
Carnegie Mellon

15-213: F19 Midterm Review Session

Emma, Sophie and Urvi
13 Oct 2019

Carnegie Mellon

Agenda

■ Review midterm problems
■Cache
■Assembly
■Stack
■Floats, Arrays, Structs (time permitting)

■ Q&A for general midterm problems

Carnegie Mellon

Reminders

■ There will be no office hours this week! If you need any
help with midterm questions after today, please make a
public Piazza post (and specify exactly which question!)

■ Cheat sheet: ONE 8½ x 11 in. sheet, both sides. Please
use only English!

■ Lecture is still happening this week! Go learn things!

Carnegie Mellon

Problem 1: Assembly
■ Typical questions asked

■ Given a function, look at assembly to fill in missing portions
■ Given assembly of a function, intuit the behavior of the program
■ (More rare) Compare different chunks of assembly, which one

implements the function given?

■ Important things to remember/put on your cheat sheet:
■ Memory Access formula: D(Rb,Ri,S)
■ Distinguish between mov/lea instructions

Carnegie Mellon

Problem 1: Assembly
■ Katherine TODO: pick one

Carnegie Mellon

Problem 1: Assembly

z

Carnegie Mellon

Problem 1: Assembly

z

e = %r8d

Carnegie Mellon

Problem 1: Assembly

z

Loop end: add 1, compare, iterate

 i++

Carnegie Mellon

Problem 1: Assembly

z i++ x > i

cmp %edx, %edi => (edi - edx > 0), same as x > i

Carnegie Mellon

Problem 1: Assembly

z x > i i++

We know that e = %r8d...

Carnegie Mellon

Problem 1: Assembly

z x > i i++

e << y

Where did %cl come from?

Carnegie Mellon

Problem 1: Assembly

z x > i i++

e << y
Again, e = %r8d...

Carnegie Mellon

Problem 1: Assembly

z x > i i++

e >> (y - 1)
e << y

Carnegie Mellon

Problem 1: Assembly

z x > i i++

e >> (y - 1)
e << y

What’s left?

Carnegie Mellon

Problem 1: Assembly

z x > i i++

e >> (y - 1)
e << y

e + d

Carnegie Mellon

Problem 1: Assembly

z x > i i++

e >> (y - 1)
e << y

e + d

Carnegie Mellon

Problem 1: Assembly

z x > i i++

e >> (y - 1)
e << y

e + d

 d

Carnegie Mellon

Problem 1: Assembly

z x > i i++

e >> (y - 1)
e << y

e + d

 d

Carnegie Mellon

Problem 2: Stack
■ Important things to remember:

■Stack grows DOWN!
■%rsp = stack pointer, always point to “top” of stack
■Push and pop, call and ret
■Stack frames: how they are allocated and freed
■Which registers used for arguments? Return values?
■Little endianness

■ ALWAYS helpful to draw a stack diagram!!
■ Stack questions are like Assembly questions on steroids

Carnegie Mellon

Problem 2: Stack
Consider the following code:

Hints:
● strcpy(char *dst,

char *src) copies the
string at address src
(including the terminating
'\0' character) to address
dst.

● Keep endianness in mind!
● Table of hex values of

characters in
“midtermexam”

Assumptions:
● %rsp = 0x800100 just

before caller() calls
foo()

● .LC0 is at address
0x400300

Carnegie Mellon

Problem 2: Stack
Consider the following code:

Hints:
● strcpy(char *dst,

char *src) copies the
string at address src
(including the terminating
'\0' character) to address
dst.

● Keep endianness in mind!
● Table of hex values of

characters in
“midtermexam”

Assumptions:
● %rsp = 0x800100 just

before caller() calls
foo()

● .LC0 is at address
0x400300

= 0x400300

%rsp = 0x800100

Carnegie Mellon

Problem 2: Stack
Question 1: What is the hex value of %rsp just before strcpy() is called for the first time in foo()?

= 0x400300

%rsp = 0x800100Start

End

Hints:
● Step through the program

instruction by instruction
from start to end

● Draw a stack diagram!!!
● Keep track of registers too

Carnegie Mellon

Problem 2: Stack
Question 1: What is the hex value of %rsp just before strcpy() is called for the first time in foo()?

