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What’s So Special about…Big Data?
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Focus of this Talk: Big Learning

• Machine Learning over Big Data

• Examples: 

– Collaborative Filtering (via Matrix Factorization)

• Recommending movies

– Topic Modeling (via LDA)

• Clusters documents into K topics

– Multinomial Logistic Regression

• Classification for multiple discrete classes

– Deep Learning neural networks:

– Also: Iterative graph analytics, e.g. PageRank
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Big Learning Frameworks & Systems

• Goal: Easy-to-use programming framework 
for Big Data Analytics that delivers good 
performance on large (and small) clusters

• A few popular examples (historical context):

– Hadoop (2006-)

– GraphLab / Dato (2009-)

– Spark / Databricks (2009-)
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Hadoop

• Hadoop Distributed File System (HDFS)

• Hadoop YARN resource scheduler

• Hadoop MapReduce

Image from: developer.yahoo.com/hadoop/tutorial/module4.html

Key Learning: Ease of use trumps performance
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GraphLab

Graph Parallel: “Think like a vertex”

Scheduler Consistency Model

Graph Based
Data Representation

Update Functions
User Computation

Slide courtesy of Carlos Guestrin

Key Learning: Graph Parallel is quite useful



Triangle Counting* in Twitter Graph

40M Users  
1.2B Edges

*How often are two of a user’s
friends also friends?

Total: 34.8 Billion Triangles

Hadoop results from [Suri & Vassilvitskii '11]

GraphLab

Hadoop

1536 Machines
423 Minutes

64 Machines, 1024 Cores
1.5 Minutes

Key Learning:
Graph Parallel is MUCH faster than Hadoop!
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GraphLab & GraphChi

Slide courtesy of Carlos Guestrin
How to handle high degree nodes: GAS approach

Can do fast BL on a machine w/SSD-resident data



GraphLab Create

User experience is paramount for customers
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Spark: Key Idea

Features:
• In-memory speed w/fault tolerance via lineage tracking
• Bulk Synchronous

Resilient Distributed Datasets: A Fault-Tolerant 
Abstraction for InMemory Cluster Computing, 
[Zaharia et al, NSDI’12, best paper]

A restricted form of shared memory, based on coarse-grained 
deterministic transformations rather than fine-grained updates 
to shared state:  expressive, efficient and fault tolerant

In-memory compute can be fast & fault-tolerant



Spark Stack continued innovations

Build it and they will come  
1000+ companies use Spark & many contribute

(Start to) (help build it)



Spark Timeline

• Research breakthrough in 2009

• First open source release in 2011

• Into Apache Incubator in 2013

• In all major Hadoop releases by 2014

• Pipeline of research breakthroughs (publications in best 
conferences) fuel continued leadership & uptake

• Start-up (Databricks), Open Source Developers, and Industry 
partners (IBM, Intel) make code commercial-grade

A Brave New World

Fast path for Academics impact via Open Source:
Pipeline of research breakthroughs into 
widespread commercial use in 2 years!
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Big Learning Frameworks & Systems

• Goal: Easy-to-use programming framework 
for Big Data Analytics that delivers good 
performance on large (and small) clusters

• A few popular examples (historical context):

– Hadoop (2006-)

– GraphLab / Dato (2009-)

– Spark / Databricks (2009-)

• Our Idea: Discover & take advantage of 
distinctive properties (“what’s so special”) of 
Big Learning training algorithms
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What’s So Special about Big Learning?
…A Mathematical Perspective

• Formulated as an optimization problem 

– Use training data to learn model parameters

• No closed-form solution, instead algorithms 
iterate until convergence

– E.g., Stochastic Gradient Descent for Matrix 
Factorization or Multinomial Logistic Regression,
LDA via Gibbs Sampling, Deep Learning, Page Rank

Image from charlesfranzen.com
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What’s So Special about Big Learning?
…A Distributed Systems Perspective

The Bad News

• Lots of Computation / Memory

– Many iterations over Big Data

– Big Models

Need to distribute computation widely

• Lots of Communication / Synchronization

– Not readily “partitionable”

Model Training is SLOW

– hours to days to weeks, even on many machines 

…why good distributed systems research is needed!
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[Li et al, OSDI’14]

Big Models, Widely Distributed
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Lots of Communication / Synchronization
e.g. in BSP Execution (Hadoop, Spark)

• Exchange ALL updates at END of each iteration

Frequent, bursty communication

• Synchronize ALL threads each iteration

Straggler problem: stuck waiting for slowest
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Wasted computing time!

