
Carnegie Mellon

Malloc Boot Camp

Amolak, Jack, Raghav, and Stan

Carnegie Mellon

Agenda

■ Conceptual Overview
■ Implicit List
■ Explicit List
■ Splitting, coalescing

■ Advanced debugging with GDB
■ Fun GDB tricks
■ Writing a good heap checker

■ Basic version control with Git

Carnegie Mellon

Download this handout for fun & profit

■ Presentation on course website
■ See “schedule”

■ https://cs.cmu.edu/~213/activities/mallocbootcamp.tar

https://cs.cmu.edu/~213/activities/mallocbootcamp.tar
https://cs.cmu.edu/~213/activities/mallocbootcamp.tar

Carnegie Mellon

Conceptual Outline

Carnegie Mellon

5

Dynamic Memory Allocation
■ Used when

■ we don't know at compile-time how much memory we will need
■ when a particular chunk of memory is not needed for the entire run

■ lets us re-use that memory for storing other things
■ Important terms:

■ malloc/calloc/realloc/free
■ sbrk
■ payload
■ fragmentation (not covered here)
■ Splitting / coalescing

Carnegie Mellon

6

Memory-Block Lists
■ Common Types

■ Implicit List
■ Root -> block1 ... block2 ... block3 ...

■ Explicit List
■ Root -> free-block 1 -> free-block 2 -> free-block 3 -> ...

■ Segregated List (not covered here)

Carnegie Mellon

7

Tracking Blocks: Implicit List
■ Use the length field (which is needed anyway) to find the next block
■ Scan finds both allocated and free blocks
■ Standard trick to save memory – use low bit of length field to store

allocation status
■ alignment requirements mean that lowest bit of the length must always be

zero

4 1 8 1 4 0 8 1

length

in-use
payload plus padding

root

Carnegie Mellon

8

Tracking Blocks: Explicit List
■ Maintain a list of free blocks instead of all blocks

■ means we need to store forward/backward pointers, not just sizes
■ we only track free blocks, so we can store the pointers in the payload area!
■ need to store size at end of block too, for coalescing

size 1

payload and
padding

size 0

unused

next
prev

allocated block free block

size 1 size 0

Carnegie Mellon

9

next
prev

next
prev

Splitting a Block
■ If the block we find is larger than we

need, split it and leave the remainder
for a future allocation

■ implicit lists: correct the block sizes
of the two parts

■ explicit lists: correct previous and
next pointers

■ When would we not split a block?

n 0

n 0

m 1

n-m 0

m 1

payload

n-m 0

Carnegie Mellon

10

next
prev

Coalescing Memory

next
prev

m1 0

m2 0

m2 0

m1 0

n 1

n 1

next
prev

m1 0

m2 1

m2 1

m1 0

n 1

n 1

payload

next
prev

n+m1 0

m2 1

m2 1

n+m1 0

payload

next
prev

n+m1+m2 0

n+m1+m2 0

Carnegie Mellon

11

Design Considerations
■ Finding a matching free block

■ First fit vs. next fit vs. best fit
■ continue searching for a closer fit after finding a big-enough free block?

■ Free block ordering
■ LIFO, FIFO, or address-ordered?

■ When to coalesce
■ while freeing a block or while searching for free memory?

■ How much memory to request with sbrk()
■ larger requests save time in system calls but increase maximum memory

use

Carnegie Mellon

12

Preventing Errors
■ Good coding practices can make your code less error-prone
■ Plan what each function does before writing it

■ consider edge cases – block at start/end of list, single item on list, etc.
■ draw pictures to help you visualize linked lists, memory layout, etc.

■ Document your code as you write it
■ Encapsulate common operations (e.g. macro to access block header)
■ Check for common errors:

■ dereferencing invalid pointers / reading uninitialized memory
■ overwriting memory
■ freeing blocks multiple times (or not at all) / referencing freed blocks
■ incorrect pointer arithmetic

Carnegie Mellon

Debugging: GDB & The Almighty Heap Checker

Carnegie Mellon

14

...except it’s not.