= 0x400300

%rsp = 0x800100

End

0x800100

0x8000f8

0x8000f0

0x8000e8

0x8000e0

0x8000d8

0x8000d0

0x8000c8

0x8000c0

0x8000b8

%rsp 0x800100

%rdi .LC0

%rsi 0x15213

Arrow is instruction that will
execute NEXT

Carnegie Mellon

Problem 2: Stack
Question 1: What is the hex value of %rsp just before strcpy() is called for the first time in foo()?

= 0x400300
End

0x800100 ?

0x8000f8 ret address for foo()

0x8000f0

0x8000e8

0x8000e0

0x8000d8

0x8000d0

0x8000c8

0x8000c0

0x8000b8

%rsp 0x8000f8

%rdi .LC0

%rsi 0x15213

Carnegie Mellon

Problem 2: Stack
Question 1: What is the hex value of %rsp just before strcpy() is called for the first time in foo()?

= 0x400300
End

0x800100 ?

0x8000f8 ret address for foo()

0x8000f0 ?

0x8000e8 ?

0x8000e0 ?

0x8000d8

0x8000d0

0x8000c8

0x8000c0

0x8000b8

%rsp 0x8000e0

%rdi .LC0

%rsi 0x15213

Hint: $24 in decimal = 0x18

Carnegie Mellon

Problem 2: Stack
Question 1: What is the hex value of %rsp just before strcpy() is called for the first time in foo()?

= 0x400300
End

0x800100 ?

0x8000f8 ret address for foo()

0x8000f0 ?

0x8000e8 ?

0x8000e0 ?

0x8000d8

0x8000d0

0x8000c8

0x8000c0

0x8000b8

%rsp 0x8000e0

%rdi .LC0

%rsi 0xdeadbeef

Carnegie Mellon

Problem 2: Stack
Question 1: What is the hex value of %rsp just before strcpy() is called for the first time in foo()?

= 0x400300
End

0x800100 ?

0x8000f8 ret address for foo()

0x8000f0 ?

0x8000e8 ?

0x8000e0 ?

0x8000d8 ret address for foo()

0x8000d0

0x8000c8

0x8000c0

0x8000b8

%rsp 0x8000d8

%rdi .LC0

%rsi 0xdeadbeef

Carnegie Mellon

Problem 2: Stack
Question 1: What is the hex value of %rsp just before strcpy() is called for the first time in foo()?

= 0x400300
End

0x800100 ?

0x8000f8 ret address for foo()

0x8000f0 ?

0x8000e8 ?

0x8000e0 ?

0x8000d8 ret address for foo()

0x8000d0 ?

0x8000c8 ?

0x8000c0 ?

0x8000b8

%rsp 0x8000c0

%rdi .LC0

%rsi 0xdeadbeef

Carnegie Mellon

Problem 2: Stack
Question 1: What is the hex value of %rsp just before strcpy() is called for the first time in foo()?

= 0x400300
End

0x800100 ?

0x8000f8 ret address for foo()

0x8000f0 ?

0x8000e8 ?

0x8000e0 ?

0x8000d8 ret address for foo()

0x8000d0 ?

0x8000c8 ?

0x8000c0 ?

0x8000b8

%rsp 0x8000c0

%rdi .LC0

%rsi 0xdeadbeef

Carnegie Mellon

Problem 2: Stack
Question 1: What is the hex value of %rsp just before strcpy() is called for the first time in foo()?

= 0x400300
End

0x800100 ?

0x8000f8 ret address for foo()

0x8000f0 ?

0x8000e8 ?

0x8000e0 ?

0x8000d8 ret address for foo()

0x8000d0 ?

0x8000c8 ?

0x8000c0 ?

0x8000b8

%rsp 0x8000c0

%rdi 0x8000c0

%rsi .LCOAnswer!

Carnegie Mellon

Problem 2: Stack
Question 2: What is the hex value of buf[0] when strcpy() returns?

= 0x400300

0x800100 ?

0x8000f8 ret address for foo()

0x8000f0 ?

0x8000e8 ?

0x8000e0 ?

0x8000d8 ret address for foo()

0x8000d0 ?

0x8000c8 ?

0x8000c0 ?