Time
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What’s So Special about Big Learning?
…A Distributed Systems Perspective

The Good News

1. Commutative/Associative parameter updates

2. Tolerance for lazy consistency of parameters

3. Repeated parameter data access pattern

4. Intra-iteration progress measure

5. Parameter update importance hints

6. Layer-by-layer pattern of deep learning

…can exploit to run orders of magnitude faster!
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Parameter Servers for Distributed ML

• Provides all workers with convenient access to 

global model parameters

• Easy conversion of single-machine parallel ML algorithms

– “Distributed shared memory” programming style

– Replace local memory access with PS access

Parameter
Table

(sharded
across   

machines)

Worker 1 Worker 2

Worker 3 Worker 4

[Power & Li, OSDI’10], [Ahmed et al, WSDM’12], [NIPS’13], [Li et al, OSDI’14], Petuum, MXNet, TensorFlow, etc

UpdateVar(i) {
old = y[i]
delta = f(old)
y[i] += delta }

UpdateVar(i) {
old = PS.read(y,i)
delta = f(old)
PS.inc(y,i,delta) }

Single
Machine
Parallel

Distributed
with PS



20© Phillip B. GibbonsWhat’s So Special about Big Learning…A Distributed Systems Perspective

Cost of Bulk Synchrony (e.g., in Spark)

1
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Thread 1

Thread 2

Thread 3

Thread 4
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3

3

3

Time

But: Fully asynchronous => No algorithm convergence guarantees

• Exchange ALL updates at END of each iteration

• Synchronize ALL threads each iteration

Bulk Synchrony => Frequent, bursty communication
& stuck waiting for stragglers

Better idea: Bounded Staleness: All threads within S iterations
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Stale Synchronous Parallel (SSP)

[NIPS’13]

Iteration0 1 2 3 4 5 6 7 8 9

Thread 1

Thread 2

Thread 3

Thread 4

Staleness Bound S=3
Thread 1 waits until
Thread 2 has reached iter 4

Thread 1 will always see
these updates

Thread 1 may not see
these updates

Exploits: 1. commutative/associative updates &
2. tolerance for lazy consistency  (bounded staleness)

Fastest/slowest threads not allowed to drift >S iterations apart
Allow threads to usually run at own pace

Protocol: check cache first; if too old, get latest version from network
Slow threads check only every S iterations – fewer network accesses, so catch up!
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Staleness Sweet Spot

Topic Modeling
Nytimes dataset
400k documents

100 topics
LDA w/Gibbs sampling
8 machines x 64 cores

40Gbps Infiniband [ATC’14]
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What’s So Special about Big Learning?
…A Distributed Systems Perspective

The Good News

1. Commutative/Associative parameter updates

2. Tolerance for lazy consistency of parameters

3. Repeated parameter data access pattern

4. Intra-iteration progress measure

5. Parameter update importance hints

6. Layer-by-layer pattern of deep learning

…can exploit to run orders of magnitude faster!
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Repeated Data Access in PageRank

Init ranks to random value
loop

foreach link from i to j {
read Rank(i)
update Rank(j)

}
while not converged

Page0

Page2

L
in

k
-2

L
in

k
-3

Worker-0

Worker-1Page1

Input data: a set of links, stored locally in workers
Parameter data: ranks of pages, stored in PS
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Repeated Data Access in PageRank