Carnegie Mellon

15

Better than printf: using GDB
■ Use GDB to determine where segfaults happen!
■ gdb mdriver will open the malloc driver in gdb

■ Type run and your program will run until it hits the segfault!
■ layout split - display GDB “text user interface”

■ Way prettier than normal GDB command prompt
■ Can sometimes get messed up by programs that print things
■ refresh - redraws screen

■ step - step to the next line of code, stepping into functions if necessary
■ next - same as above, but steps over functions instead
■ finish - continue execution until the end of the current function, then break

Carnegie Mellon

16

Using GDB - Fun with frames
■ backtrace - print call stack up until current function

■ backtrace full - print local variables in each stack frame

(gdb) backtrace
#0 find_fit (...)
#1 mm_malloc (...)
#2 0x0000000000403352 in eval_mm_valid (...)
#3 run_tests (...)
#4 0x0000000000403c39 in main (...)

■ frame 1 - switch to mm_malloc’s stack frame
■ Good for inspecting local variables of calling functions

Carnegie Mellon

17

Using GDB - Setting breakpoints/watchpoints
■ break mm_checkheap - break on function “mm_checkheap”

■ break mm.c:25 - break on line 25 of file “mm.c” - very useful!
■ break find_fit if size == 24 - break on function “find_fit” if the

local variable “size” in the malloc function is equal to 24
■ See mm-baseline.c in malloc handout

■ watch heap_listp - break if the value of “heap_listp” changes
■ watch block == 0x80000010 - break if “block” is equal to this value
■ watch *0x15213 - watch for changes at memory location 0x15213

■ Can be very slow
■ rwatch <thing> - stop on reading a memory location
■ awatch <thing> - stop on any memory access

Carnegie Mellon

18

GDB Live Demo

Carnegie Mellon

19

Heap Checker
■ int mm_checkheap(int verbose);
■ critical for debugging

■ write this function early!
■ update it when you change your freelist implementation
■ check all heap invariants (next slide), make sure you haven't lost track of any

part of your heap
■ check should pass if and only if the heap is truly well-formed

■ should only generate output if a problem is found, to avoid cluttering up your
program's output

■ meant to be correct, not efficient
■ call before/after major operations when the heap should be well-formed

Carnegie Mellon

20

Heap Invariants (Non-Exhaustive)
■ Block level

■ What are some things which should always be true of every block in the
heap?

Carnegie Mellon

21

Heap Invariants (Non-Exhaustive)
■ Block level

■ header and footer match
■ payload area is aligned, size is valid
■ no contiguous free blocks unless you defer coalescing

■ List level
■ What are some things which should always be true of every element of a

free list?

Carnegie Mellon

22

Heap Invariants (Non-Exhaustive)
■ Block level

■ header and footer match
■ payload area is aligned, size is valid
■ no contiguous free blocks unless you defer coalescing

■ List level
■ next/prev pointers in consecutive free blocks are consistent
■ no allocated blocks in free list, all free blocks are in the free list
■ no cycles in free list unless you use a circular list
■ each segregated list contains only blocks in the appropriate size class

■ Heap level
■ What are some things that should be true of the heap as a whole?

Carnegie Mellon

23

Heap Invariants (Non-Exhaustive)
■ Block level

■ header and footer match
■ payload area is aligned, size is valid
■ no contiguous free blocks unless you defer coalescing

■ List level
■ next/prev pointers in consecutive free blocks are consistent
■ no allocated blocks in free list, all free blocks are in the free list
■ no cycles in free list unless you use a circular list
■ each segregated list contains only blocks in the appropriate size class

■ Heap level
■ all blocks between heap boundaries, correct sentinel blocks (if used)

■ Add your own invariants (e.g. address order)

Carnegie Mellon

24

Heap Checker Live Demo

Carnegie Mellon

Fun with Git

Carnegie Mellon

26

When has this not happened to you...

■ My cache simulator works!!!
■ … except for one bug I can’t figure out.

■ I wanna try to change it, but I’m afraid I won’t be able to go backtrack
to what I had easily.

■ I wanna try a few different ways to do my simulator, but I wanna hang
on to the implementation for each.

