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Agenda

■ Conceptual Overview
■ Implicit List
■ Explicit List
■ Splitting, coalescing

■ Advanced debugging with GDB
■ Fun GDB tricks
■ Writing a good heap checker

■ Basic version control with Git
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Download this handout for fun & profit

■ Presentation on course website
■ See “schedule”

■ https://cs.cmu.edu/~213/activities/mallocbootcamp.tar

https://cs.cmu.edu/~213/activities/mallocbootcamp.tar
https://cs.cmu.edu/~213/activities/mallocbootcamp.tar
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Conceptual Outline
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Dynamic Memory Allocation
■ Used when

■ we don't know at compile-time how much memory we will need
■ when a particular chunk of memory is not needed for the entire run

■ lets us re-use that memory for storing other things
■ Important terms:

■ malloc/calloc/realloc/free
■ sbrk
■ payload
■ fragmentation (not covered here)
■ Splitting / coalescing
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Memory-Block Lists
■ Common Types

■ Implicit List
■ Root -> block1 ... block2 ... block3 ...

■ Explicit List
■ Root -> free-block 1 -> free-block 2 -> free-block 3 -> ...

■ Segregated List (not covered here)
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Tracking Blocks: Implicit List
■ Use the length field (which is needed anyway) to find the next block
■ Scan finds both allocated and free blocks
■ Standard trick to save memory – use low bit of length field to store 

allocation status
■ alignment requirements mean that lowest bit of the length must always be 

zero

4 1 8 1 4 0 8 1

length

in-use
payload plus padding

root
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Tracking Blocks: Explicit List
■ Maintain a list of free blocks instead of all blocks

■ means we need to store forward/backward pointers, not just sizes
■ we only track free blocks, so we can store the pointers in the payload area!
■ need to store size at end of block too, for coalescing

size 1

payload and
padding

size 0

unused

next
prev

allocated block free block

size 1 size 0
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next
prev

next
prev

Splitting a Block
■ If the block we find is larger than we 

need, split it and leave the remainder 
for a future allocation

■ implicit lists: correct the block sizes 
of the two parts

■ explicit lists: correct previous and 
next pointers

■ When would we not split a block?

n 0

n 0

m 1

n-m 0

m 1

payload

n-m 0



Carnegie Mellon

 
10

next
prev

Coalescing Memory

next
prev

m1 0

m2 0

m2 0

m1 0

n 1

n 1

next
prev

m1 0

m2 1

m2 1

m1 0

n 1

n 1

payload

next
prev

n+m1 0

m2 1

m2 1

n+m1 0

payload

next
prev

n+m1+m2 0

n+m1+m2 0
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Design Considerations
■ Finding a matching free block

■ First fit vs. next fit vs. best fit
■ continue searching for a closer fit after finding a big-enough free block?

■ Free block ordering
■ LIFO, FIFO, or address-ordered?

■ When to coalesce
■ while freeing a block or while searching for free memory?

■ How much memory to request with sbrk()
■ larger requests save time in system calls but increase maximum memory 

use
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Preventing Errors
■ Good coding practices can make your code less error-prone
■ Plan what each function does before writing it

■ consider edge cases – block at start/end of list, single item on list, etc.
■ draw pictures to help you visualize linked lists, memory layout, etc.

■ Document your code as you write it
■ Encapsulate common operations (e.g. macro to access block header)
■ Check for common errors:

■ dereferencing invalid pointers / reading uninitialized memory
■ overwriting memory
■ freeing blocks multiple times (or not at all) / referencing freed blocks
■ incorrect pointer arithmetic
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Debugging: GDB & The Almighty Heap Checker
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...except it’s not.
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Better than printf: using GDB
■ Use GDB to determine where segfaults happen!
■ gdb mdriver will open the malloc driver in gdb

■ Type run and your program will run until it hits the segfault!
■ layout split - display GDB “text user interface”

■ Way prettier than normal GDB command prompt
■ Can sometimes get messed up by programs that print things
■ refresh - redraws screen

■ step - step to the next line of code, stepping into functions if necessary
■ next - same as above, but steps over functions instead
■ finish - continue execution until the end of the current function, then break
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Using GDB - Fun with frames
■ backtrace - print call stack up until current function

■ backtrace full - print local variables in each stack frame

(gdb) backtrace
#0  find_fit (...)
#1  mm_malloc (...)
#2  0x0000000000403352 in eval_mm_valid (...)
#3  run_tests (...)
#4  0x0000000000403c39 in main (...)