Worker-0
loop

# Link-0
read page[2].rank
update page[0].rank
# Link-1
read page[1].rank
update page[2].rank
clock()

while not converged

Page0

Page2

L
in

k
-2

L
in

k
-3

Worker-0

Worker-1Page1

Input data: a set of links, stored locally in workers
Parameter data: ranks of pages, stored in PS

Repeated access sequence depends only 
on input data (not on parameter values)
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Exploiting Repeated Data Access

Collect access sequence in “virtual iteration”

Enables many optimizations: 

1. Parameter data placement across machines

PS shard

Machine-1

ML Worker

PS shard

Machine-0

ML Worker
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Exploiting Repeated Data Access

Collect access sequence in “virtual iteration”

Enables many optimizations: 

1. Parameter data placement across machines

2. Prefetching

3. Static cache policies

4. More efficient marshalling-free data structures

5. NUMA-aware memory placement

• Benefits are resilient to moderate deviation
in an iteration’s actual access pattern
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IterStore: Exploiting Iterativeness

Collaborative Filtering
(Matrix Factorization)

NetFlix data set
8 machines x 64 cores

40 Gbps Infiniband

4-5x faster than baseline
11x faster than GraphLab

4 iterations

99 iterations

[SoCC’14]
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What’s So Special about Big Learning?
…A Distributed Systems Perspective

The Good News

1. Commutative/Associative parameter updates

2. Tolerance for lazy consistency of parameters

3. Repeated parameter data access pattern

4. Intra-iteration progress measure

5. Parameter update importance hints

6. Layer-by-layer pattern of deep learning

…can exploit to run orders of magnitude faster!
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• Many sources of transient straggler effects

– Resource contention

– System processes (e.g., garbage collection)

– Slow mini-batch at a worker

Causes significant slowdowns for Big Learning

• FlexRR: SSP + Low-overhead work migration (RR)
to mitigate transient straggler effects

– Simple: Tailored to Big Learning’s special properties
E.g., cloning (used in MapReduce) would break

the algorithm (violates idempotency)!

– Staleness provides slack to do the migration

Addressing the Straggler Problem
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Rapid-Reassignment Protocol

• Multicast to preset 
possible helpees
(has copy of tail of 
helpee’s input data)

• Intra-iteration 
progress measure:
percentage of input 
data processed

• Can process input 
data in any order

• Assignment is 
percentage range

• State is only in PS

• Work must be 
done exactly once

Ignore
(I don’t need help)

SlowFastOk

I’m behind
(I need help)
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FlexRR Performance

Matrix Factorization
Netflix dataset

64 EC2 Instances

64 Azure
Instances

Both SSP & RR required.
Nearly ideal straggler mitigation

[SoCC’16]
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What’s So Special about Big Learning?
…A Distributed Systems Perspective

The Good News

1. Commutative/Associative parameter updates

2. Tolerance for lazy consistency of parameters

3. Repeated parameter data access pattern

4. Intra-iteration progress measure

5. Parameter update importance hints

6. Layer-by-layer pattern of deep learning

…can exploit to run orders of magnitude faster!
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• Combine SSP’s lazy transmission of parameter 
updates with:

– early transmission of larger parameter changes

(Idea: larger change likely to be an important update)

– up to bandwidth limit & staleness limit

Bosen: Managed Communication

[SoCC’15]

LDA Topic Modeling
Nytimes dataset

16x8 cores
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What’s So Special about Big Learning?
…A Distributed Systems Perspective

The Good News

1. Commutative/Associative parameter updates

2. Tolerance for lazy consistency of parameters

3. Repeated parameter data access pattern

4. Intra-iteration progress measure

5. Parameter update importance hints

6. Layer-by-layer pattern of deep learning

…can exploit to run orders of magnitude faster!
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Distributed Deep Learning

Distributed
ML workers

Partitioned
training data

Shared
model parameters

Eagle

Vulture

Accipiter

Osprey

read, update

Parameter server

for GPUs
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Layer-by-Layer Pattern of DNN

• For each iteration (mini-batch)

– A forward pass

– Then a backward pass

• Pairs of layers used at a time

Class probabilities

Training images
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GeePS: Parameter Server for GPUs

