Model 010: Representing Negative Values in Binary

1. Non-negative -0

Negative - 1
2. 3: 011, -8: 11000

Bits	Most Positive	Most Negative
1	0	-1
2	1	-2
3	3	-4
4	7	-8

Model 1: Bit-Level Operations
1.

Dec	Bin	X \& 0x1
-2	1110	0000
-1	1111	0001
0	0000	0000
1	0001	0001
2	0010	0000

2. The odd, non-zero numbers.
3.

Model 2: Logical Operations

1. $(0 \times 3 \& \& 0 x C)->0 \times 1$ (0×3 \& $0 x C$) $->0 \times 0$
2.

Model 3: Shifts, Multiplication and Division

1. 011b, 3 decimal
2. -1
3. $-2-1110$
>>1 either 1111 (-1) or 0111 (7)
4. $0 x A->0 \times 5$
5. rem $=x \& 0 x 1$;
$x=x \gg 1$;
Model 1: What if floating point?
6. 1.5213 e 4

Model 2: Binary Scientific Notation

1. $1.0111^{*} 2^{\wedge} 4$
$1.0111^{*} 2^{\wedge} 2$
$1.0111^{*} 2^{\wedge 1}$
$1.0111^{*} 2^{\wedge} 0$
2. 1

Model 3: IEEE Notation

1. The sign bit. The number is negative.
2. 0111b
3. With no bias, the smallest value with exponent 0×1 would be 2 , which is greater than 1 .
4. $E=\exp -127=0 \times 1, \exp =128$

Model 4: Extreme Exponents

1. 1.0000
2. No
3. Two, one positive and one negative
4. 0.0001

Model 5: Addition

1. $1.0011^{*} 2^{\wedge} 4$
2. 4 bits
3.

Model 6: Simple Floating-point

1. $15.5(01101111), 0(00000000)$
2. $7,0 \mathrm{~b} 111$
3. $0 \times 5 \mathrm{C}+0 \times 43=7+2.375=9.375=0 \times 63(9.5)$
4. $0 \times 5 \mathrm{C} * 0 \times 43=7$ * $2.375=16.625=0 \times 70(+$ inf $)$

Model I: Bit Puzzle

1. (assume unsigned arg)
unsigned sign = arg >> 31;
unsigned exp $=(\arg \gg) \&$;
unsigned frac = arg \& ;
2.
3.
4.

Model R: Review

1. Yes. $2^{\wedge} 24$
2. Does not terminate.