0x8000b8

%rsp 0x8000c0

%rdi 0x8000c0

%rsi .LC0

Carnegie Mellon

Problem 2: Stack
Question 2: What is the hex value of buf[0] when strcpy() returns?

= 0x400300

0x800100 ?

0x8000f8 ret address for foo()

0x8000f0 ?

0x8000e8 ?

0x8000e0 ?

0x8000d8 ret address for foo()

0x8000d0 ?

0x8000c8

0x8000c0 ‘d’ ‘i’ ‘m’

0x8000b8

%rsp 0x8000c0

%rdi 0x8000c0

%rsi .LC0

c0c1c2c7

Carnegie Mellon

Problem 2: Stack
Question 2: What is the hex value of buf[0] when strcpy() returns?

= 0x400300

0x800100 ?

0x8000f8 ret address for foo()

0x8000f0 ?

0x8000e8 ?

0x8000e0 ?

0x8000d8 ret address for foo()

0x8000d0 ?

0x8000c8 ? ? ? ? ‘\0’ ‘m’ ‘a’ ‘x’

0x8000c0 ‘e’ ‘m’ ‘r’ ‘e’ ‘t’ ‘d’ ‘i’ ‘m’

0x8000b8

%rsp 0x8000c0

%rdi 0x8000c0

%rsi .LC0

c0c1c2c7

Carnegie Mellon

Problem 2: Stack
Question 2: What is the hex value of buf[0] when strcpy() returns?

= 0x400300

0x800100 ?

0x8000f8 ret address for foo()

0x8000f0 ?

0x8000e8 ?

0x8000e0 ?

0x8000d8 ret address for foo()

0x8000d0 ?

0x8000c8 ? ? ? ? ‘\0’ ‘m’ ‘a’ ‘x’

0x8000c0 ‘e’ ‘m’ ‘r’ ‘e’ ‘t’ ‘d’ ‘i’ ‘m’

0x8000b8

%rsp 0x8000c0

%rdi 0x8000c0

%rsi .LC0

buf[0]
c0c3

Carnegie Mellon

Problem 2: Stack

buf[0] =

 =

(as int)= 0x7464696d

‘t’ ‘d’ ‘i’ ‘m’

74 64 69 6d

0x800100 ?

0x8000f8 ret address for foo()

0x8000f0 ?

0x8000e8 ?

0x8000e0 ?

0x8000d8 ret address for foo()

0x8000d0 ?

0x8000c8 ? ? ? ? ‘\0’ ‘m’ ‘a’ ‘x’

0x8000c0 ‘e’ ‘m’ ‘r’ ‘e’ ‘t’ ‘d’ ‘i’ ‘m’

0x8000b8 buf[0]

Carnegie Mellon

Problem 2: Stack
Question 3: What is the hex value of buf[1] when strcpy() returns?

= 0x400300

0x800100 ?

0x8000f8 ret address for foo()

0x8000f0 ?

0x8000e8 ?

0x8000e0 ?

0x8000d8 ret address for foo()

0x8000d0 ?

0x8000c8 ? ? ? ? ‘\0’ ‘m’ ‘a’ ‘x’

0x8000c0 ‘e’ ‘m’ ‘r’ ‘e’ ‘t’ ‘d’ ‘i’ ‘m’

0x8000b8

%rsp 0x8000c0

%rdi 0x8000c0

%rsi .LC0

buf[0]buf[1]
c4c7

Carnegie Mellon

Problem 2: Stack

buf[1] =

 =

(as int)= 0x656d7265

‘e’ ‘m’ ‘r’ ‘e’

65 6d 72 65

0x800100 ?

0x8000f8 ret address for foo()

0x8000f0 ?

0x8000e8 ?

0x8000e0 ?

0x8000d8 ret address for foo()

0x8000d0 ?

0x8000c8 ? ? ? ? ‘\0’ ‘m’ ‘a’ ‘x’

0x8000c0 ‘e’ ‘m’ ‘r’ ‘e’ ‘t’ ‘d’ ‘i’ ‘m’

0x8000b8 buf[1]

Carnegie Mellon

Problem 2: Stack
Question 4: What is the hex value of %rdi at the point where foo() is called recursively in the successful
arm of the if statement?

This is before the
recursive call to foo()

= 0x400300

Carnegie Mellon

Problem 2: Stack
Question 4: What is the hex value of %rdi at the point where foo() is called recursively in the successful
arm of the if statement?

