendix: Writing signal handlers

m G1. Call only async-signal-safe functions in your handlers.

= Do notcall printf, sprintf, malloc, exit! Doing so can cause
deadlocks, since these functions may require global locks.

= We've provided you with sio_printf which you can use instead.

m G2. Save and restore errno on entry and exit.
= |f not, the signal handler can corrupt code that tries to read errno.
= The driver will print a warning if errno is corrupted.

m G3. Temporarily block signals to protect shared data.
= This will prevent race conditions when writing to shared data.

m Avoid the use of global variables in tshlab.
= They are a source of pernicious race conditions!
= You do not need to declare any global variables to complete tshlab.
= Use the functions provided by tsh_helper.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

