Carnegie Mellon

Malloc Boot Camp

Amolak, Jack, Raghav, and Stan

Carnegie Mellon

Agenda

m Conceptual Overview
m Implicit List
m Explicit List
m Splitting, coalescing
m Advanced debugging with GDB
m Fun GDB tricks
m Writing a good heap checker
m Basic version control with Git

Carnegie Mellon

Download this handout for fun & profit

m Presentation on course website
m See “schedule’
m https://cs.cmu.edu/~213/activities/mallocbootcamp.tar

https://cs.cmu.edu/~213/activities/mallocbootcamp.tar
https://cs.cmu.edu/~213/activities/mallocbootcamp.tar

Carnegie Mellon

Conceptual Outline

Carnegie Mellon

Dynamic Memory Allocation
= Used when

= we don't know at compile-time how much memory we will need
= wWhen a particular chunk of memory is not needed for the entire run
= lets us re-use that memory for storing other things
= Important terms:
= malloc/calloc/realloc/free
= sbrk
= payload
= fragmentation (not covered here)
= Splitting / coalescing

Carnegie Mellon

Memory-Block Lists

=« Common Types
= Implicit List
= Root -> blockl ... block?2 ... block3 ...
= Explicit List
= Root -> free-block 1 -> free-block 2 -> free-block 3 -> ...
= Segregated List (not covered here)

Carnegie Mellon

Tracking Blocks: Implicit List

= Use the length field (which is needed anyway) to find the next block
= Scan finds both allocated and free blocks
= Standard trick to save memory — use low bit of length field to store

allocation status
= alignment requirements mean that lowest bit of the length must always be
Zero

length \ payload plus padding
in-use 7

Carnegie Mellon

Tracking Blocks: Explicit List

= Maintain a list of free blocks instead of al/ blocks
= means we need to store forward/backward pointers, not just sizes
= we only track free blocks, so we can store the pointers in the payload area!
= need to store size at end of block too, for coalescing

allocated block free block
size 1 size 0
next
prev
payload and
padding
unused
size 1 size 0 8

Splitting a Block

= If the block we find 1s larger than we
need, split it and leave the remainder n 0 m 1
for a future allocation ”eXt payload
= implicit lists: correct the block sizes |.... P m
of the two parts n-m 0
= explicit lists: correct previous and — [ot
next pointers e
= When would we not split a block? SR <A
n 0 n-m 0

Coalescing Memory

n+m-1 0

next

Carnegie Mellon

n+tm1+m2 |0

n+m-1 0

m2

payload

m1 0
next
prev _
m1 0
n
n 1
m2 1
payload
m2 1

m2 1

next

n+tm1+m2 |0

10

Carnegie Mellon

Design Considerations

= Finding a matching free block
= First fit vs. next fit vs. best fit
= continue searching for a closer fit after finding a big-enough free block?
= Free block ordering
=« LIFO, FIFO, or address-ordered?
= When to coalesce
= while freeing a block or while searching for free memory?
=« How much memory to request with sbrk()
= larger requests save time in system calls but increase maximum memory
use

11

Carnegie Mellon

Preventing Errors

= Good coding practices can make your code less error-prone
= Plan what each function does before writing 1t
= consider edge cases — block at start/end of list, single item on list, etc.
= draw pictures to help you visualize linked lists, memory layout, etc.
= Document your code as you write 1t
= Encapsulate common operations (e.g. macro to access block header)
= Check for common errors:
» dereferencing invalid pointers / reading uninitialized memory
= Overwriting memory
=« freeing blocks multiple times (or not at all) / referencing freed blocks
= Incorrect pointer arithmetic

12

Debugging: GDB & The Almighty Heap Checker

Carnegie Mellon

| % wa N o
-

rﬁegeng%gﬁlﬁf.ﬁet

...except it’s not.

14

Carnegie Mellon

Better than print f: using GDB

= Use GDB to determine where segfaults happen!
m gdb mdriver will open the malloc driver in gdb
m Type run and your program will run until it hits the segfault!
m layout split -display GDB “text user interface”
m Way prettier than normal GDB command prompt
m Can sometimes get messed up by programs that print things
m refresh - redraws screen
m step - step to the next line of code, stepping into functions if necessary
m next - same as above, but steps over functions instead
m finish - continue execution until the end of the current function, then break

15

Using GDB - Fun with frames

m backtrace - print call stack up until current function
m backtrace full - print local variables in each stack frame

(gdb) backtrace

#0 find fit (...)

