
Carnegie Mellon

1

Programming in C & Living in Unix

15-213: Introduction to Computer Systems
Recitation 6: Monday, Sept. 30, 2013

Arthur Chang
Section G

Carnegie Mellon

2

Weekly Update

 Buffer Lab is due Tuesday (tomorrow), 11:59PM
 This is another lab you don’t want to waste your late days on.

 Cache Lab is out Tuesday (tomorrow), 11:59 PM
 Let the coding in C begin!

 Due Thursday October 10th

Carnegie Mellon

3

Agenda

 Living in Unix (w/ Demo)
 Beginner

 Command Line Interface

 Basic Commands

 Intermediate

 Shell Scripting

 More Commands

 Programming in C (w/ Demo)
 Refresher

 Compiling

 Hunting Memory Bugs

Carnegie Mellon

4

Unix – Beginner: Command Line Interface

 Command Line Interface
 “Provides a means of communication between a user and a

computer that is based solely on textual input and output.”

 In UNIX, the shell presents the user with a command prompt when
it is ready to receive a new command on the command line.

 Shell
 The program responsible for reading and executing the commands

entered on the command line.

 sh is the original UNIX shell.

 Many other versions exist. (e.g. bash, csh and zsh)

The Linux Information Project: Command Line Definition

http://www.linfo.org/command_line.html

Carnegie Mellon

5

Unix – Beginner: Command Line Interface

 Command Prompt
 AKA prompt or shell prompt

 String before the command line that:

1. Prompts the user “for the next command, data element or
other input”.

2. Helps “the user plan and execute subsequent operations.”

 Command Line
 “The space to the right of the command prompt… in which a user

enters commands and data.”

 Command
 “An instruction given by a human to tell a computer to do

something.”
The Linux Information Project: Command Line Definition

http://www.linfo.org/command_line.html
http://www.linfo.org/command_line.html

Carnegie Mellon

6

Unix – Beginner: Command Line Interface

Prompt

UserID Hostname Directory

Command

Command Line

Carnegie Mellon

7

Unix – Beginner: Basic Commands
Moving Around Manipulating Files

ls List directory contents mv Move (rename) files

cd Change working directory cp Copy files (and directories with “-r”)

pwd Display present working directory rm Remove files (or directories with “-r”)

ln Make links between files/directories cat Concatenate and print files

mkdir Make directories chmod Change file permission bits

Working Remotely Looking Up Commands

ssh Secure remote login program man Interface to online reference manuals

sftp Secure remote file transfer program which Shows the full path of shell commands

scp Secure remote file copy program locate Find files by name

Managing Processes Other Important Commands

ps Report current processes status echo Display a line of text

kill Terminate a process exit Cause the shell to exit

jobs Report current shell’s job status history Display the command history list

fg(bg) Run jobs in foreground (background) who Show who is logged on the system

Carnegie Mellon

8

Quick Aside: Man Page Sections

 From man-db, the on-line manual database:
“Each page argument given to man is normally the name of a
program, utility or function. The manual page associated with each of
these arguments is then found and displayed. A section, if provided,
will direct man to look only in that section of the manual. The default
action is to search in all of the available sections, following a pre-
defined order and to show only the first page found, even if page
exists in several sections.”

Carnegie Mellon

9

Quick Aside: Man Page Sections

 Some programs/utilities/functions have the same name,
this will require you to specify the section you want to
search. (e.g. man 3 printf)

 Find the section with whatis or man –f, which will
display the names, sections and short descriptions for all
the matching pages.

Carnegie Mellon

10

Agenda

 Living in Unix (w/ Demo)
 Beginner

 Command Line Interface

 Basic Commands

 Intermediate

 Shell Scripting

 More Commands

 Programming in C (w/ Demo)
 Refresher

 Compiling

 Hunting Memory Bugs

Carnegie Mellon

11

Unix – Intermediate: Shell Scripting

 Why do you care about shell scripting in 15213?
 It will make your life easier. (e.g. customizing Bash with shortcuts)

 You might save time by writing a script to automate repetitive
actions.

 Might as well start learning now; many of you will be working in a
UNIX environment for many years to come.

 What do we plan to teach you?
 In this recitation, Hello World with variables.