■ This is before the
recursive call to foo()

■ Going backwards,
%rdi was loaded in
caller()

■ %rdi = $.LC0 =
0x400300
(based on hint)

= 0x400300

loaded %rdi

Carnegie Mellon

Problem 2: Stack
Question 5: What part(s) of the stack will be corrupted by invoking caller()?
Check all that apply.

■ return address from foo() to caller()
■ return address from the recursive call to foo()
■ strcpy()’s return address
■ there will be no corruption

Carnegie Mellon

Problem 2: Stack
Question 5: What part(s) of the stack will be corrupted by invoking caller()?
Check all that apply.

■ return address from foo() to caller()
■ return address from the recursive call to

foo()
■ strcpy()’s return address
■ there will be no corruption

The strcpy didn’t overwrite any return
addresses, so there was no corruption!

0x800100 ?

0x8000f8 ret address for foo()

0x8000f0 ?

0x8000e8 ?

0x8000e0 ?

0x8000d8 ret address for foo()

0x8000d0 ?

0x8000c8 ? ? ? ? ‘\0’ ‘m’ ‘a’ ‘x’

0x8000c0 ‘e’ ‘m’ ‘r’ ‘e’ ‘t’ ‘d’ ‘i’ ‘m’

0x8000b8

Carnegie Mellon

Problem 3: Cache
■ Things to remember/put on a cheat sheet because please don’t try to

memorize all of this:
■Direct mapped vs. n-way associative vs. fully associative
■Tag/Set/Block offset bits, how do they map depending on cache

size?
■LRU policies

Carnegie Mellon

Problem 3: Cache
A. Assume you have a cache of the following structure:

a. 32-byte blocks
b. 2 sets
c. Direct-mapped
d. 8-bit address space
e. The cache is cold prior to access

B. What does the address decomposition look like?

0 0 0 0 0 0 0 0

Carnegie Mellon

A. Assume you have a cache of the following structure:
a. 32-byte blocks
b. 2 sets
c. Direct-mapped
d. 8-bit address space
e. The cache is cold prior to access

B. What does the address decomposition look like?

0 0 0 0 0 0 0 0

Problem 3: Cache

Carnegie Mellon

Problem 3: Cache

Address Set Tag H/M Evict? Y/N

0x56

0x6D

0x49

0x3A

Carnegie Mellon

Problem 3: Cache

Address Set Tag H/M Evict? Y/N

0101 0110

0110 1101

0100 1001

0011 1010

Carnegie Mellon

Problem 3: Cache

Address Set Tag H/M Evict? Y/N

0101 0110 0 01 M N

0110 1101

0100 1001

0011 1010

Carnegie Mellon

Problem 3: Cache

Address Set Tag H/M Evict? Y/N

0101 0110 0 01 M N

0110 1101 1 01 M N

0100 1001

0011 1010

Carnegie Mellon

Problem 3: Cache

Address Set Tag H/M Evict? Y/N

0101 0110 0 01 M N

0110 1101 1 01 M N

0100 1001 0 01 H N

0011 1010

Carnegie Mellon

Problem 3: Cache

Address Set Tag H/M Evict? Y/N

0101 0110 0 01 M N

0110 1101 1 01 M N

0100 1001 0 01 H N

0011 1010 1 00 M Y

Carnegie Mellon

Problem 3: Cache
A. Assume you have a cache of the following structure:

a. 2-way associative
b. 4 sets, 64-byte blocks

B. What does the address decomposition look like?

… 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Carnegie Mellon

Problem 3: Cache
A. Assume you have a cache of the following structure:

a. 2-way associative
b. 4 sets, 64-byte blocks

B. What does the address decomposition look like?

… 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Carnegie Mellon

Problem 3: Cache
B. Assume A and B are

128 ints and
cache-aligned.
a. What is the miss

rate of pass 1?
b. What is the miss

rate of pass 2?

int get_prod_and_copy(int *A, int *B) {
 int length = 64;
 int prod = 1;
 // pass 1
 for (int i = 0; i < length; i+=4) {
 prod*=A[i];
 }
 // pass 2
 for (int j = length-1; j > 0; j-=4) {
 A[j] = B[j];
 }
 return prod;
}