■ Oh no! Now my code doesn’t compile and I can’t revert back to my
almost-perfect code I had earlier!

Carnegie Mellon

27

Carnegie Mellon

28

Carnegie Mellon

29

Let’s keep track of this with git

● cd malloc-lab
● git init
● git add malloc.c
● git commit
● Enter commit message in vim, save with :wq
● git log

Carnegie Mellon

30

Carnegie Mellon

31

What just happened?

● git init
○ I initialized git to keep track of stuff from this folder

● git add malloc.c
○ Hey git, please keep track of this file for me.

● git commit
○ Let’s mark the state of my code as it is right now, so I can always

come back to it later.

● Now, how can I make more changes over time? Let’s commit a few
more messages.

Carnegie Mellon

32

“I returned a value of 2 instead.”

Carnegie Mellon

33

“This time I divided by 0.”

Carnegie Mellon

34

git log

Carnegie Mellon

35

git log --oneline

Carnegie Mellon

36

Maybe I shouldn’t have divided by 0...

Carnegie Mellon

37

Maybe I shouldn’t have divided by 0...

Carnegie Mellon

38

Maybe I shouldn’t have divided by 0...

Carnegie Mellon

39

734c35a
Initial

master

2f67c30
4 / 2

9fdd176
4 / 0

What just happened?

Carnegie Mellon

40

734c35a
Initial

master

2f67c30
4 / 2

9fdd176
4 / 0

git checkout -b oldState 2f67c30

oldState

Carnegie Mellon

41

734c35a
Initial

master

2f67c30
4 / 2

9fdd176
4 / 0

git commit -m “Improve”

oldState4ca35tw
Improve

If I work on the oldState branch,
my master code and previous
commits will always be there!

Carnegie Mellon

42

734c35a
Initial

master

2f67c30
4 / 2

9fdd176
4 / 0

This could be very helpful...

oldState4ca35tw
Improve

081da3f
Explicit

18ca3tg
Implicit 1

implicitList

explicitList

I can work on
different malloc
implementations

without every
worrying about
losing progress!

Carnegie Mellon

43

Git TLDR
● git is a version control tool, lets you keep track of different versions

of your code and go to different ones accordingly.

● git can be helpful to keep track of different branches of your code (i.e.
different malloc implementations) without worrying about switching
or backtracking to older code.

● git goes MUCH deeper than this, we encourage you to explore it as
pretty much everyone uses it.

● git is here to make your life easier, it’s completely optional.

Carnegie Mellon

44

Warning!!!

● Ever heard of Github or Bitbucket? Git lets you post code online.
● DO NOT POST ANY 213 CODE TO GITHUB!!!
● DO NOT USE ANY 213 CODE FROM GITHUB!!!
● DO NOT POST ANY 213 CODE TO ANY ONLINE REPOSITORY!!!

○ Even if it’s in a private repo, it may not stay private forever
■ Student account/subscription expires, etc.

○ It’s not worth the risk/potential AIVs!

Carnegie Mellon

Lastly...

Carnegie Mellon

46

How to Ask for Help
■ Be specific about what the problem is, and how to cause it

■ BAD: “My program segfaults.”
■ GOOD: “On the third free() in trace 4, I get an invalid pointer in my free

list while coalescing memory.”
■ Try to figure out which part of the trace file triggers the problem
■ What sequence of events do you expect around the time of the error?

What part of the sequence has already happened?
■ Have you written your mm_checkheap function, and is it working?

■ We WILL ask to see it!
■ Practice asking your rubber duck about the problem (see Recitation 9)

before asking a TA or instructor

Carnegie Mellon

47

If You Get Stuck

■ Please read the writeup!
■ CS:APP Chapter 9
■ View lecture notes and course FAQ at http://www.cs.cmu.edu/~213
■ Office hours Sunday through Thursday 5:00-9:00pm in WeH 5207
■ Post a private question on Piazza
■ Obtain a rubber duck....

http://www.cs.cmu.edu/~213

Carnegie Mellon

48

APPENDIX

Carnegie Mellon

49

Internal Fragmentation
■ Occurs when the payload is smaller than the block size

■ due to alignment requirements
■ due to management overhead
■ as the result of a decision to use a larger-than-necessary block

