
Carnegie Mellon

15-213 Recitation: Attack Lab

Your TAs
September 23rd, 2019

Carnegie Mellon

Agenda
■ Reminders
■ Stacks
■ Attack Lab Activities

Carnegie Mellon

Reminders

■ Bomb Lab is due tomorrow!

■ Attack Lab is due Oct 1st, 2019!

■ “But if you wait until the last minute, it only takes a minute!” – NOT!

■ Don’t waste your grace days on this assignment!

Carnegie Mellon

Attack Lab
■ We’re letting you hijack programs by running buffer overflow

attacks on them.
■ Is that not justification enough?

■ Helps you understand stack discipline and stack frames
■ Most difficult part of the midterm exam

■ Also let you defeat relatively secure programs with return
oriented programming

Carnegie Mellon

Stack Overview
Let’s say you have the following stack diagram. What happens
when you call a function?

What information always goes on the stack?
rsp
rsp

ret addr

Carnegie Mellon

Attack Lab Activities

Don’t be afraid if these concepts are unfamiliar! You
will be learning them this week in lecture.

Carnegie Mellon

Attack Lab Activities

■ Three activities
■ Each relies on a specially crafted assembly sequence to purposefully

overwrite the stack

■ Activity 1 – Overwrites the return addresses
■ Activity 2 – Writes an assembly sequence onto the stack
■ Activity 3 – Uses byte sequences in libc as the

instructions

Carnegie Mellon

Attack Lab Activities

■ One student needs a laptop
■ Login to a shark machine
$ wget http://www.cs.cmu.edu/~213/activities/attacklab_activity.tar
$ tar xvf attacklab_activity.tar
$ cd attacklab_activity
$ make
$ gdb act1

Carnegie Mellon

Activity 1

(gdb) break clobber
(gdb) run
(gdb) x $rsp
(gdb) backtrace
Q. Does the value at the top of the stack match any frame?

Carnegie Mellon

Activity 1 Continued

(gdb) x /2gx $rdi // Here are the two key values
(gdb) stepi // Keep doing this until

(gdb)
clobber () at support.s:16
16 ret

(gdb) x/gx $rsp
Q. Has the return address changed?

(gdb) finish // Should exit and print out “Hi!”

Carnegie Mellon

Activity 1 Post
■ Clobber overwrites part of the stack with memory at

$rdi, including the all-important return address
■ In act1 it writes two new return addresses:

■ 0x401040: address of printHi()
■ 0x400c63: address in main

0x7fffffffdd78

0x000000400c63

0x000000401040

0x000000400c63
0x000000401040

Call	clobber()

Clobber	executes

ret

In	printHi()
ret

In	main()

Carnegie Mellon

Activity 2
$gdb act2
(gdb) break clobber
(gdb) run
(gdb) x $rsp
Q. What is the address of the stack and the return address?

(gdb) x /4gx $rdi
Q. What will the new return address be?
(i.e., what is the first value?)

Carnegie Mellon

Activity 2 Continued

(gdb) x/5i $rdi + 8 // Display as instructions
Q. Why rdi + 8?
Q. What are the three addresses?

(gdb) break puts
(gdb) break exit
Q. Do these addresses look familiar?

Carnegie Mellon

Activity 2 Post
■ Normally programs cannot execute instructions on the

stack
■ Main used mprotect to disable the memory protection for this activity

■ Clobber wrote an address that’s on the stack as a return
address

■ Followed by a sequence of instructions
■ Three addresses show up in the exploit:

▪ 0x49b259 → “Hi\n” string
▪ 0x4023b0 → puts() function
▪ 0x401fe0 → exit() function

Carnegie Mellon

Activity 3
$gdb act3
(gdb) break clobber
(gdb) run
(gdb) x /5gx $rdi
Q. Which value will be first on the stack?
Q. At the end of clobber, where will the function return to?

Carnegie Mellon

Activity 3 Continued

(gdb) x /2i <return address>

Q. What does this sequence do?
Q. Do the same for the other addresses. Note that some
are return addresses and some are for data. When you
continue, what will the code now do?

Carnegie Mellon

Activity 3 Post
■ It’s harder to stop programs from running existing

pieces of code in the executable.

■ Clobber wrote multiple return addresses (aka gadgets)
that each performed a small task, along with data that
will get popped off the stack while running the gadgets.

■0x401a6e: pop %rdi; retq
■0x4941f0: Pointer to the string “Hi\n”
■0x476397: pop %rax; retq
■0x401060: Address of a printing function
■0x44ad15: callq *%rax

Carnegie Mellon

■ Note that some of the return addresses actually
cut off bytes from existing instructions

Activity 3 Post

0x465b5c …0c …0d

pop %r15 retq
41 5f c3

pop %rdi retq
5f c3

Carnegie Mellon

Attack Lab Tools
⬛gcc –c test.s; objdump –d test.o > test.asm

Compiles the assembly code in test.s and shows the actual bytes for the
instructions

⬛ ./hex2raw < exploit.txt > converted.txt
Convert hex codes in exploit.txt into raw ASCII strings to pass to targets
See the writeup for more details on how to use this

⬛ (gdb) display /12gx $rsp (gdb) display /2i $rip
Displays 12 elements on the stack and the next 2 instructions to run

GDB is also useful to for tracing to see if an exploit is working

Carnegie Mellon

If you get stuck
■ Please read the writeup. Please read the writeup. Please read

the writeup. Please read the writeup!
■ CS:APP Chapter 3
■ View lecture notes and course FAQ at http://www.cs.cmu.edu/~213

■ Office hours Sunday through Friday 5:30-9:30pm in GHC 5207

■ Post a private question on Piazza

■ man gdb, gdb's help command