Carnegie Mellon

Problem 3: Cache
B. Pass 1: Only going

through 64 ints with
step size 4. Each miss
loads 16 ints into a
cache line, giving us
3 more hits before
loading into a new
line.

int get_prod_and_copy(int *A, int *B) {
 int length = 64;
 int prod = 1;
 // pass 1
 for (int i = 0; i < length; i+=4) {
 prod*=A[i];
 }
 // pass 2
 for (int j = length-1; j > 0; j-=4) {
 A[j] = B[j];
 }
 return prod;
}

Carnegie Mellon

Problem 3: Cache
B. Pass 1: 25% miss int get_prod_and_copy(int *A, int *B) {

 int length = 64;
 int prod = 1;
 // pass 1
 for (int i = 0; i < length; i+=4) {
 prod*=A[i];
 }
 // pass 2
 for (int j = length-1; j > 0; j-=4) {
 A[j] = B[j];
 }
 return prod;
}

Carnegie Mellon

Problem 3: Cache
B. Pass 2: Our cache is

the same size as our
working set! Due to
cache alignment, we
won’t evict anything
from A, but still get a
1:3 miss:hit ratio for
B.

int get_prod_and_copy(int *A, int *B) {
 int length = 64;
 int prod = 1;
 // pass 1
 for (int i = 0; i < length; i+=4) {
 prod*=A[i];
 }
 // pass 2
 for (int j = length-1; j > 0; j-=4) {
 A[j] = B[j];
 }
 return prod;
}

Carnegie Mellon

Problem 3: Cache
B. Pass 2: For every 4

loop iterations, we
get all hits for
accessing A and 1
miss for accessing B,
which gives us ⅛
miss.

int get_prod_and_copy(int *A, int *B) {
 int length = 64;
 int prod = 1;
 // pass 1
 for (int i = 0; i < length; i+=4) {
 prod*=A[i];
 }
 // pass 2
 for (int j = length-1; j > 0; j-=4) {
 A[j] = B[j];
 }
 return prod;
}

Carnegie Mellon

Problem 3: Cache
B. Pass 2: 12.5% miss int get_prod_and_copy(int *A, int *B) {

 int length = 64;
 int prod = 1;
 // pass 1
 for (int i = 0; i < length; i+=4) {
 prod*=A[i];
 }
 // pass 2
 for (int j = length-1; j > 0; j-=4) {
 A[j] = B[j];
 }
 return prod;
}

Carnegie Mellon

Bonus Coverage: Float
■ Things to remember/ put on your cheat sheet:

■Floating point representation (-1)s M 2E

■Values of M in normalized vs denormalized
■Difference between normalized, denormalized and special

floating point numbers
■Rounding
■Bit values of smallest and largest normalized and denormalized

numbers

Carnegie Mellon

Bonus Coverage: Float
A. Consider a floating point representation with 1 sign bit, 2

exponent bits and 3 fraction bits. Convert the following
numbers into their floating point representation.

a) 31/8

Carnegie Mellon

Bonus Coverage: Float
A. Consider a floating point representation with 1 sign bit, 2

exponent bits and 3 fraction bits. Convert the following
numbers into their floating point representation.

a) 31/8
Step 1: Convert the fraction into the form (-1)s M 2E

Carnegie Mellon

Bonus Coverage: Float
A. Consider a floating point representation with 1 sign bit, 2

exponent bits and 3 fraction bits. Convert the following
numbers into their floating point representation.

a) 31/8
Step 1: Convert the fraction into the form (-1)s M 2E

s = 0

M = 31/16 (M should be in the range [1.0, 2.0) for
normalised numbers)

E = 1

Carnegie Mellon

Bonus Coverage: Float
A. Consider a floating point representation with 1 sign bit, 2

exponent bits and 3 fraction bits. Convert the following
numbers into their floating point representation.

a) 31/8
Step 2: Convert M into binary and find value of exp
s = 0

M = 31/16 (M should be in the range [1.0, 2.0) for
normalised numbers)

E = 1

Carnegie Mellon

Bonus Coverage: Float
A. Consider a floating point representation with 1 sign bit, 2

exponent bits and 3 fraction bits. Convert the following
numbers into their floating point representation.