#1 mm malloc (...)

#2 0x0000000000403352 in eval mm valid (...)
#3 run tests (...)

#4 0x0000000000403c39 in main (...)

m frame 1 -switchtomm malloc’s stack frame
m Good for inspecting local variables of calling functions

16

Carnegie Mellon

Using GDB - Setting breakpoints/watchpoints

m break mm checkheap - break on function “mm_checkheap”
m break mm.c:25 - break on line 25 of file “mm.c” - very useful!
m break find fit if size == 24 - break on function “find fit” if the
local variable “size” in the ma1l1loc function is equal to 24
m See mm-baseline. c in malloc handout
m watch heap listp - break if the value of “heap listp” changes
m watch block == 0x80000010 - break if “block” 1s equal to this value
m watch *0x15213 - watch for changes at memory location 0x15213
m Can be very slow
m rwatch <thing> - stop on reading a memory location
m awatch <thing> - stop on any memory access

17

Carnegie Mellon

GDB Live Demo

18

Heap Checker

= int mm checkheap (int verbose);
= critical for debugging
= write this function early!
= update it when you change your freelist implementation
= check all heap invariants (next slide), make sure you haven't lost track of any
part of your heap
= check should pass if and only if the heap 1s truly well-formed
= should only generate output if a problem is found, to avoid cluttering up your
program's output
= meant to be correct, not efficient
= call before/after major operations when the heap should be well-formed

19

Carnegie Mellon

Heap Invariants (Non-Exhaustive)

= Block level

= What are some things which should always be true of every block in the
heap?

20

Carnegie Mellon

Heap Invariants (Non-Exhaustive)

= Block level
= header and footer match
= payload area 1s aligned, size 1s valid
= no contiguous free blocks unless you defer coalescing
= List level
= What are some things which should always be true of every element of a
free list?

21

Carnegie Mellon

Heap Invariants (Non-Exhaustive)

= Block level
= header and footer match
= payload area 1s aligned, size 1s valid
= no contiguous free blocks unless you defer coalescing
= List level
= next/prev pointers in consecutive free blocks are consistent
= no allocated blocks in free list, all free blocks are in the free list
= no cycles in free list unless you use a circular list
= cach segregated list contains only blocks in the appropriate size class
= Heap level
=« What are some things that should be true of the heap as a whole?

22

Carnegie Mellon

Heap Invariants (Non-Exhaustive)

= Block level

= header and footer match

= payload area 1s aligned, size 1s valid

= no contiguous free blocks unless you defer coalescing
= List level

= next/prev pointers in consecutive free blocks are consistent

= no allocated blocks in free list, all free blocks are in the free list

= no cycles in free list unless you use a circular list

= cach segregated list contains only blocks in the appropriate size class
= Heap level

= all blocks between heap boundaries, correct sentinel blocks (if used)
= Add your own invariants (e.g. address order)

23

Carnegie Mellon

Heap Checker Live Demo

24

Carnegie Mellon

Fun with Git

Carnegie Mellon

When has this not happened to you...

= My cache simulator works!!!
= ... except for one bug I can’t figure out.

m [wanna try to change it, but I'm afraid I won’t be able to go backtrack
to what I had easily.

m [wanna try a few different ways to do my simulator, but I wanna hang
on to the implementation for each.

m Oh no! Now my code doesn’t compile and I can’t revert back to my
almost-perfect code I had earlier!

26

Carnegie Mellon

Amolaks-MacBook-Pro:malloc-1lab ammlakiﬂagi$ ls

malloc.c

27

Carnegie Mellon

// This 1is my entire implementation of malloc
// It's really fast!

int main() {
return ©:

}

Carnegie Mellon

Let’s keep track of this with git

cd malloc-lab

git it

git add malloc.c

git commit

Enter commit message in vim, save with :wq
git log

29

Carnegie Mellon

commit 9fdd17670332e46a95254ce59d05ecd4beabfOecd
Author: Amolak Nagi <amolak nagi@Amolaks-MBP.fios-router.home>
Date: Fri Nov 4 22:30:31 2016 -0400

Start of my project

30

What just happened?

® git init
o I initialized git to keep track of stuff from this folder
e ¢it add malloc.c
o Hey git, please keep track of this file for me.
e git commit
o Let’s mark the state of my code as it 1s right now, so I can always
come back to it later.

e Now, how can I make more changes over time? Let’s commit a few
more messages.

31

Carnegie Mellon

“I returned a value of 2 instead.”