 Afterwards, only what you ask for help with.

Carnegie Mellon

12

Unix – Intermediate: Shell Scripting

 Our goal is to arm you with the basic knowledge and tools
you’ll need to make your life easier during and after this
class.

 For more information about shell scripting, check out
Kesden’s old 15123 lectures 3, 4 and 5.

http://www.andrew.cmu.edu/course/15-123-kesden/index/lecture_index.html

Carnegie Mellon

13

Unix – Intermediate: Shell Scripting

 Language can be very powerful
 Functions, conditionals, loops

 Language can also be very weak
 Completely un-typed (everything is a string)

 Strict, unintuitive syntax (not very user friendly)

 Remains popular for its real power
 Extensive library (can call any program)

 Relatively quick and easy to integrate command line tools
to solve complex problems.

Carnegie Mellon

14

Unix – Intermediate: Shell Scripting

hello.sh hello.sh with variables

#!/bin/sh

Prints “Hello, world.” to STDOUT

echo “Hello, world.”

#!/bin/sh

str=“Hello, world.”

echo $str # Also prints “Hello, world.”

 “#!/bin/sh” tells the shell to run the script using /bin/sh.
 Required to guarantee consistency.

 People use different shells and each shell has a slightly different
syntax and set of features.

 Anything after a ‘#’ is a comment.

 Variables
 Setting a variable takes the form ‘varName=VALUE’.

 ThereCANNOT be any spaces to the left and right of the “=“.

 Evaluating a variable takes the form “$varName”.

Carnegie Mellon

15

Quick Aside: Script Permissions

 When you first create a script, it is treated as if it were any
other file, without the execute permission.
 There are ways to circumvent this: man umask.

 You will need to use chmod +x to give yourself
permission to execute your script.

 This only needs to happen once per script, unless you some
how remove the permission bits again.

Carnegie Mellon

16

Quick Aside: Three Types of Quotes

 There are three different types of quotes, and they all have
different meanings to the shell.
 Unquoted strings are normally interpreted

 “Quoted strings are basically literals, but $variables are evaluated.”

 ‘Quoted strings are absolutely literally interpreted.’

 `Commands in quotes like this are executed, their output is then
inserted as if it were assigned to a variable and then that variable
was evaluated.`

Carnegie Mellon

17

Unix – Intermediate: More Commands
Transforming Text Useful with Other Commands

cut Remove sections from each line of

files (or redirected text)

screen Screen manager with terminal

emulation

sed Stream editor for filtering and

transforming text

sudo Execute a command as another user

(typically root)

tr Translate or delete characters sleep Delay for a specified amount of time

Archiving Looking Up Commands

zip Package and compressfiles alias Define or display aliases

tar Tar file creation, extraction and

manipulation

export

(setenv)*

Exposes variables to the shell

environment and its following

commands

Manipulating File Attributes Searching Files and File Content

touch Change file timestamps (creates

empty file, if nonexistent)

find Search for files in a directory hierarchy

umask Set file mode creation mask grep Print lines matching a pattern

* – Bash uses export. Csh uses setenv.

Carnegie Mellon

18

Quick Aside: Environment Variables

 Defined before the shell begins.

 Reflect an aspect of the shell environment.

 Changing environment variables affects the environment
programs are executed in.

 Set and evaluated just like normal variables.

 export (bash) and setenv (csh) are used in scripts to
export changes to environment variables to the scope of
the shell.

Carnegie Mellon

19

Quick Aside: PATH

 How does the shell know which ls to execute?

 The environment variable PATH.

 PATH is a : delimited list of directories to search for
executables.
 Can be set to include your shell scripts and C binaries.

Carnegie Mellon

20

Quick Aside: Customizing your Shell

 Shells can be configured by setting environment variables,
adding aliases, running scripts and more.

 Most shells are setup by running a file to a series of files
before the first command prompt is given.
 Typically these files are hidden in the $HOME directory, but in the

case of AFS they are not always set to run.

 When using AFS, use $HOME/.login, which is run every login.

 Bash typically uses .bashrc and csh typically uses .cshrc for
example.

 Adding alias commands for commonly used commands
is a useful and easy way to customize your shell.