■ frame 1 - switch to mm_malloc’s stack frame
■ Good for inspecting local variables of calling functions
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Using GDB - Setting breakpoints/watchpoints
■ break mm_checkheap - break on function “mm_checkheap”

■ break mm.c:25 - break on line 25 of file “mm.c” - very useful!
■ break find_fit if size == 24 - break on function “find_fit” if the 

local variable “size” in the malloc function is equal to 24
■ See mm-baseline.c in malloc handout

■ watch heap_listp - break if the value of “heap_listp” changes
■ watch block == 0x80000010 - break if “block” is equal to this value
■ watch *0x15213 - watch for changes at memory location 0x15213

■ Can be very slow
■ rwatch <thing> - stop on reading a memory location
■ awatch <thing> - stop on any memory access
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GDB Live Demo
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Heap Checker
■ int mm_checkheap(int verbose);
■ critical for debugging

■ write this function early!
■ update it when you change your freelist implementation
■ check all heap invariants (next slide), make sure you haven't lost track of any 

part of your heap
■ check should pass if and only if the heap is truly well-formed

■ should only generate output if a problem is found, to avoid cluttering up your 
program's output

■ meant to be correct, not efficient
■ call before/after major operations when the heap should be well-formed
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Heap Invariants (Non-Exhaustive)
■ Block level

■ What are some things which should always be true of every block in the 
heap?
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Heap Invariants (Non-Exhaustive)
■ Block level

■ header and footer match
■ payload area is aligned, size is valid
■ no contiguous free blocks unless you defer coalescing

■ List level
■ What are some things which should always be true of every element of a 

free list?
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Heap Invariants (Non-Exhaustive)
■ Block level

■ header and footer match
■ payload area is aligned, size is valid
■ no contiguous free blocks unless you defer coalescing

■ List level
■ next/prev pointers in consecutive free blocks are consistent
■ no allocated blocks in free list, all free blocks are in the free list
■ no cycles in free list unless you use a circular list
■ each segregated list contains only blocks in the appropriate size class

■ Heap level
■ What are some things that should be true of the heap as a whole?
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Heap Invariants (Non-Exhaustive)
■ Block level

■ header and footer match
■ payload area is aligned, size is valid
■ no contiguous free blocks unless you defer coalescing

■ List level
■ next/prev pointers in consecutive free blocks are consistent
■ no allocated blocks in free list, all free blocks are in the free list
■ no cycles in free list unless you use a circular list
■ each segregated list contains only blocks in the appropriate size class

■ Heap level
■ all blocks between heap boundaries, correct sentinel blocks (if used)

■ Add your own invariants (e.g. address order)
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Heap Checker Live Demo
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Fun with Git
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When has this not happened to you...

■ My cache simulator works!!!
■ … except for one bug I can’t figure out.

■ I wanna try to change it, but I’m afraid I won’t be able to go backtrack 
to what I had easily.

■ I wanna try a few different ways to do my simulator, but I wanna hang 
on to the implementation for each.

■ Oh no! Now my code doesn’t compile and I can’t revert back to my 
almost-perfect code I had earlier!
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Let’s keep track of this with git

● cd malloc-lab
● git init
● git add malloc.c
● git commit
● Enter commit message in vim, save with :wq
● git log



Carnegie Mellon

 
30



Carnegie Mellon

 
31

What just happened?

● git init
○ I initialized git to keep track of stuff from this folder

● git add malloc.c
○ Hey git, please keep track of this file for me.

● git commit
○ Let’s mark the state of my code as it is right now, so I can always 

come back to it later.

● Now, how can I make more changes over time? Let’s commit a few 
more messages.



Carnegie Mellon

 
32

“I returned a value of 2 instead.”



Carnegie Mellon

 
33

“This time I divided by 0.”
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git log
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git log --oneline
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Maybe I shouldn’t have divided by 0...
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Maybe I shouldn’t have divided by 0...
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Maybe I shouldn’t have divided by 0...
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734c35a
Initial

master

2f67c30
4 / 2

9fdd176
4 / 0

What just happened?
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734c35a
Initial

master

2f67c30
4 / 2

9fdd176
4 / 0

git checkout -b oldState 2f67c30

oldState
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734c35a
Initial

master

2f67c30
4 / 2

9fdd176
4 / 0

git commit -m “Improve”

oldState4ca35tw
Improve

If I work on the oldState branch, 
my master code and previous 
commits will always be there!
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734c35a
Initial

master

2f67c30
4 / 2

9fdd176
4 / 0

This could be very helpful...

oldState4ca35tw
Improve

081da3f
Explicit

18ca3tg
Implicit 1

implicitList

explicitList

I can work on 
different malloc 
implementations 

without every 
worrying about 
losing progress!
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Git TLDR
● git is a version control tool, lets you keep track of different versions 

of your code and go to different ones accordingly.

● git can be helpful to keep track of different branches of your code (i.e. 
different malloc implementations) without worrying about switching 
or backtracking to older code.

● git goes MUCH deeper than this, we encourage you to explore it as 
pretty much everyone uses it.