// This 1is my entire implementation of malloc
// It's really fast!

int main() {
int x =4/ 2;
return x;

32

Carnegie Mellon

“This time I divided by 0.”

// This is my entire implementation of malloc
// It's really fast!

int main() {

// I think dividing by 0 makes sense to me.
int x =4/ 0;
Feturn x;

Carnegie Mellon

commit 734c35a8e6519670841db34e1b02310301855a35
Author: Amolak Nagi <amolak nagi@Amolaks-MBP.fios-router.home>
Date: Fri Nov 4 22:38:28 2016 -0400

This time I divided by 0.

I divided by 0 because that's the trick for segmented lists.

commit 2f67¢c30df213b99e8c020ec5719533¢c758bb99c9

Author: Amolak Nagi <amolak nagi@Amolaks-MBP.fios-router.home>
Date: Fri Nov 4 22:37:20 2016 -0400

I returned a value of 2 instead.

For me, it made more sense to return a value of 2 instead of © because reasons.
commit 9fdd17670332e46a95254ce59d05ecd46eabflecd
Author: Amolak Nagi <amolak nagi@Amolaks-MBP.fios-router.home>

Date: Fri Nov 4 22:30:31 2016 -0400

Start of my project

Carnegie Mellon

git log --oneline

/34c35a This time I divided by 0.
2f67/c30 I returned a value of 2 instead.

9fddl/76 Start of my project

35

Carnegie Mellon

Maybe I shouldn’t have divided by O...

Amolaks-MacBook-Pro:malloc-lab amolak nagi$ git log --oneline
734c35a This time I divided by 0.

2f67¢c30 I returned a value of 2 1instead.
9fdd176 Start of my project

36

Carnegie Mellon

Maybe I shouldn’t have divided by O...

Amolaks-MacBook-Pro:malloc-lab amolak nagi$ git log --oneline
734c35a This time I divided by 0.
2f67¢c30 I returned a value of 2 instead.

9fdd176 Start of my project

Amolaks-MacBook-Pro:malloc-lab amolak _nagi$ git checkout -b oldCode 2f67c30
Switched to a new branch 'oldCode'

37

Carnegie Mellon

Maybe I shouldn’t have divided by O...

Amolaks-MacBook-Pro:malloc-lab amolak nagi$ git log --oneline
734c35a This time I divided by 0.
2f67¢30 I returned a value of 2 instead.
9fdd176 Start of my project
Amolaks-MacBook-Pro:malloc-lab amolak _nagi$ git checkout -b oldCode 2f67c30
Switched to a new branch 'oldCode'
Amolaks-MacBook-Pro:malloc-lab amolak nagi$ git branch

master
Amolaks-MacBook-Pro:malloc-1lab amolak nagi$ git log --oneline
2f67¢30 I returned a value of 2 instead.
9fddl76 Start of my project

Carnegie Mellon

What just happened?

734c35a
Initial

2f67¢30
4/2

9fdd176
master 4/0

39

Carnegie Mellon

git checkout -b oldState 2167¢30

734c35a
Initial

2f67¢30 oldState
4 /2

9fdd176
master 4/0

40

Carnegie Mellon

git commit -m “Improve”

If | work on the oldState branch,
my master code and previous
commits will always be there!

734c35a
Initial

2f67®
i

9fdd176
master 4/0

4ca3dtw
Improve

oldState

41

Carnegie Mellon

This could be very helpful...

734c35a 18ca3tg implicitList
Initial Implicit 1
I can work on
different malloc
2f67c30 4caldstw oldState implementations
4/2 Improve without every
worrying about
losing progress!
9fdd176 081da3f explicitList
master 4/0 Explicit

42

Git TLDR

e git 1s a version control tool, lets you keep track of different versions
of your code and go to different ones accordingly.

e git can be helpful to keep track of different branches of your code (i.e.
different malloc implementations) without worrying about switching
or backtracking to older code.

e git goes MUCH deeper than this, we encourage you to explore it as
pretty much everyone uses it.

e git 1s here to make your life easier, it’s completely optional.
43

Carnegie Mellon

Warning!!!

Ever heard of Github or Bitbucket? Git lets you post code online.
DO NOT POST ANY 213 CODE TO GITHUB!!!
DO NOT USE ANY 213 CODE FROM GITHUB!!!
DO NOT POST ANY 213 CODE TO ANY ONLINE REPOSITORY!!!
o Even if it’s 1n a private repo, it may not stay private forever
m Student account/subscription expires, etc.
o It’s not worth the risk/potential AIVs!