a) 31/8
Step 2: Convert M into binary and find value of exp
s = 0

M = 31/16 => 1.1111

bias = 2k-1 - 1 (k is the number of exponent bits) = 1
E = 1 => exponent = 1 + bias = 2

Carnegie Mellon

Bonus Coverage: Float
A. Consider a floating point representation with 1 sign bit, 2

exponent bits and 3 fraction bits. Convert the following
numbers into their floating point representation.

a) 31/8
Step 3: Find the fraction bits and exponent bits
s = 0

M = 1.1111 => fraction bits are 1111

exponent bits are 10

Carnegie Mellon

Bonus Coverage: Float
A. Consider a floating point representation with 1 sign bit, 2

exponent bits and 3 fraction bits. Convert the following
numbers into their floating point representation.

a) 31/8
Step 4: Take care of rounding issues
Current number is 0 10 111 1 <= excess bit

Carnegie Mellon

Bonus Coverage: Float
A. Consider a floating point representation with 1 sign bit, 2

exponent bits and 3 fraction bits. Convert the following
numbers into their floating point representation.

a) 31/8
Step 4: Take care of rounding issues
Current number is 0 10 111 1 <= excess bit

Guard bit = 1
Round bit = 1

Round up! (add 1 to the fraction bits)

Carnegie Mellon

Bonus Coverage: Float
A. Consider a floating point representation with 1 sign bit, 2

exponent bits and 3 fraction bits. Convert the following
numbers into their floating point representation.

a) 31/8
Step 4: Take care of rounding issues
Current number is 0 10 111 1 <= excess bit

Adding 1 overflows the floating bits, so we increment the
exponent bits by 1 and set the fraction bits to 0

Carnegie Mellon

Bonus Coverage: Float
A. Consider a floating point representation with 1 sign bit, 2

exponent bits and 3 fraction bits. Convert the following
numbers into their floating point representation.

a) 31/8
Step 4: Take care of rounding issues
Result is 0 11 000 <= Infinity!

Carnegie Mellon

Bonus Coverage: Float
A. Consider a floating point representation with 1 sign bit, 2

exponent bits and 3 fraction bits. Convert the following
numbers into their floating point representation.

b) -7/8

Carnegie Mellon

Bonus Coverage: Float
A. Consider a floating point representation with 1 sign bit, 2

exponent bits and 3 fraction bits. Convert the following
numbers into their floating point representation.

b) -7/8
Step 1: Convert the fraction into the form (-1)s M 2E

s = 1

M = 7/4

E = -1

Carnegie Mellon

Bonus Coverage: Float
A. Consider a floating point representation with 1 sign bit, 2

exponent bits and 3 fraction bits. Convert the following
numbers into their floating point representation.

b) -7/8
Step 2: Convert M into binary and find value of exp
s = 1

M = 7/4 => 1.11

bias = 2k-1 - 1 (k is the number of exponent bits) = 1
E = -1 => exponent = -1 + bias = 0

Carnegie Mellon

Bonus Coverage: Float
A. Consider a floating point representation with 1 sign bit, 2

exponent bits and 3 fraction bits. Convert the following
numbers into their floating point representation.

b) -7/8
Step 2: Convert M into binary and find value of exp
s = 1

M = 7/4 => 1.11 <= (We assumed M was in the range [1.0,
2.0). Need to update the value of M)

bias = 2k-1 - 1 (k is the number of exponent bits) = 1
E = -1 => exponent = -1 + bias = 0 <= denormalized

Carnegie Mellon

Bonus Coverage: Float
A. Consider a floating point representation with 1 sign bit, 2

exponent bits and 3 fraction bits. Convert the following
numbers into their floating point representation.

b) -7/8
Step 2: Convert M into binary and find value of exp
s = 1

M = 7/8 => 0.111 <= M should be in the range [0.0, 1.0) for
denormalized numbers so we divide it by 2

exp = 0

Carnegie Mellon

Bonus Coverage: Float
A. Consider a floating point representation with 1 sign bit, 2

exponent bits and 3 fraction bits. Convert the following
numbers into their floating point representation.

b) -7/8
Step 3: Find the fraction bits and exponent bits
s = 1

M = 0.111 => Fraction bits = 111
exp bits = 00

Result = 1 00 111

Carnegie Mellon

Bonus Coverage: Float
B. Consider a floating point representation with 1 sign bit, 2

exponent bits and 3 fraction bits. Convert the following
numbers into their floating point representation.