● git is here to make your life easier, it’s completely optional.
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Warning!!!

● Ever heard of Github or Bitbucket? Git lets you post code online.
● DO NOT POST ANY 213 CODE TO GITHUB!!!
● DO NOT USE ANY 213 CODE FROM GITHUB!!!
● DO NOT POST ANY 213 CODE TO ANY ONLINE REPOSITORY!!!

○ Even if it’s in a private repo, it may not stay private forever
■ Student account/subscription expires, etc.

○ It’s not worth the risk/potential AIVs!



Carnegie Mellon

 

Lastly...



Carnegie Mellon

 
46

How to Ask for Help
■ Be specific about what the problem is, and how to cause it

■ BAD: “My program segfaults.”
■ GOOD: “On the third free() in trace 4, I get an invalid pointer in my free 

list while coalescing memory.”
■ Try to figure out which part of the trace file triggers the problem
■ What sequence of events do you expect around the time of the error?  

What part of the sequence has already happened?
■ Have you written your mm_checkheap function, and is it working?

■ We WILL ask to see it!
■ Practice asking your rubber duck about the problem (see Recitation 9) 

before asking a TA or instructor
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If You Get Stuck

■  Please read the writeup!
■ CS:APP Chapter 9
■ View lecture notes and course FAQ at http://www.cs.cmu.edu/~213
■ Office hours Sunday through Thursday 5:00-9:00pm in WeH 5207
■ Post a private question on Piazza
■ Obtain a rubber duck....

http://www.cs.cmu.edu/~213


Carnegie Mellon

 
48

APPENDIX
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Internal Fragmentation
■ Occurs when the payload is smaller than the block size

■ due to alignment requirements
■ due to management overhead
■ as the result of a decision to use a larger-than-necessary block

■ Depends on the current allocations, i.e. the pattern of previous requests
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Internal Fragmentation
■ Due to alignment requirements – the allocator doesn't know how you'll 

be using the memory, so it has to use the strictest alignment:
■ void *m1 = malloc(13); void *m2 = malloc(11);
■ m1 and m2 both have to be aligned on 8-byte boundaries

■ Due to management overhead (each cell is 2 bytes): 

l e n 1 p a y l o a d 1 l e n 2 p a y l o a d 2
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External Fragmentation
■ Occurs when the total free space is sufficient, but no single free block 

is large enough to satisfy the request
■ Depends on the pattern of future requests

■ thus difficult to predict, and any measurement is at best an estimate
■ Less critical to malloc traces than internal fragmentation

p5 = malloc(4)

free(p1)

p6 = malloc(5) Oops!  Seven bytes available, but not in one chunk....
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C: Pointer Arithmetic
■ Adding an integer to a pointer is different from adding two integers
■ The value of the integer is always multiplied by the size of the type that 

the pointer points at
■ Example:

■ type_a *ptr = ...;
■ type_a *ptr2 = ptr + a;

■ is really computing
■ ptr2 = ptr + (a * sizeof(type_a));
■ i.e.  lea (ptr, a, sizeof(type_a)), ptr2

■ Pointer arithmetic on void* is undefined (what's the size of a void?)
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C: Pointer Arithmetic
■ int *ptr = (int*)0x152130;
int *ptr2 = ptr + 1; 
 

■ char *ptr = (char*)0x152130;
char *ptr2 = ptr + 1;  
 

■ char *ptr = (char*)0x152130;
void *ptr2 = ptr + 1; 
 
■ char *ptr = (char*)0x152130;
char *p2 = ((char*)(((int*)ptr)+1)); 
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C: Pointer Arithmetic
■ int *ptr = (int*)0x152130;
int *ptr2 = ptr + 1;  // ptr2 is 0x152134
 

■ char *ptr = (char*)0x152130;
char *ptr2 = ptr + 1;  // ptr2 is 0x152131
 

■ char *ptr = (char*)0x152130;
void *ptr2 = ptr + 1;  // ptr2 is still 0x152131
 
■ char *ptr = (char*)0x152130;
char *p2 = ((char*)(((int*)ptr)+1));// p2 is 0x152134 
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If We Can't Find a Usable Free Block
■ Need to extend the heap

■ use the brk() or sbrk() system calls
■ in Malloclab, use mem_sbrk()

■ sbrk(requested_bytes) 
allocates requested_bytes of 
space and returns pointer to start

■ sbrk(0) returns a pointer to the end 
of the current heap

■ For speed, extend the heap by a little 
more than you need immediately

■ use what you need out of the new 
space, add the rest as a free block

program code
initialized data
unitialized data

heap

stack

current brk
pointer

0
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Dynamic Memory Allocation: Example

p1 = malloc(3)

p2 = malloc(7)

p3 = malloc(5)

free(p2)

p4 = malloc(4)

p5 = malloc(4)
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The Memory-Block Information Data Structure
■ Requirements:

■ tells us where the blocks are, how big they are, and whether they are free
■ must be able to update the data during calls to malloc and free
■ need to be able to find the next free block which is a “good enough fit” 

for a given payload
■ need to be able to quickly mark a block as free or allocated
■ need to be able to detect when we run out of blocks

■ what do we do in that case?
■ The only memory we have is what we're handing out

■ ...but not all of it needs to be payload!  We can use part of it to store the 
block information.
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Finding a Free Block
■ First Fit

■ search from beginning, use first block that's big enough
■ linear time in total number of blocks
■ can cause small “splinters” at beginning of list

■ Next Fit
■ start search from where previous search finished
■ often faster than first fit, but some research suggests worse fragmentation

■ Best Fit
■ search entire list, use smallest block that's big enough
■ keeps fragments small (less wasted memory), but slower than first fit
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Freeing Blocks
■ Simplest implementation is just clearing the “allocated” flag

■ but leads to external fragmentation

4 4 4 4 8

4 4 4 4 8

root

pfree(p)

malloc(8) Oops!
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Coalescing Memory
■ Combine adjacent blocks if both are free

■ implicit lists: look forward and backward using block sizes
■ easily deferred until next allocation request (coalesce while scanning blocks)

■ explicit lists: look forward and backward using block sizes, not next/prev
■ segregated lists: look forward and backward using block sizes, then

■ use the size of the coalesced block to determine the proper list
■ insert into list using the insertion policy (LIFO, address-ordered, etc.)

■ Four cases:

Allocated

Allocated

block to
be freed

Allocated

Free

Free

Allocated

Free

Free
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Insertion Policy
■ Where do you put a newly-freed block in the free list?

■ LIFO (last-in-first-out) policy
■ add to the beginning of the free list
■ pro: simple and constant time (very fast)
block->next = freelist; freelist = block;
■ con: studies suggest fragmentation is worse

■ Address-ordered policy
■ insert blocks so that free list blocks are always sorted by address
addr(prev) < addr(curr) < addr(next)
■ pro: lower fragmentation than LIFO
■ con: requires search
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C: Pointer Casting
■ Notation: (b*)a “casts” a to be of type b*
■ Casting a pointer doesn't change the bits!

■ type_a *ptr_a=...; type_b *ptr_b=(type_b*)ptr_a;  
makes ptr_a and ptr_b contain identical bits

■ But it does change the behavior when dereferencing
■ because we interpret the bits differently

■ Can cast type_a* to long/unsigned long and back
■ pointers are really just 64-bit numbers
■ such casts are important for malloclab
■ but be careful – this can easily lead to hard-to-find errors
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Cycle Checking: Hare and Tortoise Algorithm
■ This algorithm detects cycles in 

linked lists
■ Set two pointers, called “hare” 

and “tortoise”, to the beginning 
of the list

■ During each iteration, move 
“hare” forward by two nodes, 
“tortoise” by one node

■ if “tortoise” reaches the end of 
the list, there is no cycle

■ if “tortoise” equals “hare”, the 
list has a cycle

H

T
H

H

H

T

T

T
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Cycle Checking: Hare and Tortoise Algorithm
■ This algorithm detects cycles in 

linked lists
■ Set two pointers, called “hare” 

and “tortoise”, to the beginning 
of the list

■ During each iteration, move 
“hare” forward by two nodes, 
“tortoise” by one node

■ if “tortoise” reaches the end of 
the list, there is no cycle

■ if “tortoise” equals “hare”, the 
list has a cycle

H

T
H

H

H

T

T

T

Hare might go
around cycle
multiple times

before meeting
Tortoise
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Debugging Tip: Using the Preprocessor
■ Use conditional compilation with #if or #ifdef to easily turn debugging 

code on or off
#ifdef DEBUG
# define DBG_PRINTF(...) fprintf(stderr, __VA_ARGS__)
# define CHECKHEAP(verbose) mm_checkheap(verbose)
#else
# define DBG_PRINTF(...)
# define CHECKHEAP(verbose)
#endif /* DEBUG */

void free(void *p)
{
   DBG_PRINTF(“freeing %lx\n”,(long)p);
   CHECKHEAP(1);
   ...
}
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Debugging Tip: GDB
■ Use breakpoints / conditional breakpoints

■ break {address} if {condition}
■ Use watchpoints

■ like breakpoints, but stop the program when the watched expression 
changes or location is written

■ watch {expression}           watch block->next
■ break any time the expression changes value; can be extremely slow!

■ watch -l {expression}        watch -l *0x15213
■ evaluate the expression and watch the memory location at that address
■ program runs at full speed if GDB can set a hardware watchpoint

■ rwatch to stop on reading a location, awatch to stop on any access


