
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recitation 8: Exam Stack Review

15-213: Introduction to Computer Systems
October 17th, 2016

Instructor:

Your TA(s)

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Midterm Exam This Week

 4 hours

 1 double-sided page of notes
 No preworked problems from prior exams

 7 questions

 Report to the room
 TA will verify your notes and ID

 TAs will give you your exam server password

 Login via Andrew, then navigate to exam server and use special
exam password

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Stack Review

 In the following questions, treat them like the exam
 Can you answer them from memory?

 Write down your answer

 Talk to your neighbor, do you agree?

 Discuss:
What is the stack used for?

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Stack Manipulation

 We execute:

mov $0x15213, %rax

pushq %rax

 Which of the following instructions will place the value
0x15213 into %rcx?

1) mov (%rsp), %rcx

2) mov 0x8(%rsp), %rcx

3) mov %rsp, %rcx

4) popq %rcx

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Stack is memory

 We execute:

mov $0x15213, %rax

pushq %rax

popq %rax

 If we now execute: mov -0x8(%rsp), %rcx

what value is in %rcx?

1) 0x0 / NULL

2) Seg fault

3) Unknown

4) 0x15213

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

x86-64 Calling Convention

 What does the calling convention govern?

1) How large each type is.

2) How to pass arguments to a function.

3) The alignment of fields in a struct.

4) When registers can be used by a function.

5) Whether a function can call itself.

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Register Usage
 The calling convention gives meaning to every register,

describe the following 9 registers:

%rdi

%rsi

%rdx

%rcx

%r8

%r9

%rax

%rbx

%rbp

Function Argument

Return Value

Callee Save

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Register Usage
 The calling convention gives meaning to every register,

describe the following 9 registers:

%rdi

%rsi

%rdx

%rcx

%r8

%r9

%rax

%rbx

%rbp

Function Argument

Return Value

Callee Save

4

3

2

1

5

6

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Register Usage

 Which line is the first violation of the calling convention?

mov $0x15213, %rax

push %rax

mov 0x10(%rsp), %rcx

mov %rbx, %rax

pop %rdx

push %rax

pop %rbx

mov %rcx, %rbx

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Register Usage

 Which line is the first violation of the calling convention?

mov $0x15213, %rax

push %rax

mov 0x10(%rsp), %rcx

mov %rbx, %rax

pop %rdx

push %rax

pop %rbx

mov %rcx, %rbx Until this point, the callee has
preserved the callee-save value.

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sometimes arguments are implicit

How many arguments does “rsr” take?

How many registers are changed before the function call?

(Note, %sil is the low 8 bits of %rsi)

0x0400596 <+0>: cmp %sil,(%rdi,%rdx,1)

0x040059a <+4>: je 0x4005ae <rsr+24>

0x040059c <+6>: sub $0x8,%rsp

0x04005a0 <+10>: sub $0x1,%rdx

0x04005a4 <+14>: callq 0x400596 <rsr>

0x04005a9 <+19>: add $0x8,%rsp

0x04005ad <+23>: retq

0x04005ae <+24>: mov %edx,%eax

0x04005b0 <+26>: retq

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Arguments can already be “correct”

 rsr does not modify s and t, so the arguments in those
registers are always correct

int rsr(char* s, char t, size_t pos)

{

if (s[pos] == t) return pos;

return rsr(s, t, pos - 1);

}

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recursive calls

 Describe the stack after doThis(4) returns.

void doThis(int count)

{

char buf[8];

strncpy(buf, “Hi 15213”, sizeof(buf));

if (count > 0) doThis(count – 1);

}

push %rbx

sub $0x10, %rsp

mov %edi,%ebx

movabs $0x3331323531206948,%rax

mov %rax,(%rsp)

...