44

Carnegie Mellon

Lastly...

How to Ask for Help

= Be specific about what the problem is, and how to cause it
=« BAD: “My program segfaults.”
= GOOD: “On the third free() in trace 4, I get an invalid pointer in my free
list while coalescing memory.”
= Try to figure out which part of the trace file triggers the problem
= What sequence of events do you expect around the time of the error?
What part of the sequence has already happened?
= Have you written your mm_checkheap function, and 1s it working?
= We WILL ask to see it!
= Practice asking your rubber duck about the problem (see Recitation 9)

before asking a TA or instructor

46

If You Get Stuck

a Please read the writeup!

= CS:APP Chapter 9

= View lecture notes and course FAQ at http://www.cs.cmu.edu/~213
= Office hours Sunday through Thursday 5:00-9:00pm in WeH 5207

= Post a private question on Piazza
= Obtain a rubber duck....

47

http://www.cs.cmu.edu/~213

APPENDIX

48

Carnegie Mellon

Internal Fragmentation

= Occurs when the payload is smaller than the block size
= due to alignment requirements
= due to management overhead
= as the result of a decision to use a larger-than-necessary block

= Depends on the current allocations, 1.e. the pattern of previous requests

49

Carnegie Mellon

Internal Fragmentation

= Due to alignment requirements — the allocator doesn't know how you'll

be using the memory, so it has to use the strictest alignment:
s vold *ml = malloc (13); void *m2 = malloc(1l1l);
= m1 and m2 both have to be aligned on 8-byte boundaries
= Due to management overhead (each cell 1s 2 bytes):

50

Carnegie Mellon

External Fragmentation

= Occurs when the total free space is sufficient, but no single free block
1s large enough to satisfy the request
= Depends on the pattern of future requests

= thus difficult to predict, and any measurement is at best an estimate
= Less critical to malloc traces than internal fragmentation

p5 = malloc(4)

free(p1)

p6 = malloc(5) Oops! Seven bytes available, but not in one chunk....

91

Carnegie Mellon

C: Pointer Arithmetic

= Adding an integer to a pointer 1s different from adding two integers
= The value of the integer 1s always multiplied by the size of the type that
the pointer points at
=« Example:
« type_a "ptr=..,;
« type_a *ptr2 = ptr + a;
= 1s really computing
m ptr2 = ptr + (a * sizeof(type a));
= 1.6. lea (ptr, a, sizeof (type a)), ptr2
= Pointer arithmetic on void* is undefined (what's the size of a void?)

52

C: Pointer Arithmetic

» Int *ptr = (int*)0x152130;
int *ptr2 = ptr + 1;

= char *ptr = (char*)0x152130;
char *ptr2 = ptr + 1;

= char *ptr = (char*)0x152130;
vold *ptr2 = ptr + 1;

» char *ptr = (char*)0x152130;
char *p2 = ((char*) (((int*)ptr)+1));

53

C: Pointer Arithmetic

» Int *ptr = (int*)0x152130;
int *ptr2 = ptr + 1; //ptr21s0x152134

= char *ptr = (char*)0x152130;
char *ptr2 = ptr + 1; //ptr21s 0x152131

= char *ptr = (char*)0x152130;
void *ptr2 = ptr + 1; //ptr2isstill 0x152131

» char *ptr = (char*)0x152130;
char *p2 = ((char*) (((int*)ptr)+1));//p21s0x152134

o4

If We Can't Find a Usable Free Block

= Need to extend the heap
= use the brk () or sbrk () system calls

, stack
« in Malloclab, use mem sbrk () u
= sbrk (requested bytes)
allocates requested bytes of ﬁ
space and returns pointer to start - current brk
= sbrk (0) returns a pointer to the end pointer
heap
of the current heap
= For speed, extend th§ heap ‘py a little Unitialized data
more than you need immediately oed data
= use what you need out of the new orogram code
space, add the rest as a free block
0

95

Carnegie Mellon

Dynamic Memory Allocation: Example

p1 = malloc(3)

p2 = malloc(7)

p3 = malloc(5)

free(p2)

p4 = malloc(4)

p5 = malloc(4)

56

Carnegie Mellon

The Memory-Block Information Data Structure

= Requirements:
= tells us where the blocks are, how big they are, and whether they are free
= must be able to update the data during callsto malloc and free
= need to be able to find the next free block which is a “good enough fit”
for a given payload
= need to be able to quickly mark a block as free or allocated
= need to be able to detect when we run out of blocks
= what do we do in that case?
= The only memory we have is what we're handing out
= ...but not all of it needs to be payload! We can use part of it to store the
block information.