■ Depends on the current allocations, i.e. the pattern of previous requests

Carnegie Mellon

50

Internal Fragmentation
■ Due to alignment requirements – the allocator doesn't know how you'll

be using the memory, so it has to use the strictest alignment:
■ void *m1 = malloc(13); void *m2 = malloc(11);
■ m1 and m2 both have to be aligned on 8-byte boundaries

■ Due to management overhead (each cell is 2 bytes):

l e n 1 p a y l o a d 1 l e n 2 p a y l o a d 2

Carnegie Mellon

51

External Fragmentation
■ Occurs when the total free space is sufficient, but no single free block

is large enough to satisfy the request
■ Depends on the pattern of future requests

■ thus difficult to predict, and any measurement is at best an estimate
■ Less critical to malloc traces than internal fragmentation

p5 = malloc(4)

free(p1)

p6 = malloc(5) Oops! Seven bytes available, but not in one chunk....

Carnegie Mellon

52

C: Pointer Arithmetic
■ Adding an integer to a pointer is different from adding two integers
■ The value of the integer is always multiplied by the size of the type that

the pointer points at
■ Example:

■ type_a *ptr = ...;
■ type_a *ptr2 = ptr + a;

■ is really computing
■ ptr2 = ptr + (a * sizeof(type_a));
■ i.e. lea (ptr, a, sizeof(type_a)), ptr2

■ Pointer arithmetic on void* is undefined (what's the size of a void?)

Carnegie Mellon

53

C: Pointer Arithmetic
■ int *ptr = (int*)0x152130;
int *ptr2 = ptr + 1;

■ char *ptr = (char*)0x152130;
char *ptr2 = ptr + 1;

■ char *ptr = (char*)0x152130;
void *ptr2 = ptr + 1;

■ char *ptr = (char*)0x152130;
char *p2 = ((char*)(((int*)ptr)+1));

Carnegie Mellon

54

C: Pointer Arithmetic
■ int *ptr = (int*)0x152130;
int *ptr2 = ptr + 1; // ptr2 is 0x152134

■ char *ptr = (char*)0x152130;
char *ptr2 = ptr + 1; // ptr2 is 0x152131

■ char *ptr = (char*)0x152130;
void *ptr2 = ptr + 1; // ptr2 is still 0x152131

■ char *ptr = (char*)0x152130;
char *p2 = ((char*)(((int*)ptr)+1));// p2 is 0x152134

Carnegie Mellon

55

If We Can't Find a Usable Free Block
■ Need to extend the heap

■ use the brk() or sbrk() system calls
■ in Malloclab, use mem_sbrk()

■ sbrk(requested_bytes)
allocates requested_bytes of
space and returns pointer to start

■ sbrk(0) returns a pointer to the end
of the current heap

■ For speed, extend the heap by a little
more than you need immediately

■ use what you need out of the new
space, add the rest as a free block

program code
initialized data
unitialized data

heap

stack

current brk
pointer

0

Carnegie Mellon

56

Dynamic Memory Allocation: Example

p1 = malloc(3)

p2 = malloc(7)

p3 = malloc(5)

free(p2)

p4 = malloc(4)

p5 = malloc(4)

Carnegie Mellon

57

The Memory-Block Information Data Structure
■ Requirements:

■ tells us where the blocks are, how big they are, and whether they are free
■ must be able to update the data during calls to malloc and free
■ need to be able to find the next free block which is a “good enough fit”

for a given payload
■ need to be able to quickly mark a block as free or allocated
■ need to be able to detect when we run out of blocks

■ what do we do in that case?
■ The only memory we have is what we're handing out

■ ...but not all of it needs to be payload! We can use part of it to store the
block information.

Carnegie Mellon

58

Finding a Free Block
■ First Fit

■ search from beginning, use first block that's big enough
■ linear time in total number of blocks
■ can cause small “splinters” at beginning of list

■ Next Fit
■ start search from where previous search finished
■ often faster than first fit, but some research suggests worse fragmentation

■ Best Fit
■ search entire list, use smallest block that's big enough
■ keeps fragments small (less wasted memory), but slower than first fit

Carnegie Mellon

59

Freeing Blocks
■ Simplest implementation is just clearing the “allocated” flag

■ but leads to external fragmentation

4 4 4 4 8

4 4 4 4 8

root

pfree(p)

malloc(8) Oops!