• Careful management of GPU & CPU memory

– Use GPU memory as cache to hold pairs of layers

– Stage remaining data in larger CPU memory

GeePS is 13x faster than Caffe (1 GPU) on 16 machines, 
2.6x faster than IterStore (CPU parameter server)

ImageNet22K
Adam model

[EuroSys’16]
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What’s So Special about Big Learning?
…A Distributed Systems’ Perspective

The Good News

1. Commutative/Associative parameter updates

2. Tolerance for lazy consistency of parameters

3. Repeated parameter data access pattern

4. Intra-iteration progress measure

5. Parameter update importance hints

6. Layer-by-layer pattern of deep learning

…can exploit to run orders of magnitude faster!
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What’s So Special about Big Learning?
…A Distributed Systems’ Perspective

More Bad News

• Sensitivity to tunables

• Costly: can we use spot instances?

• Geo-distributed data (with skew)
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Sensitivity to Tunables

• Many tunables in ML algorithms:

– Coefficients in optimization function, 
e.g., weights on regularization terms

– Configuration tunables in optimization algorithm, 
e.g., learning rate, mini-batch size, staleness

• Quality of solution & rate of convergence are 
highly sensitive to these tunables

– Today, mostly human trial-and-error
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Image classification on DNN Ongoing 
Research: 

How to 
automate?

[submitted]
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Costly => Use Spot Instances?

• Spot Instances are often 85%-90% cheaper,
but can be taken away at short notice

Ongoing Research: 
Effective, elastic, “Spot Dancing” Big Learning

Each
machine

class
is a

bidding
market

[submitted]
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Geo-Distributed Data (with Skew)

• Data sources are everywhere (geo-distributed)

– Too expensive (or not permitted) to ship all data to 
single data center

• Big Learning over geo-distributed data

– Low Bandwidth & High Latency of Inter-data-
center communication relative to Intra-data-center

– Geo-distributed data may be highly skewed

– Regional answers also of interest

Ongoing Research: 
Effective Big Learning systems 

for Geo-distributed data

[NSDI’17]
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What’s So Special about Big Learning?
…A Distributed Systems’ Perspective

The Bad News: Model Training is SLOW

• Lots of Computation / Memory

– Many iterations over Big Data

– Big Models

=> Need to distribute computation widely

• Lots of Communication / Synchronization

– Not readily “partitionable”

More Bad News:
Sensitivity to tunables
Costly=>spot instances?
Geo-distributed data (with skew)
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What’s So Special about Big Learning?
…A Distributed Systems’ Perspective

The Good News

• Commutative/Associative parameter updates

• Tolerance for lazy consistency of parameters

• Repeated parameter data access pattern

• Intra-iteration progress measure

• Parameter update importance hints

• Layer-by-layer pattern of deep learning

• Others to be discovered

…can exploit to run orders of magnitude faster!
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Thanks to Collaborators & Sponsors

• CMU Faculty: Greg Ganger, Garth Gibson, Eric Xing

• CMU/ex-CMU Students: James Cipar, Henggang Cui, 

Wei Dai, Jesse Haber-Kucharsky, Aaron Harlap, 
Qirong Ho, Kevin Hsieh, Jin Kyu Kim, Dimitris Konomis, 
Abhimanu Kumar, Seunghak Lee, Aurick Qiao, 
Alexey Tumanov, Nandita Vijaykumar, Jinliang Wei,
Lianghong Xu, Hao Zhang

• Sponsors: 

– Intel (via ISTC for Cloud Computing & new ISTC for Visual 
Cloud Systems)

– PDL Consortium: Avago, Citadel, EMC, Facebook, Google, 
Hewlett-Packard Labs, Hitachi, Intel, Microsoft Research, 
MongoDB, NetApp, Oracle, Samsung, Seagate, Symantec, 
Two Sigma, Western Digital

– National Science Foundation

(Many of these slides adapted from slides by the students)

(Bold=first author)
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