b) 0 10 101

Carnegie Mellon

Bonus Coverage: Float
B. Consider a floating point representation with 1 sign bit, 2

exponent bits and 3 fraction bits. Convert the following
numbers into their floating point representation.

a) 0 10 101
s = 0

exp = 2 => E = exp - bias = 1 (normalized)

M = 1.101 (between 1 and 2 since it is normalised)

Result = 2*1.101 = 2*(13/8) = 13/4

Carnegie Mellon

Bonus Coverage: Arrays
IMPORTANT POINTS + TIPS:
● Remember your indexing rules! They’ll take

you 95% of the way there.
● Be careful about addressing (&) vs. dereferencing (*)
● You may be asked to look at assembly!
● Feel free to put lecture/recitation/textbook examples

in your cheatsheet.

Carnegie Mellon

Good toy examples (for your cheatsheet and/or big brain):

● A can be used as the pointer to the first array element: A[0]

Type Value
val
val[2]
*(val + 2)
&val[2]
val + 2
val + i

Bonus Coverage: Arrays

Carnegie Mellon

Good toy examples (for your cheatsheet and/or big brain):

● A can be used as the pointer to the first array element: A[0]

Type Value
val int * x
val[2] int 2
*(val + 2) int 2
&val[2] int * x + 8
val + 2 int * x + 8
val + i int * x + (4 * i)

Bonus Coverage: Arrays

Carnegie Mellon

Good toy examples (for your cheatsheet and/or big brain):

● A can be used as the pointer to the first array element: A[0]

Type Value
val int * x
val[2] int 2
*(val + 2) int 2
&val[2] int * x + 8
val + 2 int * x + 8
val + i int * x + (4 * i)

Accessing methods:
● val[index]
● *(val + index)

Bonus Coverage: Arrays

Carnegie Mellon

Good toy examples (for your cheatsheet and/or big brain):

● A can be used as the pointer to the first array element: A[0]

Type Value
val int * x
val[2] int 2
*(val + 2) int 2
&val[2] int * x + 8
val + 2 int * x + 8
val + i int * x + (4 * i)

Accessing methods:
● val[index]
● *(val + index)

Addressing methods:
● &val[index]
● val + index

Bonus Coverage: Arrays

Carnegie Mellon

Nested indexing rules (for your cheatsheet and/or big brain):
● Declared: T A[R][C]
● Contiguous chunk of space (think of multiple arrays lined up next

to each other)

Bonus Coverage: Arrays

Carnegie Mellon

Nested indexing rules (for your cheatsheet and/or big brain):
● Arranged in ROW-MAJOR ORDER - think of row vectors
● A[i] is an array of C elements (“columns”) of type T

Bonus Coverage: Arrays

Carnegie Mellon

Nested indexing rules (for your cheatsheet and/or big brain):

Bonus Coverage: Arrays

Carnegie Mellon

Compiles Bad Deref? Size (bytes)
int A1[3][5]
int *A2[3][5]
int (*A3)[3][5]
int *(A4[3][5])
int (*A5[3])[5]

Consider accessing elements of A….

Bonus Coverage: Arrays

Carnegie Mellon

Compiles Bad Deref? Size (bytes)
int A1[3][5] Y N 3*5*4 = 60
int *A2[3][5]
int (*A3)[3][5]
int *(A4[3][5])
int (*A5[3])[5]

Consider accessing elements of A….

Bonus Coverage: Arrays

Carnegie Mellon

Compiles Bad Deref? Size (bytes)
int A1[3][5] Y N 3*5*(4) = 60
int *A2[3][5] Y N 3*5*(8) = 120
int (*A3)[3][5]
int *(A4[3][5])
int (*A5[3])[5]

Consider accessing elements of A….

Bonus Coverage: Arrays

Carnegie Mellon

Compiles Bad Deref? Size (bytes)
int A1[3][5] Y N 3*5*(4) = 60
int *A2[3][5] Y N 3*5*(8) = 120
int (*A3)[3][5] Y N 1*8 = 8
int *(A4[3][5])
int (*A5[3])[5]

Consider accessing elements of A….