Carnegie Mellon

60

Coalescing Memory
■ Combine adjacent blocks if both are free

■ implicit lists: look forward and backward using block sizes
■ easily deferred until next allocation request (coalesce while scanning blocks)

■ explicit lists: look forward and backward using block sizes, not next/prev
■ segregated lists: look forward and backward using block sizes, then

■ use the size of the coalesced block to determine the proper list
■ insert into list using the insertion policy (LIFO, address-ordered, etc.)

■ Four cases:

Allocated

Allocated

block to
be freed

Allocated

Free

Free

Allocated

Free

Free

Carnegie Mellon

61

Insertion Policy
■ Where do you put a newly-freed block in the free list?

■ LIFO (last-in-first-out) policy
■ add to the beginning of the free list
■ pro: simple and constant time (very fast)
block->next = freelist; freelist = block;
■ con: studies suggest fragmentation is worse

■ Address-ordered policy
■ insert blocks so that free list blocks are always sorted by address
addr(prev) < addr(curr) < addr(next)
■ pro: lower fragmentation than LIFO
■ con: requires search

Carnegie Mellon

62

C: Pointer Casting
■ Notation: (b*)a “casts” a to be of type b*
■ Casting a pointer doesn't change the bits!

■ type_a *ptr_a=...; type_b *ptr_b=(type_b*)ptr_a;
makes ptr_a and ptr_b contain identical bits

■ But it does change the behavior when dereferencing
■ because we interpret the bits differently

■ Can cast type_a* to long/unsigned long and back
■ pointers are really just 64-bit numbers
■ such casts are important for malloclab
■ but be careful – this can easily lead to hard-to-find errors

Carnegie Mellon

63

Cycle Checking: Hare and Tortoise Algorithm
■ This algorithm detects cycles in

linked lists
■ Set two pointers, called “hare”

and “tortoise”, to the beginning
of the list

■ During each iteration, move
“hare” forward by two nodes,
“tortoise” by one node

■ if “tortoise” reaches the end of
the list, there is no cycle

■ if “tortoise” equals “hare”, the
list has a cycle

H

T
H

H

H

T

T

T

Carnegie Mellon

64

Cycle Checking: Hare and Tortoise Algorithm
■ This algorithm detects cycles in

linked lists
■ Set two pointers, called “hare”

and “tortoise”, to the beginning
of the list

■ During each iteration, move
“hare” forward by two nodes,
“tortoise” by one node

■ if “tortoise” reaches the end of
the list, there is no cycle

■ if “tortoise” equals “hare”, the
list has a cycle

H

T
H

H

H

T

T

T

Hare might go
around cycle
multiple times

before meeting
Tortoise

Carnegie Mellon

65

Debugging Tip: Using the Preprocessor
■ Use conditional compilation with #if or #ifdef to easily turn debugging

code on or off
#ifdef DEBUG
define DBG_PRINTF(...) fprintf(stderr, __VA_ARGS__)
define CHECKHEAP(verbose) mm_checkheap(verbose)
#else
define DBG_PRINTF(...)
define CHECKHEAP(verbose)
#endif /* DEBUG */

void free(void *p)
{
 DBG_PRINTF(“freeing %lx\n”,(long)p);
 CHECKHEAP(1);
 ...
}

Carnegie Mellon

66

Debugging Tip: GDB
■ Use breakpoints / conditional breakpoints

■ break {address} if {condition}
■ Use watchpoints

■ like breakpoints, but stop the program when the watched expression
changes or location is written

■ watch {expression} watch block->next
■ break any time the expression changes value; can be extremely slow!

■ watch -l {expression} watch -l *0x15213
■ evaluate the expression and watch the memory location at that address
■ program runs at full speed if GDB can set a hardware watchpoint

■ rwatch to stop on reading a location, awatch to stop on any access

