
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recitation 9: Processes, Signals, TSHLab

Instructor: TAs

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

 Cachelab Style

 Process Lifecycle

 Signal Handling

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Style Grading

 Cachelab grades will be available soon
 Click ‘view source’ on your latest submission to see our feedback

 Common mistakes
 Descriptions at the top of your file and functions.

 NULL checking for malloc/calloc and fopen.

 ERROR CHECKING IS KEY IN TSHLAB!

 Writing everything in main function without helpers.

 Lack of comments in general.

 The labs are hard, don’t lose points after your hard work.

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process “Lifecycle”

We will review each of these phases today

 Fork() – Create a duplicate, a “child”, of the process

 Execve() – Replace the running program

 Exit() – End the running program

 Waitpid() – Wait for a child

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Notes on Examples

 Full source code of all programs is available
 TAs may demo specific programs

 In the following examples, exit() is called
 We do this to be explicit about the program’s behavior

 Exit should generally be reserved for terminating on error

 Unless otherwise noted, all syscalls succeed
 Error checking code is omitted.

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes are separate

 How many lines are printed?

 If pid is at address 0x7fff2bcc264c, what is printed?

int main(int argc, char** argv)

{

pid_t pid;

pid = fork();

printf(“%p - %d\n”, &pid, pid);

exit(0);

}

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes Change

 What does this program print?

int main(int argc, char** argv)

{

char* args[3];

args[0] = “/bin/echo”;

args[1] = “Hi 18213!”;

args[2] = NULL;

execv(args[0], args);

printf(“Hi 15213!\n”);

exit(0);

}

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

On Error

 How should we handle malloc failing?

const size_t HUGE = 1 * 1024 * 1024 * 1024;

int main(int argc, char** argv)

{

char* buf = malloc(HUGE * HUGE);

printf("Buf at %p\n", buf);

exit(0);

}

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

On Error

 How should we handle malloc failing?

const size_t HUGE = 1 * 1024 * 1024 * 1024;

int main(int argc, char** argv)

{

char* buf = malloc(HUGE * HUGE);

if (buf == NULL)

{

fprintf(stderr, "Failure at %u\n", __LINE__);

exit(1);

}

printf("Buf at %p\n", buf);

exit(0);

}

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exit values can convey information

 Two values are printed, describe their relation.

int main(int argc, char** argv)

{

pid_t pid = fork();

if (pid == 0) { exit(getpid());}

else

{

int status = 0;

waitpid(pid, &status, 0);

printf(“0x%x exited with 0x%x\n”, pid,

WEXITSTATUS(status));

}

exit(0);

}

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes have ancestry

 Find the errors in this code, assume fork() and exit() are successful

int main(int argc, char** argv)

{

int status = 0, ret = 0;

pid_t pid = fork();

if (pid == 0)

{

pid = fork();

exit(getpid());

}

ret = waitpid(-1, &status, 0);

printf(“Process %d exited with %d\n”, ret, status);

ret = waitpid(-1, &status, 0);

printf(“Process %d exited with %d\n”, ret, status);

exit(0);

}

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Graphs

 How many different sequences can be printed?

int main(int argc, char** argv)

{

int status;

pid_t pid;

if (fork() == 0)

{

pid = fork();

printf(“HC: %d\n”, getpid());

if (pid == 0) {exit(0);}

}

pid = wait(&status);

printf(“BT: %d\n”, pid);

exit(0);

}

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Graphs

 How many different sequences can be printed?

int main(int argc, char** argv)

{

pid_t pid;

char* tgt = “child”;

pid = fork();

if (pid == 0) {

pid = getppid(); // Get parent pid

tgt = “parent”;

}

kill(pid, 9);

printf(“Sent SIGKILL to %s:%d\n”, tgt, pid);

exit(0);

}

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals and Handling

 Signals can happen at any time
 Control when through blocking signals

 Signals also communicate that events have occurred
 What event(s) correspond to each signal?

 Write separate routines for receiving (i.e., signals)

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocking Signals

 What value(s) does this code print?

int counter = 0;

void handler(int sig) {counter++;}

int main(int argc, char** argv)

{

sigset_t mask, prev;

int i;

sigfillset(&mask);

sigprocmask(SIG_BLOCK, &mask, &prev);

signal(SIGCHLD, handler);

for (i = 0; i < 10; i++)

{

if (fork() == 0) {exit(0);}

}

sigprocmask(SIG_SETMASK, &prev, NULL);

printf(“%d\n”, counter);

return 0;

}

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Proper signal handling

 For the previous code, how to handle the signals?
 We want to count child exits.

 We don’t want to count exits until all 10 children are created.

 Discuss

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Proper signal handling

 For the previous code, how to handle the signals?
 We want to count child exits.

 We don’t want to count exits until all 10 children are created.

 Print how many children have exited ahead of the parent

 Modify the code:
if (fork() == 0)

{

if (i < 5) exit(0);

else while(1) ;

}

 Discuss

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

If you get stuck

 Read the writeup!

 Do manual unit testing before runtrace and sdriver!

 Read the writeup!

 Post private questions on piazza!

 Read the man pages on the syscalls.
 Especially the error conditions

 What errors should terminate the shell?

 What errors should be reported?