Carnegie Mellon

21

Quick Aside: Using the rm Command

 rm ./filename – deletes file filename.

 rm ./*name – deletes all files in the current directory
that end in name.

 rm -r ./directory – deletes all files inside the given
directory and the directory itself.

Carnegie Mellon

22

Quick Aside: Using the rm Command

 rm –r ./* – deletes all files and directories inside the
current directory.

 sudorm –rvf /* – deletes the entire hard drive.

 DO NOT DO THIS!!!

 sudo will run the command as root, allowing you to delete
anything.

 -v (verbose) flag will list all the files being deleted.

 -f (force) flag will delete files whose permissions would have
normally asked for confirmation before deleting.

Carnegie Mellon

23

Agenda

 Living in Unix (w/ Demo)
 Beginner

 Command Line Interface

 Basic Commands

 Intermediate

 Shell Scripting

 More Commands

 Programming in C (w/ Demo)
 Refresher

 Compiling

 Hunting Memory Bugs

Carnegie Mellon

24

C – Refresher: Things to Remember

 If you allocate it, you free it.

 If you use Standard C Library functions that involve
pointers, make sure you know if you need to free it.

 Don’t pass structs into functions by value. Always use a
pointer.
 You should now be able to answer the question, “why is this bad?”

Carnegie Mellon

25

C – Refresher: Things to Remember

 There is no String type. Strings are just NULL terminated
char arrays.

 Setting pointers to NULL after freeing them is a good habit,
so is checking if they are equal to NULL.

 Global variables are evil, but if you must use make sure you
use extern where appropriate.

 Define functions with prototypes for simplicity and clarity.

Carnegie Mellon

26

C – Refresher: Command Line Arguments

 If you want to pass arguments on the command line to
your C functions, your main function’s parameters must be
main(intargc, char **argv)

 argv is the command line string, parsed on space, in an
array of char *’s (strings). argv[0] is the name of your
compiled C binary.

 argc is the number of arguments and is always at least 1
because the binary’s name is always present.

Carnegie Mellon

27

C – Refresher: Echo Demo

Write a basic echo.c file that takes itsarguments and prints
them back out with the missing spaces and trailing
newline.

Should compile using the following flags:
gcc –Wall –Wextra –Werror –pedantic –ansiecho.c –o echo

Carnegie Mellon

28

C – Refresher: Libraries

 Headers are used to expose interfaces through function
and struct prototypes, #defines and externing global
variables.

 Aim to put implementation in *.c files and definition in *.h
files.

Carnegie Mellon

29

C – Refresher: Libraries

 #include <*.h> - Used for including header files found in
the C include path: standard C libraries.
 Specifying –I DIR on the gcc command line requests gcc to

search DIR for headers before searching the rest of the include
path.

 #include “*.h” – Used for including local header files.

Carnegie Mellon

30

C – Refresher: Remove Duplicates Demo

Write a basic remove_duplicates.c file that takes
arguments from the command line and constructs a linked
list of all the arguments, with duplicates removed and
prints out how many different strings were given.

Example: “cat cat dog” has 2 items in the list, cat and dog.

Should compile using the following flags:
gcc –Wall –Wextra –Werror –pedantic –

ansiremove_duplicates.clinkedlist.c –oremove_duplicates

Carnegie Mellon

31

Agenda

 Living in Unix (w/ Demo)
 Beginner

 Command Line Interface

 Basic Commands

 Intermediate

 Shell Scripting

 More Commands

 Programming in C (w/ Demo)
 Refresher

 Compiling

 Hunting Memory Bugs

Carnegie Mellon

32

C – Compiling: Command Line

gcc GNU project C and C++ compiler

 When compiling C code, all dependencies must be
specified.
 This will not compile because the dependency linkedlist.c is

missing: gcc –Wall –Wextra –Werror –pedantic –

ansiremove_duplicates.c –oremove_duplicates

Carnegie Mellon

33

C – Compiling: Command Line

gcc GNU project C and C++ compiler

 gcc does not requires these flags, but they encourage
people to write better C code.

