
15-213 Recitation 6: C Review

30 Sept 2016

Agenda

• Reminders

• Lessons from Attack Lab

• C Assessment

• Programming Style

• Cache Lab Overview

• Appendix: valgrind

• Appendix: Clang / LLVM

Reminders

Attack Lab is due tomorrow!

“But if you wait until the last

minute, it only takes a minute!” -

NOT!

Cache Lab will be released

tomorrow!

Image credit: pixabay.com

Lessons from Attack Lab

• Never, ever use gets

• use fgets instead if you need that functionality

• Use functions that pass an explicit buffer length if possible

• strncpy/strncat instead of strcpy/strcat, snprintf instead of sprintf

• Limit scanf/fscanf input lengths with %123s

• Or use a function that dynamically allocates a large-enough buffer

• asprintf (GNU library) instead of sprintf

• If none of those is possible, be very careful about checking input
size

• Stack protections make it harder to exploit a buffer overflow – but
not impossible

C Assessment

• Can you easily answer all of the problems on the

following slides?

• For each question, take a minute to write down your

answer

• If not, please come to the C Bootcamp:

• Wednesday 7:30-9pm, Location TBD

• You need this for the rest of the course. If in

doubt, come to the C Bootcamp!

C Question 1

Which of the following lines has a problem?

If it does, how might you solve it?

int main(int argc, char** argv) {

int *a = malloc(100 * sizeof(int));

for (int i=0; i<100; i++) {

if (a[i] == 0) a[i]=i;

else a[i]=0;

}

...

free(a);

return 0;

}

1

2

3

4

5

6

C Question 1

What can malloc return? Can malloc fail?

int main(int argc, char** argv) {

int *a = malloc(100 * sizeof(int));

for (int i=0; i<100; i++) {

if (a[i] == 0) a[i]=i;

else a[i]=0;

}

...

free(a);

return 0;

}

1

2

3

4

5

6

C Question 1

Allocated memory is not initialized.

What function does this?

int main(int argc, char** argv) {

int *a = malloc(100 * sizeof(int));

for (int i=0; i<100; i++) {

if (a[i] == 0) a[i]=i;

else a[i]=0;

}

...

free(a);

return 0;

}

1

2

3

4

5

6

C Question 1 (bonus)

Declaring a variable in a for loop requires:

-std=c99 (or later standard)

int main(int argc, char** argv) {

int *a = malloc(100 * sizeof(int));

for (int i=0; i<100; i++) {

if (a[i] == 0) a[i]=i;

else a[i]=0;

}

...

free(a);

return 0;

}

1

2

3

4

5

6

C Question 1

The code has been revised to address the two
problems.

int main(int argc, char** argv) {

int *a = calloc(100 * sizeof(int));

if (a == NULL) { ...}

for (int i=0; i<100; i++) {

if (a[i] == 0) a[i]=i;

else a[i]=0;

}

...

free(a);

return 0;

}

C Question 2

• What is the value of A and B? Why?

#define IS_GREATER(a, b) a > b

int is_greater(int a, int b) {

return a > b;

}

int A = IS_GREATER(1, 0) + 1;

int B = is_greater(1, 0) + 1;

C Question 2

A uses a macro, which does textual substitution

#define IS_GREATER(a, b) a > b

int is_greater(int a, int b) {

return a > b;

}

int A = IS_GREATER(1, 0) + 1;

int B = is_greater(1, 0) + 1;

#define IS_GREATER(a, b) a > b

int A = 1 > 0 + 1;

Following the order of operations: 1 > 0 + 1 => 1 > 1 => 0

C Question 2

B uses a function call and behaves as expected:

B = 1 + 1 => 2

#define IS_GREATER(a, b) a > b

int is_greater(int a, int b) {

return a > b;

}

int A = IS_GREATER(1, 0) + 1;

int B = is_greater(1, 0) + 1;

C Question 3

Which of the following lines has a problem?

How would you solve the problem(s)?

int *foo(int *allocate) {

int a = 3;

allocate = malloc(sizeof(int));

if (allocate == NULL) abort();

return &a;

}

1

2

3

4

C Question 3

allocate is a local copy of the pointer

“*allocate =’’ assigns to the caller’s location

To allocate for the caller, foo(int **allocate)

int *foo(int *allocate) {

int a = 3;

allocate = malloc(sizeof(int));

if (allocate == NULL) abort();

return &a;

}

1

2

3

4

C Question 3

Where is a? To where does &a point?

int *foo(int *allocate) {

int a = 3;

allocate = malloc(sizeof(int));

if (allocate == NULL) abort();

return &a;

}

1

2

3

4

C Assessment

Did you know the answers to all of the problems? If not,

COME TO THE C BOOTCAMP

C Programming Style

• Properly document your code

• Header comments, overall operation of large blocks, any tricky bits

• Write robust code – check error and failure conditions

• Write modular code

• Use interfaces for data structures, e.g. create/insert/remove/free
functions for a linked list

• No magic numbers – use #define

• Formatting

• 80 characters per line

• Consistent braces and whitespace

• No memory or file descriptor leaks

C Programming Exercise

• Learn to use getopt
• Complete the code to process the commandline

• Write a simple calculator program

Form pairs

• One student needs a laptop

• Login to a shark machine

$ wget
http://www.cs.cmu.edu/~213/activities/rec6.tar

$ tar xf rec6.tar

$ cd rec6

$ make

http://www.cs.cmu.edu/~213/activities/rec6.tar

man 3 getopt

int getopt(int argc, char * const argv[],
const char *optstring);

• If there are no more option characters, getopt()
returns -1.

• optstring is a string containing the legitimate
option characters.
• If such a character is followed by a colon, the option

requires an argument
• getopt() places a pointer to the following text in optarg

• getopt() finds an option character in argv that was not
included in optstring, or if it detects a missing option
argument, it returns '?'

If You Get Stuck on cachelab

Please read the writeup. Please read the writeup. Please read

the writeup. Please read the writeup!

CS:APP Chapter 6

View lecture notes and course FAQ at http://www.cs.cmu.edu/~213

Office hours Sunday through Thursday 5:00-9:00pm in WeH 5207

Post a private question on Piazza

man malloc, man valgrind, man gdb, gdb's help command

http://www.cs.cmu.edu/~213

KEEP

CALM
and

READ
THE

WRITEUP

Appendix: valgrind

• A suite of tools for debugging and profiling
memory use, among other things

• find where memory that wasn't freed was allocated

• track origin of uninitialized values

• show heap usage over time

• detect reads and writes of invalid locations

• detect illegal and double frees

valgrind: Finding Memory Leaks

• valgrind --leak-resolution=high --leak-check=full --show-
reachable=yes --track-fds=yes ./my_prog <args>

• your program runs as normal, though much, much slower

• read/write errors and uses of uninitialized values are
reported as they occur

• un-freed memory is reported on program termination

Clang / LLVM

• Cachelab – Part B Matrix Transpose

• Clang is a gcc-equivalent C compiler
• Support for code analysis and transformation

• New methods of style checking and trace
generation
• Compiler will check your variable usage and declarations

• Compiler will also instrument the code to record all
memory accesses to a file

