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Agenda
 News
 Processes

 Overview
 Important functions

 Signals
 Overview
 Important functions
 Race conditions

 I/O Intro
 Shell Lab General
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News
 Cachelab grades are out

 Autolab->Cache Lab->View Handin History
 Look for the latest submission
 Click 'View Source' to read our annotations/comments

 Midterm grades were good
 Check answers to identify possible errors with the rubric

 Email us with concerns

 Shell lab out, due Tuesday 10/29 11:59PM
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Processes
 An instance of an executing program
 Abstraction provided by the operating system
 Properties

 Private memory
− No two processes share memory, registers, etc.

 Some state is shared, such as open file table
 Have a process ID and process group ID

− pid,pgid
 Become zombies when finished running
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Processes – Important Functions
 exit (int n)

 Immediately terminates the process that called it
 Sets return status to n

− Return status is normally the return value of main()
 Leaves a zombie to be reaped by the parent with wait 

or waitpid
 fork()

 Clones the current process
 Returns twice (one in the parent, one in the child)
 Return value in child is 0, child's pid in parent
 Returns -1 in case of failure
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Processes – Important Functions
 execve(char* filename, char** argv, char** environ)

 Replaces current process with a new one
 Does not return (or returns -1 on failure)
 filename is the name of the program to run 
 argv are like the command-line arguments to main for 

the new process
 Environ is the environment variable

− Contains information that affects how various 
processes work

− On shark machines, can get its value by declaring: 
“extern char** environ;”
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Fork/exec – “echo hello world”
extern char** environ;
int main()
{

pid_t result = fork();
printf(“This prints in both the parent and child!\n”);
if (result == 0)
{
    //Execute only in child
    char* cmd = “/bin/echo”;
    char* args[] = {cmd, “hello”,”world”};
    execve(cmd,args,environ);
    printf(“This will only print if execve failed!\n”);
}
else
{
    //Execute only in parent
    printf(“In the parent!\n”);
}

}
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Processes – Important Functions
 waitpid(pid_t pid, int* status, int options)

 Returns when the process specified by pid terminates
 Pid must be a direct child of the invoking process
 Will reap/cleanup the child
 If pid=-1, will wait for any child to die
 Writes information about child's status into status
 Options variable modifies its behavior
 options = WUNTRACED | WNOHANG
 Returns pid of the child it reaped
 Required by parent to kill zombies/free their resources
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Processes – Important Functions
 setpgid(pid_t pid, pit_t pgid)

 Sets the pgid of the given pid
 If pid=0, setpgid is applied to the calling process
 If pgid=0, setpgid uses pgid=pid of the calling process
 Children inherit the pgid of their parents by default
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Process Group Diagram

pid=8
pgid=8

pid=5
pgid=8

pid=500
pgid=8

pid=213
pgid=8

process 5 can reap processes 8 and 213, but not 500.  
Only process 213 can reap process 500.
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Signals
 Basic communication between processes
 Sent several ways  (kill command/function, ctrl-c, ctrl-z)
 Many have default behaviors

 SIGINT,SIGTERM will terminate the process
 SIGSTP will suspend the process until it receives SIGCONT
 SIGCHLD is sent from a child to its parent when the child dies or is 

suspended

 Possible to ignore/catch most signals, but some can't
 SIGKILL is unstoppable SIGINT
 SIGSTOP is unstoppable SIGSTP
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Blocked Signals
 Processes can choose to block signals using a signal mask
 While a signal is blocked, a process will still receive the 

signal but keep it pending
 No action will be taken until the signal is unblocked

 Process will only track that it has received a blocked signal, 
but not the number of times it was received
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Signals – Important Functions
 kill(pid_t id, int sig)

 If id positive, sends signal sig to process with pid=id
 If id negative, sends signal sig to all processes with with pgid=-id
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Kill - Process

pid=8
pgid=8

pid=5
pgid=8

pid=500
pgid=8

pid=213
pgid=8

kill() with a positive PID will send the signal only to the 
process with that ID.

kill(8, SIGINT);
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Kill – Process Group

pid=8
pgid=8

pid=5
pgid=8

pid=500
pgid=8

pid=213
pgid=8

kill() with a negative PID will send the signal to all 
processes with that group ID.

kill(-8, SIGINT);
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Signals – Important Functions
 signal(int signum, sighandler_t handler)

