
Carnegie Mellon

1

Processes, Signals, I/O, Shell Lab

15-213: Introduction to Computer
Systems
Recitation 9: 10/21/2013

Tommy Klein
Section B

Carnegie Mellon

2

Agenda
 News
 Processes

 Overview
 Important functions

 Signals
 Overview
 Important functions
 Race conditions

 I/O Intro
 Shell Lab General

Carnegie Mellon

3

News
 Cachelab grades are out

 Autolab->Cache Lab->View Handin History
 Look for the latest submission
 Click 'View Source' to read our annotations/comments

 Midterm grades were good
 Check answers to identify possible errors with the rubric

 Email us with concerns

 Shell lab out, due Tuesday 10/29 11:59PM

Carnegie Mellon

4

Processes
 An instance of an executing program
 Abstraction provided by the operating system
 Properties

 Private memory
− No two processes share memory, registers, etc.

 Some state is shared, such as open file table
 Have a process ID and process group ID

− pid,pgid
 Become zombies when finished running

Carnegie Mellon

5

Processes – Important Functions
 exit (int n)

 Immediately terminates the process that called it
 Sets return status to n

− Return status is normally the return value of main()
 Leaves a zombie to be reaped by the parent with wait

or waitpid
 fork()

 Clones the current process
 Returns twice (one in the parent, one in the child)
 Return value in child is 0, child's pid in parent
 Returns -1 in case of failure

Carnegie Mellon

6

Processes – Important Functions
 execve(char* filename, char** argv, char** environ)

 Replaces current process with a new one
 Does not return (or returns -1 on failure)
 filename is the name of the program to run
 argv are like the command-line arguments to main for

the new process
 Environ is the environment variable

− Contains information that affects how various
processes work

− On shark machines, can get its value by declaring:
“extern char** environ;”

Carnegie Mellon

7

Fork/exec – “echo hello world”
extern char** environ;
int main()
{

pid_t result = fork();
printf(“This prints in both the parent and child!\n”);
if (result == 0)
{
 //Execute only in child
 char* cmd = “/bin/echo”;
 char* args[] = {cmd, “hello”,”world”};
 execve(cmd,args,environ);
 printf(“This will only print if execve failed!\n”);
}
else
{
 //Execute only in parent
 printf(“In the parent!\n”);
}

}

Carnegie Mellon

8

Processes – Important Functions
 waitpid(pid_t pid, int* status, int options)

 Returns when the process specified by pid terminates
 Pid must be a direct child of the invoking process
 Will reap/cleanup the child
 If pid=-1, will wait for any child to die
 Writes information about child's status into status
 Options variable modifies its behavior
 options = WUNTRACED | WNOHANG
 Returns pid of the child it reaped
 Required by parent to kill zombies/free their resources

Carnegie Mellon

9

Processes – Important Functions
 setpgid(pid_t pid, pit_t pgid)

 Sets the pgid of the given pid
 If pid=0, setpgid is applied to the calling process
 If pgid=0, setpgid uses pgid=pid of the calling process
 Children inherit the pgid of their parents by default

Carnegie Mellon

10

Process Group Diagram

pid=8
pgid=8

pid=5
pgid=8

pid=500
pgid=8

pid=213
pgid=8

process 5 can reap processes 8 and 213, but not 500.
Only process 213 can reap process 500.

Carnegie Mellon

11

Signals
 Basic communication between processes
 Sent several ways (kill command/function, ctrl-c, ctrl-z)
 Many have default behaviors

 SIGINT,SIGTERM will terminate the process
 SIGSTP will suspend the process until it receives SIGCONT
 SIGCHLD is sent from a child to its parent when the child dies or is

suspended

 Possible to ignore/catch most signals, but some can't
 SIGKILL is unstoppable SIGINT
 SIGSTOP is unstoppable SIGSTP

Carnegie Mellon

12

Blocked Signals
 Processes can choose to block signals using a signal mask
 While a signal is blocked, a process will still receive the

signal but keep it pending
 No action will be taken until the signal is unblocked

 Process will only track that it has received a blocked signal,
but not the number of times it was received

Carnegie Mellon

13

Signals – Important Functions
 kill(pid_t id, int sig)

 If id positive, sends signal sig to process with pid=id
 If id negative, sends signal sig to all processes with with pgid=-id

Carnegie Mellon

14

Kill - Process

pid=8
pgid=8

pid=5
pgid=8

pid=500
pgid=8

pid=213
pgid=8

kill() with a positive PID will send the signal only to the
process with that ID.

kill(8, SIGINT);

Carnegie Mellon

15

Kill – Process Group

pid=8
pgid=8

pid=5
pgid=8

pid=500
pgid=8

pid=213
pgid=8

kill() with a negative PID will send the signal to all
processes with that group ID.

kill(-8, SIGINT);