Useful Flags

-Wall Enables all construction warnings

-Wextra Enables even more warnings not enabled by Wall

-Werror Treat all warnings as Errors

-pedantic Issue all mandatory diagnostics listed in C standard

-ansi Compiles code according to 1989 C standards

-g Produces debug information (GDB uses this information)

-O1 Optimize

-O2 Optimize even more

-o filename Names output binary file “filename”

Carnegie Mellon

34

C – Compiling: Makefiles

Make GNU make utility to maintain groups of programs

 Projects can get very complicated very fast and it can take
very long to have GCC recompile the whole project for a
small change.

 Makefiles are designed to solve this problem by compiling
only the necessary parts of a project and linking them to
those unaltered.

Carnegie Mellon

35

C – Compiling: Makefiles

Make GNU make utility to maintain groups of programs

 Makefiles consist of one or more rules in the following
form.

Makefile Rule Format Makefile for “gccfoo.cbar.cbaz.c –omyapp”

target : source(s)

[TAB]command

[TAB]command

myapp: foo.obar.obaz.o

gccfoo.obar.obaz.o –omyapp

foo.o: foo.cfoo.h

gcc –cfoo.c

bar.o: bar.cbar.h

gcc –cbar.c

baz.o: baz.cbaz.h

gcc –cbaz.c

Carnegie Mellon

36

C – Compiling: Makefiles

 Comments are any line beginning with ‘#’

 The first line of each command must be a TAB.

 Makedepend – tool for identifying dependencies.
 Run on all your source files to add the correct dependencies to

‘Makefile’. (e.g. makedependfoo.cbar.cbaz.c)

 gcc –MM does the same thing but outputs to console.

Make GNU make utility to maintain groups of programs

Carnegie Mellon

37

C – Compiling: Makefiles

 Macros – similar to shell variables

 For more information on Makefiles, checkout Kesden’s old
15123 lecture 16.

Make GNU make utility to maintain groups of programs

Makefile Rule Format

CC = gcc

CCOPT = -g –DDEBUG –DPRINT

#CCOPT = -02

foo.o: foo.cfoo.h

$(CC) $(CCOPT) –cfoo.c

http://www.andrew.cmu.edu/course/15-123-kesden/index/lecture_index.html
http://www.andrew.cmu.edu/course/15-123-kesden/index/lecture_index.html

Carnegie Mellon

38

Agenda

 Living in Unix (w/ Demo)
 Beginner

 Command Line Interface

 Basic Commands

 Intermediate

 Shell Scripting

 More Commands

 Programming in C (w/ Demo)
 Refresher

 Compiling

 Hunting Memory Bugs

Carnegie Mellon

39

C – Hunting Memory Bugs: GDB

 Useful for debugging the occasional easy segfault.

 Run until segfault evaluate the situation using:
 where – prints function stack and lines.

 up/down – traverse the function stack.

 list – prints source code for where you are in the function stack.

 display / print – analyze the variables in use and see who is
incorrectly using memory and why

Carnegie Mellon

40

C – Hunting Memory Bugs: Valgrind

 Great tool for finding memory problems in C programs.

 Examples of what valgrind’smemcheck tool can do are:
 Track memory leaks

 Track possibly lost blocks

 Track origin for uninitialized values

 Report definitely lost (and possibly reachable) blocks

 The verbose (-v) flag is recommended.

valgrind A suite of tools for debugging and profiling programs

Carnegie Mellon

41

Sources and Useful Links

 The Linux Information Project: Command Line Definition

 Introduction to Linux: A Hands-On Guide (Garrels)
 You should be comfortable with chapters 2, 3, 4 and 5.

 The On-line Manual Database

 Kesden’s 15213: Effective Programming in C and Unix
 Lectures 3, 4 and 5 cover the basics of Shell Scripting.

 Lecture 16 covers Makefiles and lecture 15 covers Valgrind.

http://www.linfo.org/command_line.html
http://tldp.org/LDP/intro-linux/html/
http://tldp.org/LDP/intro-linux/html/
http://tldp.org/LDP/intro-linux/html/
http://tldp.org/LDP/intro-linux/html/
man-db.nongnu.org
man-db.nongnu.org
man-db.nongnu.org
http://www.andrew.cmu.edu/course/15-123-kesden/index/lecture_index.html