 Specifies a handler function to run when signum is received
 sighandler_t means a function which takes in one int argument 

and is void (returns nothing)
 When a signal is caught using the handler,its default behavior is 

ignored
 The handler can interrupt the process at any time, even while 

either it or another signal handler is running
 Control flow of the main program is restored once it's finished 

running
 SIGKILL,SIGSTOP cannot be caught
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Signals – Important Functions
 Sigsetops

 A family of functions used to modify signal sets
 Sigsets correspond sets of signals, which can be used in other 

functions
 http://linux.die.net/man/3/sigsetops
 Remember to pass in the address of the sets, not the sets 

themselves

http://linux.die.net/man/3/sigsetops
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Signals – Important Functions
 sigprocmask(int option, const sigset_t* set, sigset_t 

*oldSet)
 Updates the mask of blocked/unblocked signals using the handler 

signal set
 Blocked signals are ignored until unblocked

− Process only tracks whether it has received a blocked signal, 
not the count

− Getting SIGCHILD 20 times while blocked then unblocking will 
only run its handler once

 option: SIG_BLOCK,SIG_UNBLOCK,SIG_SETMASK
 Signal mask's old value is written into oldSet
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Signals – Important Functions
 sigsuspend(sigset_t *tempMask)

 Temporarily replaces the signal mask of the process with 
tempMask

 Sigsuspend will return once it receives an unblocked signal (and 
after its handler has run)

 Good to stop code execution until receiving a signal
 Once sigsuspend returns, it automatically reverts the process 

signal mask to its old value
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Race Conditions

 Race conditions occur when sequence or timing of events 
are random or unknown

 Signal handlers will interrupt currently running code
 When forking, child or parent may run in different order
 If something can go wrong, it will

 Must reason carefully about the possible sequence of 
events in concurrent programs
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Race Conditions - Signals
int counter = 1;
void handler(int signum)
{

counter--;
}
int main()
{

signal(SIGALRM,handler);
kill(0,SIGALRM);
counter++;
printf(“%d\n”,counter);

}

 Possible outputs?
 What if we wanted to guarantee that the handler executed 

after the print statement?
 Tip: you'll face a similar problem adding/removing jobs in 

Shell Lab...
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Race Conditions – Handler After
int counter = 1;
void handler(int signum)
{

counter--;
}
int main()
{

signal(SIGALRM,handler);
sigset_t alarmset,oldset;
sigemptyset(&alarmset);
sigaddset(&alarmset,SIGALRM);
//Block SIGALRM from triggering the handler
sigprocmask(SIG_BLOCK,&alarmset,&oldset);
kill(0,SIGALRM);
counter++;
printf(“%d\n”,counter);
//Let the pending or incoming SIGALRM trigger the handler
sigprocmask(SIG_UNBLOCK,&alarmset,NULL);

}
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Unix I/O

 All Unix I/O,from network sockets to text files, are based 
on one interface

 Important distinction between file descriptors and open file 
description

 I/O commands such as open will generate an open file 
description and a file descriptor

 A file descriptor is like a pointer to an open file 
description

 Note that the open file table is at the OS-level and 
shared between all processes, while there is one file 
descriptor table per process

 Multiple file descriptors, either from the same or 
different processes, can point to the same OFD
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Unix I/O 

int main()
{

int fd = open(“ab.txt”, O_RDONLY);
char c;
fork();
read(fd,&c,1); //Read one character from the file
printf(“%c\n”,c); //Print the character

}

 Assume the file ab.txt contains “ab”
 What do the file tables look like?
 What's the output?
 What if the process forked before opening the file?
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Shell Lab Tips

 There's a lot of starter code
 Look over it so you don't needlessly repeat work

 Use the reference shell to figure out the shell's behavior
 For instance, the format of the output when a job is stopped

 Be careful of the add/remove job race condition
 Jobs should be removed from the list in the SIGCHILD handler
 But what if the child ends so quickly, the parent hasn't added it 

yet?

 Use sigsuspend, not waitpid, to wait for foreground jobs
 You will lose points for using tight loops (while(1) {}), sleeps to 

wait for the foreground
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Shell Lab Tips

 Shell requires SIGINT and SIGSTP to be fowarded to the 
foreground job (and all its descendants) of the shell

 How could process groups be useful?
 dup2 is a handy function for the last section, I/O 

redirection
 SIGCHILD handler may have to reap multiple children per 

call
 Try actually using your shell and seeing if/where it fails

 Can be easier than looking at the driver output
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