Carnegie Mellon

16

Signals – Important Functions
 signal(int signum, sighandler_t handler)

 Specifies a handler function to run when signum is received
 sighandler_t means a function which takes in one int argument

and is void (returns nothing)
 When a signal is caught using the handler,its default behavior is

ignored
 The handler can interrupt the process at any time, even while

either it or another signal handler is running
 Control flow of the main program is restored once it's finished

running
 SIGKILL,SIGSTOP cannot be caught

Carnegie Mellon

17

Signals – Important Functions
 Sigsetops

 A family of functions used to modify signal sets
 Sigsets correspond sets of signals, which can be used in other

functions
 http://linux.die.net/man/3/sigsetops
 Remember to pass in the address of the sets, not the sets

themselves

http://linux.die.net/man/3/sigsetops

Carnegie Mellon

18

Signals – Important Functions
 sigprocmask(int option, const sigset_t* set, sigset_t

*oldSet)
 Updates the mask of blocked/unblocked signals using the handler

signal set
 Blocked signals are ignored until unblocked

− Process only tracks whether it has received a blocked signal,
not the count

− Getting SIGCHILD 20 times while blocked then unblocking will
only run its handler once

 option: SIG_BLOCK,SIG_UNBLOCK,SIG_SETMASK
 Signal mask's old value is written into oldSet

Carnegie Mellon

19

Signals – Important Functions
 sigsuspend(sigset_t *tempMask)

 Temporarily replaces the signal mask of the process with
tempMask

 Sigsuspend will return once it receives an unblocked signal (and
after its handler has run)

 Good to stop code execution until receiving a signal
 Once sigsuspend returns, it automatically reverts the process

signal mask to its old value

Carnegie Mellon

20

Race Conditions

 Race conditions occur when sequence or timing of events
are random or unknown

 Signal handlers will interrupt currently running code
 When forking, child or parent may run in different order
 If something can go wrong, it will

 Must reason carefully about the possible sequence of
events in concurrent programs

Carnegie Mellon

21

Race Conditions - Signals
int counter = 1;
void handler(int signum)
{

counter--;
}
int main()
{

signal(SIGALRM,handler);
kill(0,SIGALRM);
counter++;
printf(“%d\n”,counter);

}

 Possible outputs?
 What if we wanted to guarantee that the handler executed

after the print statement?
 Tip: you'll face a similar problem adding/removing jobs in

Shell Lab...

Carnegie Mellon

22

Race Conditions – Handler After
int counter = 1;
void handler(int signum)
{

counter--;
}
int main()
{

signal(SIGALRM,handler);
sigset_t alarmset,oldset;
sigemptyset(&alarmset);
sigaddset(&alarmset,SIGALRM);
//Block SIGALRM from triggering the handler
sigprocmask(SIG_BLOCK,&alarmset,&oldset);
kill(0,SIGALRM);
counter++;
printf(“%d\n”,counter);
//Let the pending or incoming SIGALRM trigger the handler
sigprocmask(SIG_UNBLOCK,&alarmset,NULL);

}

Carnegie Mellon

23

Unix I/O

 All Unix I/O,from network sockets to text files, are based
on one interface

 Important distinction between file descriptors and open file
description

 I/O commands such as open will generate an open file
description and a file descriptor

 A file descriptor is like a pointer to an open file
description

 Note that the open file table is at the OS-level and
shared between all processes, while there is one file
descriptor table per process

 Multiple file descriptors, either from the same or
different processes, can point to the same OFD

Carnegie Mellon

24

Unix I/O

int main()
{

int fd = open(“ab.txt”, O_RDONLY);
char c;
fork();
read(fd,&c,1); //Read one character from the file
printf(“%c\n”,c); //Print the character

}

 Assume the file ab.txt contains “ab”
 What do the file tables look like?
 What's the output?
 What if the process forked before opening the file?

Carnegie Mellon

25

Shell Lab Tips

 There's a lot of starter code
 Look over it so you don't needlessly repeat work

 Use the reference shell to figure out the shell's behavior
 For instance, the format of the output when a job is stopped

 Be careful of the add/remove job race condition
 Jobs should be removed from the list in the SIGCHILD handler
 But what if the child ends so quickly, the parent hasn't added it

yet?

 Use sigsuspend, not waitpid, to wait for foreground jobs
 You will lose points for using tight loops (while(1) {}), sleeps to

wait for the foreground

Carnegie Mellon

26

Shell Lab Tips

 Shell requires SIGINT and SIGSTP to be fowarded to the
foreground job (and all its descendants) of the shell

 How could process groups be useful?
 dup2 is a handy function for the last section, I/O

redirection
 SIGCHILD handler may have to reap multiple children per

call
 Try actually using your shell and seeing if/where it fails

 Can be easier than looking at the driver output

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