o7

Carnegie Mellon

Finding a Free Block

= First Fit

= search from beginning, use first block that's big enough

= linear time in total number of blocks

= can cause small “splinters” at beginning of list
= Next Fit

= start search from where previous search finished

= often faster than first fit, but some research suggests worse fragmentation
= Best Fit

= search entire list, use smallest block that's big enough

= keeps fragments small (less wasted memory), but slower than first fit

58

Carnegie Mellon

Freeing Blocks

= Simplest implementation is just clearing the “allocated” flag
= but leads to external fragmentation

4 4 4 4 8
free(p) p

4 4 4 4 8
malloc(8) Oops!

59

Carnegie Mellon

Coalescing Memory

= Combine adjacent blocks if both are free
= implicit lists: look forward and backward using block sizes
= casily deferred until next allocation request (coalesce while scanning blocks)
= explicit lists: look forward and backward using block sizes, not next/prev
= segregated lists: look forward and backward using block sizes, then
= use the size of the coalesced block to determine the proper list
= insert into list using the insertion policy (LIFO, address-ordered, etc.)

= Four cases:

Allocated Allocated Free Free

block to
be freed

Allocated Free Allocated Free

60

Carnegie Mellon

Insertion Policy

= Where do you put a newly-freed block in the free list?

= LIFO (last-in-first-out) policy
= add to the beginning of the free list
= pro: simple and constant time (very fast)
block->next = freelist; freelist = block;
= con: studies suggest fragmentation 1s worse

= Address-ordered policy
= insert blocks so that free list blocks are always sorted by address
addr(prev) < addr(curr) < addr(next)
= pro: lower fragmentation than LIFO
= con: requires search

61

Carnegie Mellon

C: Pointer Casting

= Notation: (b*) a “casts” a to be of type b*
= Casting a pointer doesn't change the bits!
= type a *ptr a=...; type b *ptr b=(type b*)ptr a;
makes ptr_a and ptr_b contain 1dentical bits
= But it does change the behavior when dereferencing
= because we interpret the bits differently
= Can cast type a* to long/unsigned long and back
= pointers are really just 64-bit numbers
= such casts are important for malloclab
= but be careful — this can easily lead to hard-to-find errors

62

Carnegie Mellon

Cycle Checking: Hare and Tortoise Algorithm

. . . H
= This algorithm detects cycles in X X X X X
linked lists : < — =D
= Set two pointers, called “hare” H

and “tortoise”, to the beginning CH O H
of the list S—T Q

= During each iteration, move
“hare” forward by two nodes,

“tortoise” by one node ~—T Q

= 1f “tortoise” reaches the end of
the list, there 1s no cycle

o 1f tortoise” equals “hare”, the ~ T\ _)
list has a cycle

Carnegie Mellon

Cycle Checking: Hare and Tortoise Algorithm

= This algorithm detects cycles in . X X X X X
linked lists - < — =D
= Set two pointers, called “hare” ’
and “tortoise”, to the beginning . . .
of the list Hare might go
= During each iteration, move :‘]Lolt‘f;li ?iﬁ('ees ’
“hare” forward by two nodes, before meeting
“tortoise” by one node ro

= 1f “tortoise” reaches the end of
the list, there 1s no cycle

= if “tortoise” equals “hare”, the S T_)

list has a cycle

Carnegie Mellon

Debugging Tip: Using the Preprocessor

= Use conditional compilation with #if or #ifdef to easily turn debugging
code on or off
#ifdef DEBUG

define DBG PRINTF(...) fprintf(stderr, VA ARGS)
define CHECKHEAP (verbose) mm_ checkheap (verbose)
#else

define DBG PRINTF(...)
define CHECKHEAP (verbose)
#endif /* DEBUG */

void free(void *p)

{
DBG PRINTF (“freeing %1x\n”, (long)p);
CHECKHEAP (1) ;

65

Debugging Tip: GDB

= Use breakpoints / conditional breakpoints
=« break {address} if {condition}
= Use watchpoints
= like breakpoints, but stop the program when the watched expression
changes or location 1s written

= watch {expression} watch block->next
= break any time the expression changes value; can be extremely slow!
= watch -1 {expression} watch -1 *0x15213

= evaluate the expression and watch the memory location at that address
= program runs at full speed if GDB can set a hardware watchpoint

= rwatch to stop on reading a location, awatch to stop on any access

66