Bonus Coverage: Arrays

Carnegie Mellon

Consider accessing elements of A….

Compiles Bad Deref? Size (bytes)
int A1[3][5] Y N 3*5*(4) = 60
int *A2[3][5] Y N 3*5*(8) = 120
int (*A3)[3][5] Y N 1*8 = 8
int *(A4[3][5]) Y N 3*5*(8) = 120
int (*A5[3])[5]

A4 is a pointer to a 3x5 (int *) element array

Bonus Coverage: Arrays

Carnegie Mellon

Consider accessing elements of A….

Compiles Bad Deref? Size (bytes)
int A1[3][5] Y N 3*5*(4) = 60
int *A2[3][5] Y N 3*5*(8) = 120
int (*A3)[3][5] Y N 1*8 = 8
int *(A4[3][5]) Y N 3*5*(8) = 120
int (*A5[3])[5] Y N 3*8 = 24

A5 is an array of 3 elements of type (int *)

Bonus Coverage: Arrays

Carnegie Mellon

ex., A3: pointer to a 3x5 int array
 *A3: 3x5 int array (3 * 5 elements * each 4 bytes = 60)
 **A3: BAD, but means stepping inside one of 3 “rows” c

Bonus Coverage: Arrays

Carnegie Mellon

ex., A5: array of 3 (int *) pointers
 *A5: 1 (int *) pointer, points to an array of 5 ints
**A5: BAD, means accessing 5 individual ints of the pointer

(stepping inside “row”)

Bonus Coverage: Arrays

Carnegie Mellon

Sample assembly-type questions

Bonus Coverage: Arrays

Carnegie Mellon

Bonus Coverage: Arrays

Carnegie Mellon

Bonus Coverage: Arrays

Carnegie Mellon

Bonus! Another Cache problem
■ Consider you have the following cache:

■64-byte capacity
■Directly mapped
■You have an 8-bit address space

Carnegie Mellon

Bonus!
A. How many tag bits are there in the cache?

■Do we know how many set bits there are? What about offset
bits?

■ If we have a 64-byte direct-mapped cache, we know the number
of s + b bits there are total!

■Then t + s + b = 8 → t = 8 - (s + b)
■Thus, we have _________2 tag bits!

26 = 64

Carnegie Mellon

Bonus!
B. Fill in the following table, indicating the set number based on the

hit/miss pattern.
a. By the power of

guess and check
tracing through,
identify which
partition of s + b
bits matches the
H/M pattern.

Load Binary Address Set H/M

1 1011 0011 M

2 1010 0111 M

3 1101 1001 M

4 1011 1100 H

5 1011 1001 H

Carnegie Mellon

Bonus!
B. Fill in the following table, indicating the set number based on the

hit/miss pattern.
a. By the power of

guess and check
tracing through,
identify which
partition of s + b
bits matches the
H/M pattern.

Load Binary Address Set H/M

1 1011 0011 M

2 1010 0111 M

3 1101 1001 M

4 1011 1100 H

5 1011 1001 H

Carnegie Mellon

Bonus!
B. Fill in the following table, indicating the set number based on the

hit/miss pattern.
a. By the power of

guess and check
tracing through,
identify which
partition of s + b
bits matches the
H/M pattern.

Load Binary Address Set H/M

1 1011 0011 M

2 1010 0111 M

3 1101 1001 M

4 1011 1100 H

5 1011 1001 H

Carnegie Mellon

Bonus!
B. Fill in the following table, indicating the set number based on the

hit/miss pattern.
a. By the power of

guess and check
tracing through,
identify which
partition of s + b
bits matches the
H/M pattern.

Load Binary Address Set H/M

1 1011 0011 3 M

2 1010 0111 2 M

3 1101 1001 1 M

4 1011 1100 3 H

5 1011 1001 3 H

Carnegie Mellon

Bonus!
C. How many sets are there? 2 bits → 4 sets

How big is each cache line? 4 bits → 16 bytes

Carnegie Mellon

In summary...

■ Read the write-up textbook!
■ Also read the write-up lecture slides!
■ Midterm covers CS:APP Ch. 1-3, 6
■ Ask questions on Piazza! For the midterm, make them

public and specific if from the practice server!
■ G~O~O~D~~L~U~C~K (also go Knicks)

